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ABSTRACT Crowdsourcing has emerged as a new model for leveraging human knowledge and intelligence
toward accomplishing tasks that are difficult to fulfill effectively with machines alone. However, owing to
its open nature, quality control is a big challenge. Current crowdsourcing systems use one or two standard
mechanisms for evaluation and quality control of a task, regardless of its type. In this paper, we propose a
dynamic approach that exploits task-quality ontology to select the most suitable quality control mechanism
(QCM) for a given task based on its type. The proposed approach has been enriched by a reputation
engine that collects requesters’ feedback on the performance of QCMs. Accordingly, QCMs and tasks were
automatically matched using the underlying categorization structure of tasks on one side and the reputation
scores of QCMs on the other side. Our experiments establish that our proposed dynamic approach yields

better results compared to existing approaches.

INDEX TERMS Classification, crowdsourcing, ontology, quality control, reputation, task.

I. INTRODUCTION

Technology has advanced to save human effort, time, and
costs considerably to accomplish a task automatically. There
are a number of tasks that require large-scale human involve-
ment. For example, humans outperform machines in natural
language processing and image understanding [1] that require
basic human skills such as creativity and common sense [2].
According to [3], machines have not been able to match the
complexity, creativity, and flexibility of human intelligence.

Crowdsourcing introduces a new way for organizations and
individuals to leverage human knowledge and intelligence
toward accomplishing special tasks that are difficult to fulfill
effectively with machines alone. For example, the crowd may
be invited to tag a photo, translate a written text, transcribe
an audio file, or perform usability testing. However, due to
the open nature of crowdsourcing, the quality control of the
outcomes is a significant challenge.

Several studies have suggested a variety of mechanisms to
relieve this concern [4]-[7]. Nevertheless, these mechanisms
have mostly concentrated on managing the quality statically
and have used the same quality control mechanism (QCM)
for assessing different types of tasks. This approach has an

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Wang.

inherent limitation in that a QCM that works properly for
some tasks might be ineffective for others [8]. For instance,
a QCM that is appropriate for assessing the outcome of
language translation would not necessarily work well for
assessing the outcome of image labeling because the two
tasks differ from each other in their nature.

The nature of a task plays a vital role in crowdsourcing
quality control [9]. Khasraghi and Aghaie [9] studied task-
specific factors and found that the only factor that has a
significant effect on the average quality of the accomplished
tasks is the task type. This work is in line with a suggestion
from [3], [8], and [10], who stated that a recommender system
must be developed to maintain a dynamic quality model in
crowdsourcing.

However, it is not easy for the requesters in crowdsourcing
to identify the nature (i.e., type) of their required tasks. As
highlighted in [8], it is difficult for the requesters to customize
the quality control mechanism (QCM) based on their needs.
Moreover, the requesters have little knowledge about the
best QCM to direct the outcome of their submitted tasks.
In addition, the sheer number of tasks would not help if these
are unstructured.

In this paper, we propose a dynamic selection approach
for the quality control of tasks in crowdsourcing. More par-
ticularly, we introduce a task ontology-based model that can
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be utilized by a crowdsourcing system to determine the most
appropriate QCM for a given task. The historical performance
data of QCMs with different tasks collected over time enables
to mine appropriateness and provide decisions for future
tasks.

Broadly, the contributions of this paper are as follows:
First, an overview of QCMs used in crowdsourcing systems
is provided. Second, a dynamic selection approach for the
quality control of tasks in crowdsourcing, consisting of three
components, is outlined; (1) a task classifier to identify the
types of crowdsourcing tasks automatically, (2) a Task_QCM
ontology to standardize, share, and reuse the knowledge in
the crowdsourcing domain, and (3) a reputation engine to
collect and calculate QCM reputations. Third, an empiri-
cal evaluation of the classification component using real
data obtained from Amazon Mechanical Turk (MTurk) [11],
a well-known crowdsourcing system, is described. Finally,
a simulation environment to evaluate the performance of the
dynamic selection approach against existing quality control
approaches is discussed.

The rest of the paper is structured as follows. Section II
gives an overview of crowdsourcing, presents the state of
the art in QCMs, and highlights important, relevant works.
Section III formulates the research problem and provides
details about the dynamic selection approach. In section IV,
the evaluation methodology, details of the experiments, and
results are presented. Lastly, sections V and VI discuss some
challenges and provide conclusions, respectively.

II. LITERATURE REVIEW
A. CROWDSOURCING
The term crowdsourcing was coined jointly by the editors
at Wired Magazine, named Howe and Robinson. It first
appeared in Howe’s article, ‘““The Rise of Crowdsourcing™,
in 2006 [13]. The general principle of crowdsourcing is to
distribute tasks to a crowd of workers who contribute their
skills toward solving the problem. It has appeared under
many different names, such as peer production, user-powered
systems, collaborative systems, and community systems [14].

As is typical for an emerging area, several different
definitions of crowdsourcing have appeared in the litera-
ture. Howe [15] defined crowdsourcing as ‘“‘the act of tak-
ing a job traditionally performed by a designated agent
(usually an employee) and outsourcing it to an unde-
fined, generally large group of people in the form of an
open call.” Brabham [16], one of the academic pioneers
in this field, defined crowdsourcing as ‘“‘an online, dis-
tributed problem-solving and production model.” Estelles-
Arolas and Gonzalez-Ladron-de-Guevara [17] studied and
analyzed more than 40 definitions of crowdsourcing in the
scientific and popular literature. They found that the most fre-
quently cited definitions were those proposed by Howe [15]
and Brabham [16].

Crowdsourcing has gained increased attention from both
academia and industry [6]. It has been adopted by large online
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companies such as Amazon, Google, Facebook, Twitter, and
Yahoo! [18] [19]. One of the most popular crowdsourcing
systems for simple tasks is MTurk [11], and common sys-
tems for more complex tasks include Upwork [20] and Free-
lancer [21]. It is worth mentioning that MTurk refers to tasks
as Human Intelligence Tasks (HITs), a term that has been
used interchangeably with tasks in the literature.

Crowdsourcing has been recognized for its potential to
enhance cooperation between computers and humans. It has
been applied to handle real-world problems across different
domains practically. For example, researchers at the Univer-
sity of Washington were not able to analyze the structure of
protein for more than a decade. They posted the problem to
the public in a crowdsourcing game involving 57,000 partic-
ipants, and it was solved within three weeks [22].

Moreover, Markowsky [23] emphasized the vital role that
the crowd plays in homeland security and the crime-fighting
domain; for example, the crowd contributed to the identifi-
cation of the perpetrators of the Boston Marathon bombing
in 2013. In addition, Sabou et al. [24] highlighted the positive
effects that the crowdsourcing has had on natural language
processing.

Several crowdsourcing systems have emerged to serve spe-
cific application domains, such as CastingWords [25] that
provides transcription services in a number of languages; and
CrowdDB [26] that uses human input to process queries that
neither a database system nor a search engine can adequately
answer.

B. QUALITY CONTROL MECHANISMS IN
CROWDSOURCING

Different mechanisms and techniques have been proposed
to control the quality of crowd contributions [4]-[7]. These
mechanisms can be employed at different levels in the crowd-
sourcing process (i.e., before posting the task) while the task
is running, and after posting the task. Some of the most
common QCMs are explained below.

1) QUALIFICATION TESTS

The aim of a quality control mechanism is to aid in the
selection of workers before assigning a task to them. Several
crowdsourcing systems provide requesters with the ability to
develop their own qualification tests [27]. Such tests contain
questions for workers that are similar to the real task. Only
workers who pass these tests are allowed to work on the tasks.
However, qualification tests do not actually evaluate the tasks
after the solutions are submitted. They may only increase
the possibility of getting better results; hence, other QCMs
are needed alongside them for evaluating the tasks after the
solutions are submitted.

2) GOLD STANDARDS

A very popular mechanism is the use of Gold Standard
Tasks [6] to verify workers’ performance. The main idea
behind this mechanism is that tasks with previously known
and defined solutions are inserted into the actual tasks that
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will be processed by the workers. If a worker’s response to a
Gold Standard Task matches the previously defined solution,
his or her contribution to future tasks would be considered
valid. This mechanism is used to infer the quality of work-
ers’ contributions and filter out poor-quality workers, and it
has been incorporated into various crowdsourcing systems,
such as CrowdFlower [28]. However, designing such tasks
increases costs, and it can be difficult or even impossible in
real-world situations to have such kinds of tasks [29].

3) REDUNDANCY

Some systems employ redundancy as their QCM to deduce
the correct answer. Redundant work means allocating the
same task to multiple workers [29]. Then, several statistical
methods such as majority voting are applied to aggregate
the responses [8]. However, such mechanisms typically work
well for tasks where agreement among workers can be mea-
sured, such as with multiple choice questions. Therefore,
they are not applicable for tasks with unstructured response
formats, such as article writing or translation tasks, where
agreement between workers is not expected.

4) WORKER REPUTATION

The reputation of workers is also commonly used as a metric
for determining the quality of their responses, such as in
[4], [5], and [30]. The reputation system reflects workers’ task
performance history. Moreover, spam-filtering techniques
have been developed [31] to reduce noise in responses from
malicious workers. However, current mechanisms calculate
the worker’s reputation in general without considering the
type of task accomplished. That is, a worker might gain a high
reputation by correctly accomplishing image-labeling tasks,
but this does not necessarily imply that he or she can perform
well in a text-translating task.

5) ITERATION-BASED

For more complex tasks with unstructured response formats,
such as article writing or translation, an iterative process can
be employed. In the iterative process, the solution of the first
worker becomes an input for the next worker. Some systems
use domain experts or peer review to check the quality of such
tasks [32].

Researchers in the literature have proposed classifications
for existing QCMs; for example, Allahbakhsh et al. [8]
classified QCMs into design-time and run-time. Quinn and
Bederson [32] described nine types of QCMs for human
computation: output agreement, input agreement, economic
models, defensive task designs, redundancy, statistical filter-
ing, multi-level reviews, automatic checks, and reputation
systems. In addition, Iren and Bilgen [33] identified the
frequently used QCMs and grouped them according to their
characteristics. And recently, Luz et al. [7] conducted an
empirical study to examine the QCMs used in some of
the existing systems. For instance, they pointed out that
CrowdFlower relies on gold standards, and that CloudCrowd
uses credentials and the credibility of workers as a quality
indicator.
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TABLE 1. Examples of QCMs applied to different tasks.

Task Suggested QCM from the Reference
literature
Image labeling Majority voting [34]
Text translation Tournament selection mechanism  [35]
Text annotation Qualification test, then voting [36]
Article writing Iterative process [37]
Image description Input/ Output agreement [38]
Text summarization Find-Fix-Verify [39]
Audio transcription  Iterative dual pathway ~ [40]

Among the mechanisms provided here, we are interested in
proposing an approach that customizes the QCMs based on
the nature or type of task. From the literature review, we can
see that different QCMs are used to evaluate different types of
tasks. Table 1 gives some examples of QCMs and the different
types of tasks they can be applied to.

C. RELEVANT WORKS

As we have seen, many mechanisms have been proposed in
the literature to handle quality in crowdsourcing; however,
to the best of our knowledge, the issue of applying a QCM
to tasks based on their nature has not yet been addressed.
As such, we discuss below relevant research focusing on the
ontology and task classifications in crowdsourcing systems.

In regard to ontology construction, the work of Het-
mank [41] is relevant to our study. In this work, the author
proposed a lightweight ontology for enterprise crowdsourc-
ing. Yet, his research concerned with the development of an
ontology for a special type of crowdsourcing task within an
enterprise. Moreover, his ontology lacks regard for the quality
control management in crowdsourcing systems, about which
the author suggested more studies. We reuse and extend some
parts of the enterprise crowdsourcing ontology and adapt it
for our purposes. In addition, a skill ontology-based model
for quality assurance was suggested in [30]. While this model
was used to identify and match the best worker to a given
task, our approach aims to identify and match the best-suited
quality control mechanism to a given task. In our work,
we argue that identifying the best worker is part of the whole
QCM process.

Regarding task classification, another related study was
conducted by Difallah ez al. [42]. In their work, data collected
from MTurk was analyzed with respect to some key dimen-
sions of the system, including task type. They performed a
large-scale classification of 2.5 million HIT types in order to
study the evolution of HIT types on MTurk over time. Using
the data labeled by MTurk workers, they trained a classifier
for the task types proposed by Gadiraju [43]. Complement-
ing such existing works with a different goal, our approach
provides an ontological representation of tasks and QCMs
as well as a classification of tasks as a basis for choosing a
suitable QCM.

IIl. OUR PROPOSED APPROACH
In this section, we describe our proposed approach for
QCM selection on crowdsourcing systems. The problem is
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formulated in section III-A, and then a detailed explanation
of the proposed approach is presented in section III-B.

A. PROBLEM FORMULATION
It is important to first clarify what is meant by guality in the
context of our work. In this paper, we adopt the definition
of quality of a crowdsourcing task outcome as: ‘“‘the extent
to which the provided outcome fulfills the requirements of
the requester” [8]. In other words, the quality of the task is
dependent on the requester’s satisfaction and whether or not
the result has met his or her expected level of quality.

A typical scenario in crowdsourcing consists of a requester
r who submits a task ¢ to a set of Workers W who are regis-
tered in the crowdsourcing system and are willing to work on
t and return the result to r. One essential goal for the crowd-
sourcing system is to implement task ¢ and return the result
to r at a satisfactory level of quality. However, as mentioned
before, the current systems are limited to identifying a QCM
that can control the task 7. This paper attempts to address
this problem. More specifically, given a set of tasks 7', where
T ={t,t,...,t,}, and a set of quality control mechanisms
OCM, where QCM = {qi1,q2,--.,qgm}, our objective in
this paper is to select the best-suited QCM g to control and
maintain the implementation of a given crowdsourcing task 7.
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FIGURE 1. The process of the dynamic selection approach.

Requester

B. DYNAMIC SELECTION APPROACH FOR QCMs

The proposed dynamic selection approach consists of three
components: Task Classifier, Task_QCM Ontology, and
QCM Reputation Engine. Fig. 1 illustrates the process of the
dynamic selection approach and the interactions between its
main components. The role of each component is explained
in detail in the following subsections.

1) TASK CLASSIFIER

Broadly, there are five types of crowdsourcing tasks: Opinion
Based (OB), Content Generation (CG), Content Conversion
(CQC), Data Processing (DP), and Research Based (RB) [44].
A dynamic discovery of QCMs requires the provision of rich
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metadata for each requested task. The role of this component
is to identify the type of the new incoming crowdsourcing
tasks automatically based on their features.
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FIGURE 2. Classification component construction process.

Fig. 2 depicts the process of constructing the task classifi-
cation component. The process starts by collecting real tasks
from a crowdsourcing system. A task is usually represented
by many features, such as task title, description, and key-
words; hence, the feature extraction process aims to extract
the relevant features for our work. After that, the data set is
manually labeled based on the predefined task types. When
the labeling process is finished, the labeled data set undergoes
a preprocessing step that runs some filters for cleaning the
data set. Finally, using the labeled data, a machine-learning
algorithm is used for learning how to identify the task types
of new tasks.

2) TASK_QCM ONTOLOGY

Ontologies are commonly used to facilitate knowledge repre-
sentation, sharing and reusing. In crowdsourcing, task is the
core element, and it can be classified into different types (e.g.,
image processing, video captioning, and audio transcription).
In this section, we introduce the task ontology that can iden-
tify the most appropriate QCM for a given task [45].

The developed ontology acts as a conceptual backbone
for selecting and matching QCMs to tasks based on their
types. It was implemented using a well-known ontology edi-
tor called Protégé,! and stored using the descriptive language
OWL (Web Ontology Language). To read data from these
files, the Jena? library was used.

In general, there are two core concepts in the ontology:
task and QCM. These concepts alongside their instances were
acquired from an extensive literature study in crowdsourcing.
Each task is described in the ontology by <tfitle, description,
keywords, object type, action type, time allotted, reward,
expiration date, and qualification required>.

The action type means the action of the task; for example,
tagging, describing, or categorizing. The object type means
the data type of the object, such as text, image, or audio.
Tasks in the ontology are grouped together based on
their rask type, which can be OB, CG, CC, DP, and RB, as
described earlier. A task type is defined by the values of its set
of common features. Two tasks with similar values of these

1 http://protege.stanford.edu/
2https://jena.apache.org/
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features are considered to be of the same task type. So, a
task can be defined by its features; for example, the MTurk
task “Categorize the sentiment of a tweet as positive, nega-
tive, or neutral” has the following features: [task type: OB,
action type: categorization, object type: text].

Moreover, a profile was created in the ontology for each
QCM to store its features, such as name, description, require-
ment, and other specifications. The performance of the QCM
in evaluating the various tasks was stored in the ontology in
order to calculate its reputation. The reputation score can be
used for QCM selection and matching to a given task. It may
be noted that the selection of a QCM for a given task can be
applied if and only if the reputation score of the QCM exceeds
a certain level otherwise, a random QCM is selected.

Once the crowdsourcing system receives a new request,
the task classifier identifies the task type and passes it on to
the Task_QCM ontology. The mapper then maps the ontology
classes and their instances onto the tables in the knowledge
base. Moreover, it is also responsible for gathering infor-
mation using SPARQL queries over the knowledge base.
In the next subsection, we explain how to select the most
appropriate QCM for a given crowdsourcing task.

3) THE DynamicQCM ALGORITHM

The central challenge in our work was to select the most
suitable QCM to evaluate and control the given task. For
this purpose, we developed a DynamicQCM algorithm that
basically selects the most reputable QCM based on its per-
formance with previous similar tasks. Algorithm 1 describes
how our proposed approach selects the most suitable QCM
for the new crowdsourcing task.

Algorithm 1 The DynamicQCM Algorithm
1: Input: #, is a new crowdsourcing task,
O is the TaskjQCM Ontology,
o, B are given thresholds.
: Output: ¢ is a quality control mechanism.
:max = 0;
k=0
: for each task t; € O do
sim = CalculateSimilarity(t,.t;);
if sim > max then
max = sim;
9: k=1
10:  end if
11: end for
12: if max > « then
13: if T-g( > B then
14: Return gy,

15: else

16: Return Random(q);
17:  end if

18: else

19:  Return Random(q);
20: end if

38648

The input of the algorithm (Line 1) is the required crowd-
sourcing task #,; O, which is the Task_QCM ontology that
holds the tasks, QCMs, and historical usage of QCMs with
different tasks; o, which is a similarity score threshold that
the tasks need to maintain; and B, which is the reputation
score threshold that the QCMs need to maintain. The output
(Line 2) is the selected QCM g to control and evaluate the
new task 7,.

Two variables, max and k, are defined (Lines 3—4) to store
the maximum similarity score between the new task #,and
other existing tasks, and the index of the task that has the
maximum score (Lines 3 and 4), and their initial values are
set to zero.

For each new task, the proposed algorithm calculates its
similarity with other existing tasks (Lines 5-6). The algo-
rithm then compares the value of max with the new similarity
score that is stored in sim and updates the values of max and
k if the new similarity score is greater than the value of max
(Lines 7-10).

Finally, the algorithm checks whether the similarity score
of max is greater than or equal to the value of o (Line 12);
if so, then it checks whether the reputation score of the
associated QCM with the most similar task exceeds or is equal
to B(Line 13); if it does, then the associated QCM is selected
for the control of the new task (Line 14); otherwise, if the
similarity score or the reputation score of the QCM is less
than the given thresholds, the proposed algorithm nominates
a QCM randomly to control the new task (Lines 16-20).

To calculate the similarity between two tasks, the feature-
based approach proposed in [46] was adopted in the Dynam-
icQCM algorithm. This is because it fits our lightweight
ontology structure, which depends on concept features more
than hierarchy in presenting knowledge. In the similarity
calculation, the relation between two tasks as dimensions of
a vector space is modeled. That is, a Boolean scale is used to
represent matching between the features of the new task and
existing tasks. Similarity between tasks can then be measured
using the set-based approach presented by Jaccard. However,
we wanted to consider the importance of distinct features
within the task. So, we assigned weights to features according
to their importance in identifying similar tasks according to a
survey conducted by Schnitzer ef al. [48]. Similar tasks were
then identified based on the Cosine distance [49] between
their features. The similarity score was normalized to [0, 1],
where 1 represents the most similar task and O represents
the most non-similar task. The calculated similarity score
was used to select the most suitable QCM for the new task.
To explain how the proposed algorithm works, consider the
following example.

Example:Suppose that the requester submits a new task
t10: <DP, Classification, Audio>, where DP is the task type,
Classification is the action type, and Audio is the object
type. Suppose also that the similarity scores betweent;o and
existing tasks are calculated and presented as in Table 2.

In our calculation, the weights assigned to task type, action
type, and object type were 0.6, 0.3, and 0.1, respectively.
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TABLE 2. Similarity score calculation between task t10 and all existing
tasks.

Task Task  Action type Object QCM QCM Cosine

1D type type reputa  similarity
tion score

t OB Classification Image q> 0.89 0.44

t DP Classification Image qi 0.87 0.98

t3 DP Describing Image qs 0.90 0.88

1y CcC Writing Text q3 0.88 0

ts CI Describing Image qs 0.85 0

ts Cl Translation Text qs 0.81 0

tr CI Summarization Text q4 0.93 0

ts CI Transcription Text qo 0.27 0

ty CI Transcription Audio q7 0.80 0.15

These weights can be set and updated by the coordinator
of the crowdsourcing system. For example, the similarity
score between tjpand ¢ equals 0.44. This is because only one
feature in #; (i.e., action type) has a similar value with the
same feature in t19. So, 0.44 represents the cosine similarity
score between those vectors: u <0, 0.3, 0> for t; and v <0.6,
0.3, 0.1> for t19.

It may be noted that the QCM column in Table 2 refers to
the most reputable QCM for each given task. This information
was computed by the reputation engine (as we will see in the
next section) and retrieved from the Task_QCM ontology.

Now, let us assume that the similarity threshold (o in
Algorithm 1) equals 0.5. In the best case, there would be
a task that is exactly similar to the new task 9. However,
in our case, it is easy to see that only one task, 7, would
be considered the most similar to #;g. Therefore, the QCM
associated with 7, (gq1) would be selected to evaluate and
control the execution of #;g. In some cases, more than one
task would be similar to the new task. For example, suppose
that the similarity score between t1p and 73 is also 0.98; in
this case, the most reputable QCM would be nominated and
assigned to control #1¢ (the one associated with 3, gg). If, for
example, the most similar task to #1¢ is #g, the system would
nominate a QCM randomly because fg is associated with a
QCM that has a low reputation score (i.e., the associated
QCM would be considered if its reputation score exceeds a
given threshold, which is 8 in Algorithm 1, say 0.6). The
random approach is adopted in order to give each QCM an
equal opportunity of being selected with various tasks, and
hence the reputation of each QCM would be built over time.

After the crowdsourcing system implements tjp using
the selected QCM and returns the result to the requester,
the requester would be asked to provide his or her rating.
The provided ratings would be used by the QCM reputa-
tion engine to recalculate the reputation score of the used
QCM, as we will see in the next section. The updater in the
Task_QCM ontology would be notified to update the QCM
and task association accordingly.

4) QCM REPUTATION ENGINE

This component is responsible for the calculation of a QCM’s
reputation. As we said earlier, the system holds historical
performance data of QCMs. The data reflect the requesters’
ratings on QCM performance when applied to different tasks.
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Requesters’ ratings can be specified in terms of their satisfac-
tion with the received result and are collected after receiving
the final result from the system. The rating ranges from Oto 1,
where 0 indicates bad quality and 1 denotes excellent quality.

Based on the above aspects, a reputation score is estab-
lished for each QCM associated with the requested task.
Algorithm 2 describes the functioning of the proposed QCM
reputation algorithm.

Algorithm 2 The QCM Reputation Algorithm
1: input: ¢ is a given crowdsourcing task
q is a quality control mechanism
D ahistorical usage of QCMs with different tasks.
2: output: r a reputation of ¢ in controlling task .
3: sum = 0;

4: count = 0;

5: for each data instance d; € D do
6: if (qi=q) &(t; = t) then

7: sum = sum + 7;;

8 count = count + 1;

9: endif

10: end for

iy =

12: Return r;

The input parameters of the QCM reputation algorithm are
the task ¢, the quality control mechanism ¢ for which we need
to calculate its reputation in controlling ¢, and the historical
usage D of QCMs with different tasks (Line 1). The output is
the calculated reputation score r (Line 2).

In the historical usage D data, each single instance has
three values: < ¢, g, r >, where ¢ is the task, g is the
QCM, and r is the rating that represents the effectiveness
of g in controlling ¢. The algorithm uses two variables: sum
and count, the first for the rating summation (Line 3) and
the second for calculating the number of ratings (Line 4).
Subsequently, the algorithm scans the rating instances in D
(from Line 5 to Line 10).

For each instance, the algorithm checks whether the task
and quality control are equal to the target values (Line 6);
if so, its rating would be considered in the calculation
(Line 7 and 8). After the algorithm finishes scanning of all
the existing instances, the reputation score is calculated by
dividing the summation of the ratings into the total number
of ratings (Line 11), and the result is sent to the Task_ QCM
ontology (Line 12). The updater in the Task_QCM ontology
then reorders the list of QCMs using the new reputation
score and updates the associated QCM with the targeted task,
if necessary.

IV. EVALUATION AND RESULTS

Our evaluation consisted of two main parts. First, we eval-
uated the task classifier based on the real data collected
from MTurk. Second, we conducted a set of experiments to
compare the DynamicQCM approach against other quality

38649



IEEE Access

R. Alabduljabbar, H. Al-Dossari: Dynamic Selection Approach for QCMs in Crowdsourcing

control approaches using synthetic data generated from a
simulation environment. This is because real experiments in
such systems are not only time consuming but also difficult
to conduct. The prototype was implemented using the Eclipse
IDE, with the Java programming language.

A. EXPERIMENT 1: CLASSIFYING CROWDSOURCING
TASKS

As we described previously, there are five types of crowd-
sourcing tasks: Opinion Based (OB), Content Generation
(CG), Content Conversion (CC), Data Processing (DP), and
Research Based (RB). In this experiment, we showed how a
machine learning algorithm can be used to infer the type of a
crowdsourced task automatically. We used the real data col-
lected from MTurk [11], and classified them using the WEKA
toolkit [50]. Three machine-learning algorithms were used
to classify the crowdsourced tasks: Support Vector Machine
(SVM), Naive Bayes (NB), and k-Nearest Neighbor (k-NN).
The component was evaluated with 10-fold cross validation
over the labeled data.

1) DATA PREPARATION

The data set used in this work was randomly collected from
MTurk [11]. MTurk was chosen as it was one of the first
crowdsourcing systems in the market, and it remains the
most prominent system [3]. In August 2014, MTurk reported
having more than 500,000 workers from 190 countries world-
wide [51]. The MTurk-Tracker [52] shows that MTurk lists
150,000-300,000 tasks to be executed per day on an aver-
age. To obtain a wider data set sample spanning various
types of tasks, we specifically sourced the data using MTurk-
Tracker [52]. MTurk-Tracker has collected data about HIT's
published on MTurk periodically over the past five years.
Their data is available at http://mturk-tracker.com/.

Overall, the obtained data sample consisted of around
4,000 HITs posted via the MTurk-Tracker during Novem-
ber and December 2015. The selected HITs were verified
carefully and then added to the data set. In fact, we added only
the HITs with complete metadata to ensure that there were
enough keywords describing the HITs in order to prepare
them for labeling and training.

After collecting the data, a Java-based desktop application
was implemented to facilitate data labeling (see Fig. 3). One
of the authors and two external researchers used the appli-
cation to label the data set to the predefined types: Opin-
ion Based (OB), Data Processing (DP), Content Generation
(CG), Research Based (RB), and Content Conversion (CC).
The final data set consists of 3,691 HITs. Fig. 4 illustrates the
distributions of task types within the training sample.

To classify the tasks meaningfully, the extracted keywords,
titles, and descriptions were subjected to a pre-processing.
Some filters were applied in the following order:

1) Lowercase filter: Keywords are converted to lowercase

letters to simplify the comparison.

2) Stemming filter: Stemming is the process of reducing

words to their stems in order to minimize the number
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FIGURE 3. Screenshots of the labeling application.
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FIGURE 4. Training sample distribution.

of distinct words. For example, stemming would reduce
words like computer, computing, and compute to their
stem, which is “comput”. The iterated version of the
Lovins Stemmer [53] was used for stemming in this
work.

3) Stop-words removal filter: Stop words are words that
are filtered out before the processing of textual data.
An algorithm searches the text by a predefined list
(stop-words) and deletes them from the text. Some
of the common stop words are “the, is, at, but,
be, been, and, as, out, ever, own, he, she, shall”.
A list of stop words based on Rainbow, a program
that performs statistical text classification based on
the Bow Library [54], was used in this work.

2) RESULTS

After preprocessing, a machine-learning algorithm is used for
learning how to identify task types. The goal is to build a
component that is able to identify the task type accurately.
The classification component was built on the task types
provided earlier.

Machine-learning-based classification algorithms range in
their theoretical background and application areas. The task
of automatic text classification can be classified in three
ways: unsupervised, supervised, and semi-supervised meth-
ods. Normally, supervised learning is used for automatic text
classification [55]. Several algorithms were proposed for the
supervised classifications of texts. Among these algorithms,
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Support Vector Machine (SVM), Naive Bayes (NB), and
k-Nearest Neighbor (k-NN) were shown to be the most appro-
priate in [55].

Hence, these three classifiers were tested: SVM, NB, and
k-NN. The WEKA machine-learning toolkit [50] was used
to test the classifiers using the features extracted from the
data set. The component was evaluated using 10-fold cross
validation over the labeled data.

ESVM @ K-NN =ENB
97.43%
94.69%
83.59%
Accuracy

FIGURE 5. Accuracy of different classifiers.

As shown in Fig. 5, the SVM showed noticeable improve-
ments over the k-NN and NB classifiers. The Precision and
Recall of the three classifiers are displayed in Fig. 6.

HSVM uK-NN ENB

0.974 0.974

0.948 0.947

Recall

Precision

FIGURE 6. Precision and Recall of different classifiers.

Overall, the SVM is found to be effective in classifying
the HITs to their types. It was able to classify 3,526 out
of 3,619 HITs correctly (i.e., 97.43% accuracy). The classifier
obtained a micro-average of precision of 0.974 and a recall
of 0.974.

B. EXPERIMENT 2: SELECTING THE BEST-SUITED QCM
FOR CROWDSOURCING
In this experiment, we evaluated the performance of the pro-
posed approach and compared it against three quality control
approaches: Random, StaticAMT, and ReputationBased.
The first approach simply selects one of the existing QCMs
in a random way. The StaticAMT is a common approach
that has been adopted by several crowdsourcing systems;
however, it basically applies to only one QCM. The Amazon
Turk crowdsourcing system, for example, has adopted this
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approach by using workers’ voting mechanism to control and
evaluate the execution of submitted tasks. The Reputation-
Based approach collects users’ ratings to build the reputation
of each QCM and nominate the most reputable QCM to
the target task regardless of its type. While this approach
is more dynamic than the previous one, it was built under
the assumption that one size fits all (i.e., in our context, this
means that one QCM can handle and control all types of
tasks).

Our proposed approach (the DynamicQCM) overcomes
the limitations of the previous approaches by selecting the
QCM dynamically. In other words, we consider the task
features to select the best-suited QCM for a given task.

1) EXPERIMENTAL SETUP

The experiments were designed to simulate interactions
between QCMs and tasks. The simulation allowed us to
model different task profiles by varying task types, object
types, and action types. It also allowed us to model different
QCMs and generate requesters’ ratings to reflect the perfor-
mance of the used QCM with the executed task.

A population of different tasks and QCMs was created and
added to the environment. Nine different tasks (1 — —t9) were
used in our experiments. Each task was identified by three
features: <task type, action type, object type>. The values of
these features were identified as follows:

(1) Task type: Task types of our data set include four of the
identified and previously mentioned in section III-B-1:
{OB (Opinion Based), DP (Data Processing), CG
(Content Generation), and CC (Content Conversion)}.
We named them accordingly as {TT1, TT2, TT3, TT4).

(2) Object type: Inspired by the work in [52], the three
most common object types used in our experiment are
{Image, Text, and Audio} and are named {O1, 02, and
03}, respectively.

(3) Action type: Inspired by the top actions in the HITs
collected from MTurk, we considered six types of
action: {Classification, Writing, Describing, Transla-
tion, Summarization, and Transcription }. These actions
are named {Al, A2, A3, A4, A5, A6}, respectively.

QCMs in our experiment were inspired from the liter-
ature. We used nine mechanisms for our study: Majority
Voting, Peer Review, Iterative, Find-Fix-Verify, Tournament
Selection Mechanism, I/O Agreement, Iterative Dual Path-
way Structure, Worker Selection with Majority Voting, and
Seeding with Iterative. They were named {q/, g2, ¢3, g4, g5,
q6, q7, g8, q9}, respectively.

To test the performance of the approach, we generated
1,000 instances in the form of <task type, object type, action
type, OCM, rating>. Each instance represents a task that
was executed in the crowdsourcing system and controlled
by a certain QCM. The generation of these instances was
controlled by the values in Table 3. For example, <4, 2, 6, 9,
0.94> represents a rating of applying g9(Seeding with Itera-
tive) with a task type T74(Content Conversion), object type
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TABLE 3. Tasks and best QCMs.

Task # Task type Object type Action type Best QCM
t TT1 0l Al q>
t 12 0l Al qi
t; 72 02 Al qs
ty TT3 02 A2 qs
t5 el 0l Al qs
ts el 02 A4 qs
t; T4 02 A5 q4
ts el 02 A6 q9
to T4 03 A6 q7

O2(Text), and action type A6(Transcription). The requester’s
rating generated for this instance was 0.94, meaning that
the requester was happy with the result. In other words, the
performance of g9 was good enough to control the execution
of this task and thereby produce satisfactory results for the
requester. It may be noted that we allowed some variations
in the generated values to reflect different task features that
might be requested by the crowdsourcing users, and to reflect
different QCMs that might be selected by the system. Fur-
thermore, we allowed some variations in ratings to mirror the
real-world situations where the requesters may have similar
tasks and QCMs; however, they may provide different ratings.

Overall, the data set was diversified across various task
types, objects, actions, and QCMs. The generated ratings
were controlled to give a high level of rating if the best-
suited QCM was used with the target task, as in Table 3,
while giving an average or low rating to other QCMs. For
example, the simulator would generate a level of rating of
approximately 0.90 wheng is used to control £, while a level
of rating of approximately 0.3 would be generated when the
same QCM is used with 9. The performance of QCMs over
various crowdsourcing tasks is illustrated in Fig. 7.

1 1

1234567889 1221567¢859 123456789
TasK TASK TASK

RATING
&
RATING

{a) QcM1 (b) QcMm2 (c) acm3

123456735859 123456733 12345867585
TAsK TASK TASK

RATING

RATING
o &
RATING
°
o &

{d) acma (e) QCM5 (il acme

1234567809 1234567859 12324567859
TasK Task Task

RATING

RATING
o
RATING

{g) Qcm7

(h) acms (y acmo

FIGURE 7. Performance of QCMs over various crowdsourcing tasks.

2) RESULTS

Selecting the best QCM for t;. In this experiment, we exam-
ined how data size (ratings) might affect the selection of the
best QCM for task (#2) using the four approaches. For this
purpose, we repeatedly selected the QCM by each approach
every additional 100 instances (i.e., at 100, 200, 300, efc.).
The results of this experiment are shown in Fig. 8.
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FIGURE 8. Selected QCM for t2 over time.

As can be seen from Fig. 8, the Random approach did not
fit with a particular QCM in the test. Its selection was not
affected by the data size at all. This is because this approach
selects the QCM in a random way regardless of any other
factors, such as task type. The random approach stuck by
chance with the best QCM (g ) three times at data points 300,
400, and 800.

The StaticAMT approach was always stuck with selecting
q-> for this task regardless of the population of the data. That
is because StaticAMT does not consider task types and uses
only one QCM, Majority Voting, to evaluate all types of tasks.
For this reason, StaticAMT would keep selecting g» as the
best choice for #, and would never select g.

The ReputationBased approach did not converge to a par-
ticular QCM in the test. This is because its selection was
affected by the criterion to identify the most reputable QCM
at each data point. The ReputationBased approach selected
q1 as the best QCM for 1, only once, at data point 600. This
is because at this time g; was the most reputable QCM in the
system. Although this approach takes into account the user
feedback to determine the best QCM, it does not consider the
task type, making its selection generic and irrational.

The DynamicQCM approach initially pickedgzas the best
QCM for 1p. This is because the system still did not have
enough data about the performance of ¢ and #,. The selection
was heavily affected by the available data. After 200 tasks,
however, the DynamicQCM approach was able to stick with
the best-suited mechanism (g1) and kept selecting it after-
wards.

Fig. 9 illustrates the accuracy of QCM selection for the
four approaches. It is clear that our proposed approach
achieved higher accuracy selection compared to the three
other approaches. It may be noted that this experiment was
highly sensitive to the selected task. If we repeat this exper-
iment with #1, for example, the StaticAMT approach would
achieve 100% accuracy selection. This is because the Stati-
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FIGURE 9. Accuracy of QCM selection for the four approaches.

cAMT approach applies g every time, regardless of the type
of task. However, as illustrated in Table 3, ¢» is the best-suited
mechanism to control and evaluate ¢;.

Selecting the best QCM for each task at time 1,000.
In this experiment, we examined the selection success rate
for each approach at time 1,000. That is, we measured the
rate of selecting the “best” QCM for each task by the four
approaches. We used the same data sets of the previous exper-
iment and calculated the successful selection rate according
to Eq. (1), where @, is the number of correct selections of
QCM, and @ is the total number of user requests to the
crowdsourcing system (nine in our experiment).

Selectionsuccessrate = EC (1)

M ID
[0,

QC

1 1 2 3 4 5 6 7 8 9
Task ID

== R andom =@ StaticAMT

=== R eputationBased === DynamicQCM

FIGURE 10. Selected QCM for each task by the four approaches at
time 1,000.

Fig. 10 shows the selected QCM by the four approaches
for each task at time 1,000.

As can be seen from Fig. 10, the selection of the Random
approach was basically random. Its selection of the best-
suited QCM was correct on two instances by chance: for #3and
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tg. Overall, as it is a blind approach, the selection success rate
of Random was very low (20%, as shown in Fig. 11).

20%

Selection success rate

FIGURE 11. Selection success rate for the four approaches at time 1,000.

The StaticAMT approach selected g>for all nine tasks for
the same reason given in the previous experiment. It was
correct only when the task was 71, as its best QCM was
g2. As shown in Fig. 11, the selection success rate for this
approach was very low (only 10%). This is because the Stati-
cAMT approach did not consider the task type in its selection
and kept selecting the same QCM regardless of the type of
requested task.

The ReputationBased approach selected g¢ for all nine
tasks because the gg had the highest reputation score over
all of the other QCMSs at time 1,000. It is evident that the
ReputationBased approach was not able to stick with the cor-
rect QCM in almost all tasks. The approach selected the best
QCM accurately with #5 because gg was the best-suited QCM
for this kind of task. Similar to the previous approach, its
selection success rate was very low.

The DynamicQCM approach was able to select the best-
suited QCM for all types of tasks. By utilizing the Task_QCM
ontology that was enriched by the QCM reputation engine,
this approach was able to adapt its selection based on the type
of task. In contrast to the previous approaches, the selection
of the DynamicQCM approach was very accurate, and it
achieved a 100% success rate. It may be noted that this
approach is sensitive to the data set collected from the crowd-
sourcing requesters, and the reputation of the various QCMs
can be affected by the size of the collected data. As we saw
in the previous experiment, 100 instances were not enough
to discover and nominate the best-suited QCM for . How-
ever, after collecting more data (ratings from the requester),
the DynamicQCM was able to stick with the correct one.

V. DISCUSSION

There are many issues that need to be considered in the
proposed approach. First, it is assumed that a new QCM can
be added at any given point in time. The challenge is to match
this new QCM to the tasks in the absence of its performance
records. This problem is called the ““cold start” in reputation
systems. Solutions that were proposed in [56] and [57] can be
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adapted and reused to alleviate the cold start in crowdsourcing
systems.

Second, the proposed approach uses historical information
to calculate the reputation score of quality control mech-
anisms. However, it is known that the reliability of users’
ratings is a challenge in reputation systems [58]. Many mech-
anisms have been proposed in the literature to detect and
remove unfair ratings [59]-[61]. In the context of crowd-
sourcing, in contrast to a highly competitive e-commerce
system, there is no motivation or direct value for users to
provide biased or unfair ratings to deviate the reputation score
of a given QCM.

Third, the reliability of the produced reputation score is
essential for providing a rational mapping between a given
task and the best-suited QCM. In other words, if the histor-
ical information collected for a given QCM is inadequate,
the selected mechanism may work ineffectively. In the QCM
reputation engine, each data item used provides an indepen-
dent evidence on the reliability of the produced reputation
score; therefore, intuitively, the more the evidence we have,
the higher the confidence we would have for the reputation
score [62]. Thus, it is important to look for an alternative
source of data when there are few ratings available for the
QCM reputation engine. This problem is called a “spar-
sity” problem in other domains [63], [64]. In our context,
the mapper can utilize the Task_QCM ontology in order to
use the data that are relevant to similar tasks to produce a
more reliable selection. Inspired by the mechanisms used
in personalized reputation systems [61], the selection of the
QCM can be modeled by combining the weighted reputation
scores of the QCMs for both the current and similar tasks.

Fourth, for each new request to the crowdsourcing system,
the proposed approach seeks out a similar task and then
nominates the QCM associated with it to evaluate and control
the new one. However, in some cases, the most similar task
is associated with a QCM that has a low reputation score
(e.g., tg in Table 2). Our approach in this case is to select a
QCM randomly (blind selection). Instead, to enable a rational
selection, it might be better to check the next similar task and
nominate the associated QCM if its reputation score is high.

Finally, there is a need to consider how to identify task
types of new tasks when key metadata are missing. In such
cases, instead of using a task classifier to classify the new
task, an intervention of an ontology expert might be required.
Some important numerical values, such as a threshold of the
classifier to identify a new domain, or just a similar instance,
should be introduced in the Task_QCM ontology.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a dynamic approach for selecting
the best-suited QCM for a task rather than selecting a specific
QCM for all types of tasks. The approach relies on three
components: (1) a task classifier that identifies the types of
crowdsourcing tasks automatically based on their features;
(2) a Task_QCM ontology implemented to standardize the
domain, which allows the sharing and reusing of knowledge
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and supports the identification of semantic similarities of
tasks; and (3) a QCM reputation engine, which is responsible
for the calculation of QCM reputations.

Our evaluation consists of two main parts. First, we pre-
sented an evaluation of the task classifier based on the real
data collected from MTurk. Second, we conducted a set of
experiments to compare our DynamicQCM approach against
other quality control approaches using synthetic data gen-
erated from a simulation environment. Overall, the results
show that the SVM classifier is quite effective in classifying
the tasks to their types and obtained an accuracy of 97.43%.
Experiments carried out to compare our approach against
three other approaches demonstrated that our approach can
provide better results.

As future steps, we would like to extend the ontology to
store new features of the task and study their relations with
QCMs. To illustrate, we would like to explore the impact of a
reward mechanism on the selection of the QCM, or the impact
of the domain of the task (e.g., education, sports, efc.) on the
classification of task types. Furthermore, we intend to use the
data generated from our simulator as training data, where the
task features (task type, object type, and action type) with
their QCM could be learned and used offline.

In sum, the performance of our proposed approach
becomes better and more precise depending on the number
of users. The more the users we have, the greater the increase
of the knowledge base is, and, consequently, the broader the
system becomes.
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