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ABSTRACT Robust visual tracking is a fundamental problem in the field of computer vision and has a wide
range of practical applications. Recent progress in developing robust trackingmethods are mainly made upon
discriminative correlation filters (DCF). However, most DCF-based methods develop their trackers under
the assumption of a holistic appearance model, ignoring the underlying spatial local structural information.
In this paper, we introduce the tree-structured group sparsity regularization into the DCF-based formula.
The correlation filter to be learned is divided into hierarchical local groups. The relationship between the
response and the circularly shifted target appearance is regularized by applying the l1-norm across the l2-
norm of the hierarchical local filter groups. Moreover, a local response consistency term is incorporated
together with the structured sparsity to make each local filter group contributes equally to the final response.
The accelerated proximal gradient method is employed to optimize this non-smooth composite regularization
problem. Benefiting from the properties of circulant matrices, several key steps in the optimization process
can be efficiently solved in the frequency domain. The experiments are conducted on four publicly available
visual tracking benchmarks. Both quantitative and qualitative evaluations demonstrate that the proposed
tracking method performs favorably against a number of state-of-the-art tracking methods.

INDEX TERMS Correlation filter, spatial regularization, structure sparsity, visual tracking.

I. INTRODUCTION
Robust visual tracking is a fundamental and challenging topic
in the field of computer vision. It is the essential technique
for a variety of applications, including vehicle navigation,
security surveillance and augmented reality. In general object
tracking, a visual tracker only acquires the initial position
of the target object at the first frame of a video sequence,
and then expects to robustly estimate the motion trajectory
of this object. This problem is very challenging since the
tracker can only learns from a limited set of reliable training
samples in the first frame. Typically, trackers need to update
themselves with unreliable online collected appearance
samples to generalize models against time-varying noises,
such as object deformations, occlusions, and appearance
variations.

In recent years, discriminative correlation filters (DCFs)
based tracking approaches have gain an increasing attention
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and continuing advances. Inspired by the initial success of
applying correlation filters in visual tracking [1], a lot of
improved DCF-based approaches have been proposed. The
core idea of DCFs exploits the 2D extension of convolution
theorem that the circular convolution of two feature maps
is equivalent to the element-wise product in the Fourier
domain. Thus, the correlation filter learning problem can
be efficiently solved in the frequency domain through fast
Fourier transform (FFT) operations. However, the underlying
periodic assumption inside the circular convolution operation
introduces undesired boundary effects. Existing DCF-based
approaches mainly address this problem in two ways. Firstly,
a spatial regularization strategy is introduced in [2]–[4] to
suppress the boundary effects. Correlation coefficients cor-
responding to the background are largely penalized to a
small value, which increases the discriminative power of the
correlation model. But the coefficients corresponding to the
target region are treated as a whole and local information is
not explored. Secondly, a binary cropping operator is pro-
posed in [5] to extract real negative samples of the target
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size, instead of suppressing the circularly shifted background
pixels on the entire feature map. It further enhances the
quality of the learnedmodel. However, the complex optimiza-
tion process for this method limits further improvements on
spatial local regularization of correlation filters.

In this paper, we follow the research line of using spatial
weighting and present a spatial tree-structured joint regular-
ization for visual tracking. In contrary to the existing methods
that treat the spatial regularized filter as a whole, we consider
exploiting local information inside the target region. As dis-
cussed in [6]–[9], it is insufficient for describing real world
object simply using a single rigid model. Features grouped in
local regions are generally more temporal stable to achieve
a robust tracking. Furtherly, we introduce a tree-structured
group sparse constraint to do adaptive hierarchical feature
group selection for correlation template learning. The similar
region-level feature selection idea for correlation tracking is
also proposed in [10], where the feature selection strategy is
achieved by imposing an elastic net regularization. But with a
tree-structured group sparsity regularization [11], we are able
to uncover a spatial structured information inside the target
region. A hierarchical relationship between adjacent filter
parts can be adaptively explored during the optimization.
Moreover, a local response consistency constraint term [12] is
incorporated together with the tree-structured regularization
to make sure the filter would not over fit on the dominant
response parts. To optimize this non-smooth composite reg-
ularization problem, we also present an efficient optimiza-
tion algorithm based on the accelerated proximal gradient
(APG) [13]. In brief, the contributions of this work can be
summarized in three-fold:

Firstly, a spatial tree-structured joint regularization is intro-
duced into the correlation filter framework. Since the struc-
tured sparsity regularization and local response consistency
regularization are emphasized simultaneously, the depen-
dency between local parts inside the target region are charac-
terized. Based on this joint regularization, we propose to use
local structured discriminative correlation filters (LSDCF)
for visual tracking.

Secondly, the accelerated proximal gradient (APG)method
is utilized to solve the proposed joint regularized prob-
lem. In optimizing the problem using APG, we decompose
the non-smooth composite objective function into a smooth
convex part and a non-smooth convex part. We calculate
the sub-differential of the former part, and then connects
the generalized gradient update step in the optimization
process to the Moreau-Yosida regularization with the pre-
defined tree structure that has an analytical solution [11].
Thus the convergence of the proposed algorithm can be
ensured.

Thirdly, a robust visual tracking method based on the
local structured correlation filters is presented with promis-
ing tracking performance. Experiments evaluated on recent
tracking benchmarks show that the proposed method has
competitive performance than existing DCF-based methods
in terms of spatial regularization.

II. RELATED WORK
This section begins with a brief review of the DCF-based
trackers proposed in recent years. Related improvements on
spatial regularization and part-based trackers are discussed.
Then other model based trackers, including distance met-
ric learning, sparse coding, are also briefly reviewed. Since
the proposed model utilizes a structured sparsity regular-
ization, some classical structured sparsity algorithms are
introduced.

A. DCF MODEL BASED TRACKERS
According to the competition results of the visual tracking
challenges over the past five years [14], [15], discriminative
correlation filters (DCFs) have become the most popular
visual tracking framework and more than half of the top
ranking trackers are improved DCF-based trackers. Learning
with adaptive tracking using DCFs initially starts with the
MOSSE tracker [1], which minimizes the sum of squared
error between the output of convolution and the desired Gaus-
sian shaped output. Based on the theory of circulant matrices,
Henriques et al. [16] first proposed a kernelized correla-
tion filter and corresponding closed-form solutions, and then
extended their work to handle multi-channel features, such as
histogram of oriented gradients (HOG) [17], and named KCF
in [18]. Ma et al. [19] considered the hierarchical feature
representation power of CNNs and proposed to learn adap-
tive correlation filters in a coarse-to-fine fashion for track-
ing. Despite the intensity-based tracker, color representations
have also been considered. Danelljan et al. [20] validated
the performance of different color features and demonstrated
color names to be the best color representations. For the prob-
lem of scale changes during tracking, several scale adaptive
methods [21], [22] have been developed. An explicit scale
filter was proposed in [21] to train samples at a set of different
scales. Li et al. [22]made the first attempt to handle the aspect
ratio variation during tracking by integrating boundary and
center correlation filters into a regularization term. To enable
integration of multi-resolution feature maps, Qi et al. [23]
proposed to hedgemultipleweak trackers into a strong one for
exploiting deep features from different CNN layers. Danell-
jan et al. [3] proposed to apply continuous convolution in
learning correlation filters. Furtherly they proposed a factor-
ized convolution operator [4] to reduce model parameters.

Following the discussion before, the boundary effects
introduced by the periodic assumption greatly affect the dis-
criminative power of the learned correlation filters. A spatial
regularization for discriminative correlation filters (SRDCF)
was proposed in [2] to suppress the boundary effect appeared
in the implicitly generated negative samples. The background
coefficients are largely penalized, so the model can focus on
learning information from the center region of each negative
sample. The method proposed in [5] inherits the idea of [24]
that the target region of each circularly shifted negative
samples is directly cropped through a masking matrix. With
this operation, most implicitly generated negative samples
are immune to boundary effects. Our method, on the other
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hand, applies a masking matrix on the circularly shifted sam-
ples without cropping, which is equivalent to binary spatial
weighting. In this way, the masking matrix in the objective
function are more intuitive and convenient for exploring local
information.

Since a single rigid appearance model is not sufficient
to describe object deformations or occlusions, researchers
have proposed a number of part-based trackers in recent
years. Johnander et al. [6] proposed to learn a deformable
filter represented as a linear combination of sub-filters. The
sub-filter coefficients and their relative locations are jointly
optimized in a unified framework. Liu et al. [7] proposed
to independently use correlation filters as part classifiers
and adaptively weighting each part response map using a
smooth constraint. Li et al. [8] selected reliable patches under
a sequential Monte Carlo framework and then estimated the
target location through a Hough Voting-like scheme. A fully
connected deformable local correlation filters was proposed
in [9] to explicitly address the non-rigid deformations and
occlusions in visual tracking scenarios. Different from the
existing part-based trackers that explicitly model the relation-
ship between parts, we aim to adaptively explore hierarchical
local structure information inside the holistic correlation filter
model, which can be regarded as a generalization of the idea
in [12]. In [12], a 3 × 3 grid of local regions are divided
and reliable weights for these regions are explicitly modeled.
However, the third term in their objective is a squared l2 reg-
ularization term that imposed on the foreground region as a
whole. It is distinctly different from the ideas to be presented
in our method.

B. OTHER MODEL BASED TRACKERS
Besides developing DCF based models, researchers in the
visual tracking community have proposed many tracking
methods based on other theories. Zhang et al. [25] proposed
to integrate the image-to-imageSet distance metric learning
into visual tracking to take full advantage of all training
samples. Wu et al. [26] proposed an online multiple instance
metric learning algorithm that learns a discriminative and
adaptive metric. Zhang et al. [27] proposed an interestingly
biologically inspired appearance model that is motivated in
part by the success of the hierarchical organization of the
primary visual cortex.

Mei and Ling [28] first introduced sparse representation
theory into the field of visual tracking. Multi-task sparse
learning problem, such as [29]–[31], are formulated to learn
the sparse representations of all candidate samples jointly.
In the work of [32], the proposed structural sparse appear-
ance model emphasis on the spatial layout structure among
local patches inside each target candidate region. Similar
ideas are proposed in [33] that exploits the integration of
spatial context information into a unified sparse framework.
Zhang et al. [34] proposed to relax the sparsity constraint
using a weighted least squares method to handle appearance
variations and use structurally random projection to reduce
computation complexity.

C. STRUCTURED SPARSITY ALGORITHMS
In many practical cases, prior knowledge of data structures
can be beneficial for solving interpretable sparse variables
and achieving better performance. Based on this observa-
tion, l1 regularization (or Lasso) [35] have been extended
to the group Lasso [36], [37] that a group structured depen-
dency exists among sparse coefficients. Since the group
lasso penalty only produces sparsity at the group level,
Friedman et al. [38] proposed a sparse group lasso penalty
that yields sparse solutions both at group level and individ-
ual variable level. Simon et al. [39] adopt the sparse group
lasso penalty in a regression model and proposed an block-
wise descent optimization algorithm based on the accelerated
generalized gradient descent. Nevertheless, the group lasso
and sparse group lasso are restricted to the non-overlapping
groups of features, which is not flexible for some appli-
cations. Thus several attempts have focused on developing
group lasso with potential overlaps [40], [41]. The com-
posite absolute penalties (CAP) family is introduced by
Zhao et al. [42], which allows given grouping and hierarchi-
cal relationships between the variables to be expressed. After
observing the limitation of traditional lasso, Zhang et al. [43]
proposed a discriminative lasso to select features that are
strongly correlated with the response and less correlated with
each other.

The tree structured group lasso is considered recently to
encode variables at multiple granularity. Specifically, a multi-
level grouping structure is encoded as a tree over the vari-
ables, where each leaf node represents an individual variable
and internal node represents the cluster of a certain leaf nodes.
Kim and Xing [44] presented the tree structured group lasso
for learning sparse multi-task regression. Liu and Ye [11]
developed an analytical solution for the Moreau-Yosida regu-
larization associated with the grouped tree structure. The tree
structure is intuitively suitable for image analysis that features
from hierarchical spatial locality can form a 2D spatial tree
structure. Luo et al. [45] presented a tree-structured nuclear
norm approximation for robust face recognition. Li et al. [46]
utilized the tree-structured group joint sparse representation
to combine multi-level cues for image illumination estima-
tion. In this paper, we present a local structured object tracker
based on the spatial tree structured joint regularization for the
first time.

III. PROPOSED METHOD
In this section, we first briefly review the SRDCF model [2],
and then describe the proposed local structured discriminative
correlation filters (LSDCF) in detail. Finally, an optimization
algorithm based on the accelerated proximal gradient method
is derived.

A. REVISITING SPATIAL REGULARIZED DCF
Let y ∈ RK×1 denote the Gaussian shaped response, and

x =
[
xT
1 , x

T
2 , · · · , x

T
C

]T
∈ RCK×1 be the input training

sample with C feature channels. To make the description of
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FIGURE 1. The tree structure defined by an index tree, a depth of d = 1
and a 3x3 grid of local regions for example. In practice, we generate a
binary mask tree and select each local feature group by applying
pixel-wise masking. Each color block in the figure represents a local filter
group.

the algorithm concise, the input training sample is a one-
dimensional vector with a dimension of K , but in practice,
we extract a two-dimensional feature map for each sample.
The desired correlation filter f ∈ RCK×1 also consists of
one sub filter fc per feature channel. The SRDCF minimizes
a l2-norm squared error between the response y and the
circular convolution response using the following regularized
objective:

argmin
f

T∑
j=1

αj

∥∥∥∥∥
C∑
c=1

xjc ∗ fc − yj
∥∥∥∥∥
2

2

+

C∑
c=1

‖w ◦ fc‖22 (1)

Here, the operator ∗ denotes the circular convolution,
the operator ◦ denotes the Hadamard product, w are the
regularization weights that determine the importance of the
filter coefficients depending on spatial locations. Although
the SRDCF learns a more discriminative correlation filters
by introducing the spatial regularization, two drawbacks can
be noted. First, the relationship between the features of cir-
cularly shifted samples have not been taken into account.
The l2-norm regularization term, i.e.

∑
c ‖w ◦ fc‖

2
2 =∑

c
∑

k
[
wk ◦ fc,k

]2, constrains each feature dimension sep-
arately during the minimization of (1). Second, some types
of prior information about the inner structure of the target
have not been exploited, considering that this may make the
learned filter more robust. As a result, we introduce a tree-
structured regularization term to group local features and
form a hierarchical structure inside the target region.

B. MODELING LOCAL STRUCTURED DCF
A tree structure is described first, as illustrated in Fig. 1.
We generate the index tree for the foreground object at the
first frame of a video sequence, as defined in [11]. This tree
has a depth of d . Let Gij be the j-th node at the i-th level,
and nodes from the same level have non-overlapping indices,
i.e. Gij

⋂
Gik = ∅, j 6= k, 1 ≤ j, k ≤ ni,∀i = {1, · · · , d},

ni gives the number of nodes at i-th level. By constructing
such a hierarchical tree, the structure inside the target region

FIGURE 2. A training example shows the effect of the regularization
parameter η. The background region around the target in the learned
filters is masked to zero. The proposed algorithm adaptively explores
hierarchical local structure information inside the holistic correlation
filter model.

can be represented. In practice, IGij ∈ RK×1 is a binary mask

that preserves feature maps at the local feature group Gij.
Iij = diag(IGij )⊕ · · · ⊕ diag(IGij ) ∈ RCK×CK denotes a block

diagonal binary matrix, Ii =
∑ni

j=1 I
i
j contain all the nodes at

depth i.
For the convenience of derivation, we define the circulant

matrix of a training sample instead of using the circular con-
volution operator. LetXc =

[
xc,M(0) , xc,M(1) , · · · , xc,M(K−1)

]
∈

RK×K denote the circulant matrix of the c-th feature channel,
M(k) means a k-step discrete circular shift to the base feature

descriptor xc,M(0) . X =
[
XT
1 ,X

T
2 , · · · ,X

T
C

]T
∈ RCK×K

represents the concatenation of all C feature channels. f =[
fT1 , f

T
2 , · · · , f

T
C

]T
∈ RCK×1 denotes the correlation filter to

be learned.Weminimize the following optimization problem:

f̃ = argmin
f
F (f;X)

= argmin
f
L (f;X)+ λS (f;X)+ η� (f) (2)

where

L (f;X) =
1
2

∥∥∥y− XTId f
∥∥∥2
2

(3)

S (f;X) =
nd∑
i,j

∥∥∥XTIdi f− XTIdj f
∥∥∥2
2

(4)

�(f) =
d∑
i=0

ni∑
j=1

∥∥∥Iijf∥∥∥2 (5)

λ is the weight parameter corresponding to the S regular-
ization term. η controls the group-wise sparsity. From the
later described optimization algorithm it can be found that
the larger the value of the η, the more local filter groups will
be penalized to zero. The effect of the value η with different
value settings are illustrated in the Fig. 2.
The objective function (2) of LSDCF consists of three

terms. The L part is the loss cost defined by the Euclidean
error between the Gaussian shaped response and the multi-
channel circular convolution response. The leaf node of the
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tree is applied to mask the learned filter so that only the
target region affects the convolution output. From another
perspective, XTId f =

(
IdX

)T f means that the binary mask
is applied to every circularly shifted sample. The boundary
effect is largely reduced since the background around the
target region is masked to zero. As a result, the filter is
trained from real negative training samples that are densely
generated from the circular convolution operator. The S part is
the smooth term adopted from [12] to make each local feature
group contribute equally to the final response. The last part is
the tree-structured group sparsity regularization that applies
l2-norm over each local feature group Iijf and then applies
the l1-norm across all the local feature groups to promote
sparsity. Noting that this term is distinctly different with the
squared l2 regularization used in [12]. In [12], the foreground
region is regularized as a whole. But here we apply a l2
regularization for each local region and finally applies the
l1-norm across all the local regions, which is a structured
regularization term. In sum, we expect to combine the struc-
tured sparsity inducing regularization and local response con-
sistency regularization to learn robust correlation filters for
visual tracking.

C. OPTIMIZATION FOR LSDCF
Accelerated proximal gradient method (APG) is applied
to solve the proposed non-smooth composite regularization
problem (1). The APG was originally proposed by Nesterov
et al. [13] and then extended for the convex-concave opti-
mization by Tseng [47]. Here, we mainly adopt the optimiza-
tion procedure described by Chen et al. [48] which considers
multi-task learning problem with the L1,∞ regularizer.
Firstly, we derive the generalized gradient update step

used in the APG optimization process. Let LS (f;X) =
L (f;X) + λS (f;X) denotes the smooth convex part in the
objective function and the rest term�(f) is the ’simple’ non-
smooth convex part. In a majorization minimization scheme,
we majorize the LS (f;X) centered at a point f(t) by

LS (f) ≤ LS
(
f(t)
)
+
(
f− f(t)

)T
∇LS

(
f(t)
)
+
H
2

∥∥f− f(t)
∥∥2
2 .

(6)

By adding the tree-structured spatial regularized term � into
(6), we have

MH
(
f, f(t)

)
= LS

(
f(t)
)
+
(
f− f(t)

)T
∇LS

(
f(t)
)

+
H
2

∥∥f− f(t)
∥∥2
2 + η� (f) . (7)

∇LS
(
f(t)
)
denotes the sub-differential of LS (f;X) at f(t).The

generalized gradient update step is defined as minimizing
MH (·):

mH
(
f(t)
)
= argmin

f
MH

(
f, f(t)

)
(8)

Equation (8) is equivalent to the following:

mH
(
f(t)
)
= argmin

f

1
2
‖f− b‖22 +

η

H
�(f) (9)

Algorithm 1 Optimization for the Moreau-Yosida Regular-
ization With Tree-Structured Regularization

Initialization: b = f(t) − 1
H∇LS

(
f(t)
)
,η̃ =

η
H , the index tree with all the nodes{
Gij|i = 0, 1, · · · , d; j = 1, 2, · · · , ni

}
.

1: Define a working variable v(d+1) = b
2: for i = d to 0 do
3: for j = 1 to ni do

v(i)
Gij
=



0,
∥∥∥∥v(i+1)Gij

∥∥∥∥
2
≤ η̃∥∥∥∥∥v(i+1)Gij

∥∥∥∥∥
2

−η̃∥∥∥∥∥v(i+1)Gij

∥∥∥∥∥
2

v(i+1)
Gij

,

∥∥∥∥v(i+1)Gij

∥∥∥∥
2
> η̃

(10)

4: end for
5: end for

Output: mH
(
f(t)
)
= v0

where b = f(t) − 1
H∇LS

(
f(t)
)
is an auxiliary variable.

This is actually the Moreau-Yosida regularization associated
with the non-smooth grouped structure regularization. The
work of [11] has given an analytical solution for this kind of
problem, which is shown in Algorithm 1. In the Algorithm 1,
the working variable is updated in the reverse breadth-first
order along the index tree. At the node Gij, the l2-norm of the
local feature group vGij is compared with the threshold η̃. The
l2-norm of each local feature group will shrink by at most η̃
if it is not directly penalized to zero.

Secondly, we derive the differential of the smooth convex
part used in the generalized gradient update step. The differ-
ential of the LS part can be decomposed into calculations on
each feature channel:

∇LS (f) = ∇L (f)+ λ∇S (f)

=

[
∇LS (f1)T , · · · ,∇LS (fC )T

]T
(11)

For the L part in ∇LS (fc), it can be derived as:

∇L (fc) = Id (c)Xc

(
XTId f− y

)
= Id (c)F−1

(
x̂c ◦1ŷL

)
(12)

where 1ŷL =
∑C

c=1 x̂
∗
c ◦ F

(
Id (c) fc

)
− ŷ.

For the S part in ∇LS (fc), it can be derived as:

∇S (fc) = 4nd
nd∑
i=1

Idi (c)XcXTIdi f− 4Id (c)XcXTId f

= 4nd
nd∑
i=1

Idi (c)F
−1

(
x̂c ◦

C∑
c=1

x̂∗c ◦ F
(
Idi (c) fc

))

− 4Id (c)F−1
(
x̂c ◦

C∑
c=1

x̂∗c ◦ F
(
Id (c) fc

))
(13)
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Algorithm 2 Accelerated Proximal Gradient Optimization
for the Proposed LSDCF Method

Initialization: H0 > 0, ξ > 0, the initial filter f(0) ∈ RCK×1,
the working variable v(0) = f(0),α0 = 1, the iterator t = 0
and the maximum iterations tmax .

1: repeat
2: H = Ht ;
3: while F(mH (v(t))) > MH (mH (v(t)), v(t)) do
4: H = ξH ;
5: end while
6: Ht+1 = H ;
7: f(t+1) = mHt+1(v(t));
8: αt+1 =

2
t+3 ;

9: v(t+1) = f(t+1) + 1−αt
αt
αt+1

(
f(t+1) − f(t)

)
;

10: t = t + 1;
11: until t = tmax
Output: f̃ = f(tmax )

where the variable with a hat ·̂ denotes the DFT transform
v̂ = F (v) and the F−1 denotes the inverse DFT operation.
Through (12) and (13) we may find that the correlation filters
are bond with the binary mask to ensure the defined spatial
structure is incorporated in the gradient updating process.
The property of circulant matrix is fully exploited by apply-
ing DFT transforms. As such, the main computation cost
for matrix multiplication during the APG iterations can be
greatly reduced by performing elementwise multiplication in
the frequency domain.

Thirdly, Algorithm 2 summarizes the proposed learning
procedure for LSDCF. It can be found in the Step 3-5 that the
APG algorithm searches for a suitable H value to make the
majorization inequality hold. And the Step 9 is a momentum
update process with varying step size. In the next section,
we will elaborate the process of target localization using the
proposed LSDCF method.

D. LSDCF BASED TRACKERS
In the training phase, we generate an index tree based on the
object bounding box given by the first frame of the input
video sequence. The tree structure is constructed by dividing
the feature maps into a set of feature submaps, e.g. a 3 × 3
grid, and repeating such a process for d times. A new training
sample patch centered at the target location is cropped, and
then feature maps for this sample patch are extracted. For the
case of integrating multi-resolution feature maps, we develop
two trackers based on the proposed LSDCF model, namely
LSDCFd and LSDCFc.

LSDCFd denotes a basic LSDCF tracker that indepen-
dently trains discrete correlation filters at each feature resolu-
tion. We perform a late fusion strategy in the detection phase,
which is to superimpose the response maps for each feature
resolution in the frequency domain. Further scale filtering
and displacement searching are performed on the final fusion
response map.

LSDCFc represents a continuous LSDCF tracker that
learns correlation filters in the continuous domain. The multi-
resolution feature maps are first interpolated by a predefined
interpolation function. The joint optimization process also
uses Algorithm 2. It should be noted that the summation sym-
bols in (12) and (13) refer to summing all feature channels
of all feature resolutions. In the detection phase, continuous
response maps for each feature resolution are computed and
fused for further process.

We perform model updates in each frame and combine the
newly learned filters with the previously learned filters in a
moving average manner:

f̄ = (1− α)f̄+ αf̃ (14)

where f̄ is the updated template and α is the learning rate.
We find this to be a simple but effective strategy for the
proposed method. The LSDCF method can focus on learning
enough discriminative features at each frame and maintain
a robust appearance template over the temporal span in an
accumulating manner. It is worth noting that a sparse update
mechanism combined with multiple frames learning have
been proved to be more effective than performing dense
update on every single frame [4]. But in order to succinctly
highlight the proposed method, we regard this as a useful
extension and have not directly integrated it into the proposed
tracking method. In the detection phase, image patches at S
different scales (or resolutions) are cropped centered around
the target position of last frame. The updated template f̄ is
then applied to each scale independently:

Rs = psF−1
{

C∑
c=1

x̂∗s,c ◦
ˆ̄fc

}
, s = 1, 2, · · · , S (15)

where ps is the scale penalty factor that constrains rapid scale
changes in the detection process, x̂s,c denotes the c-th channel
feature map at scale s. A Gaussian-like motion window is
applied to reweight the response maps to smooth the target
motion trajectory. The location and scale of the target are
obtained by finding the peak score in all the S response maps
{Rs|s = 1, 2, · · · , S}.

IV. EXPERIMENTAL RESULTS
In this section, we present extensive experimental results.
First, we introduce the overall experimental setup. Second,
we analysis the impacts of different key parameter settings on
the proposed LSDCFmethod. Third, we provide quantitative,
qualitative and attributes comparisons on four public datasets
with a number of state-of-the-art trackers.

A. EXPERIMENTAL SETUP
Our tracking method is implemented with Matlab 2017a, and
has an average speed of 3.8FPS without code optimization.
All experiments are evaluated on a desktop PCwith Intel Core
i7-8700KCPU@3.7GHz, 16GBRAMand a single NVIDIA
GTX 1080Ti GPU.
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1) GENERAL PARAMETER SETTING
The key parameters, APG optimization maximum iterations
tmax , the regularization parameters λ and η, are evaluated
on the OTB2013 dataset in the following section. The rest
parameters are empirically determined and fixed for all the
test sequences as follows. The image patch cropping size is
determined by multiplying the scale factor by the first frame
target size, where the scale factor is set to 3. The area of the
cropped image patch is then scaled into the closed interval[
2502, 3002

]
. Then the cropped image patch is fed into the

2-layer and 5-layer AlexNets trained by the CFnet [49] to
extract deep features. For example, if the size of a cropped
patch is 250 × 250, then the sizes of the extracted features
are 55× 55 and 47× 47 (i.e. value K ). We apply L2 normal-
ization to the extracted features. The extracted features are
not weighted by a cosine window in our practice. The scale
pyramid S is set to 3 and the scale penalty ps is 0.98. The
template learning rate α is 0.005. In the Algorithm 2, ξ is set
to 1.1. H0 is set to 500 for LSDCFd and 70 for LSDCFc. The
optimization for LSDCFd is always started from f(0) = 0.
As for LSDCFc, we initialize f(0) with the filter learned in the
previous frame.

2) EVALUATION DATASET AND METRICS
To evaluate our tracking algorithm, we conduct experiments
with four popular visual tracking benchmarks, namely the
OTB 2013 [15] (includes 51 sequences), OTB 2015 [14]
(includes 100 sequences), VOT 2017 [50], [51] (includes
60 sequences), and TC128 [52] (includes 128 sequences).
Each sequence in theOTBdataset are annotatedwith different
attributes to facilitates analyzing the specific performance
of each tracker. These attributes include illumination varia-
tion (IV), out-of-plane rotation (OPR), scale variation (SV),
occlusion (OCC), deformation (DEF), motion blur (MB), fast
motion (FM), in-plane rotation (IPR), out of view (OV), back-
ground clutter (BC), low resolution (LR). For the comparison
on OTB datasets, trackers are quantitatively evaluated by
plotting the precision plots and the success plots under the one
pass evaluation (OPE) criterion. The precision plot gives the
percentage of frames whose location error is within the given
Euclidean distance threshold. The success plot gives the per-
centage of frames where the overlap score is greater than the
given threshold. Average distance precision at threshold= 20
pixels and average area under curve (AUC) are applied in the
precision plot and success plot to rank trackers, respectively.
For comparisons on the VOT dataset, we measure the per-
formance in terms of Expected Average Overlap (EAO). For
comparsions on the TC128 dataset, the performance metrics
are the same to those used by the OTB dataset.

B. PARAMETER ANALYSIS
In this section, we validate the impacts of several key
parameters on the OTB2013 dataset to avoid overfitting the
parameters on all the video benchmarks. Instead of doing
a time-consuming grid search, we take the strategy that the

TABLE 1. Key parameter settings for LSDCFd and LSDCFc.

later parameter is linearly searched after the optimal value
for the previous one is determined. Here we conduct detailed
parameter analysis for the LSDCFd tracker. As for LSDCFc
tracker, the evaluation procedure is basically the same. The
initial set of key parameters for LSDCFd tracker is set to
{tmax = 10, η = 0.01, λ = 1}.
Fig. 3(a) gives the impact of the maximum iterations for

APG optimization. It can be found that the choice of maxi-
mum iterations affects the proposed tracker performance with
a performance gain of at least 10%, comparing tmax = 2 and
tmax = 4. As the number of iterations increases, the accuracy
of the proposed method also increases, and tends to saturate
after a certain number of iterations. From Fig. 3(a), the best
performance is achieved around tmax = 16. Thus we fix
the maximum iterations to be 16 for the LSDCFd tracker.
Fig. 3(b) gives the impact of the regularization parameter η.
This parameter controls the sparsity threshold in the (10). The
lower the parameter η, the more groups can adaptively shrink
in their respective proportions in the optimization process.
In contrast, the higher the parameter η, the more groups will
be penalized to zero, leading to a more sparse correlation
filter. From the evaluation results in Fig. 3(b) we may find
that a very sparse correlation filter is not the optimal solution
for visual tracking, since the precision curve declines as the
value of η becomes larger. This may suggest that the local
feature groups with low response scores also contain valuable
information and contribute to the generalization ability of
the correlation filter. Thus we fix the η to be 0.002. The
evaluation results of the regularization parameter λ is shown
in Fig. 3(c). We note that λ = 0 implies that the objective
function is optimized without the local response consistency
part. From the evaluation results in Fig. 3(c), the best perfor-
mance is achieved at λ = 1.1. Finally, Table 1 summarizes
the key parameter settings for both two trackers.

C. PERFORMANCE EVALUATION ON OTB BENCHMARKS
On the OTB benchmarks, we compare the proposed LSDCF
method with the reported top 2 trackers in OTB2013,
including Struck [53], TLD [54], and 15 state-of-the-art
methods, including KCF [18], CFNet-2 [49], SAMF [55],
DSST [56], TGPR [57], SRDCF [2], DeepSRDCF [58],
BACF [5], RSSTDeep [32], RPT [8], MEEM [59], CSR-
DCF [60], Staple [61], MUSTer [62], SRDCFdecon [63].
Note that we only employ the codes released by the authors
or the raw results released along with the papers for fair
comparison.
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FIGURE 3. Impacts of (a) the maximum iterations tmax , (b) the regularization parameter η, and (c) the regularization parameter λ on
the OTB2013 benchmark. As the number of iterations increases, the accuracy of the proposed method also increases, and tends to
saturate after a certain number of iterations. The regularization parameters η and λ also have impacts on the performance of the
proposed LSDCFd tracker.

FIGURE 4. Overall performance comparison on the OTB 2013 benchmark using precision plot and success plot
under OPE criterion. For clarity, only the top 10 trackers are displayed. Our method performs favorably against
the state-of-the-art trackers in terms of precision rate and AUC rate.

1) QUANTITATIVE PERFORMANCE ON OTB2013
We first illustrate the comparison of the proposed trackers,
the continuous version LSDCFc and the discrete version
LSDCFd, with the selected 17 state-of-the-art trackers in the
Fig. 4. It is shown that the proposed LSDCF method out-
performs different variants of the SRDCF method and other
state-of-the-art trackers in terms of precision rate and suc-
cess rate. In the SRDCF method, the regularization weights
smoothly penalize the filter coefficients depending on their
spatial locations. The DeepSRDCF method investigates the
use of convolutional layer activations for DCF based tracking.
However, our proposed LSDCFc tracker effectively explores
the inner structure of the holistic DCFmodel and outperforms
the SRDCF, DeepSRDCF by 6.2%/2.9% and 5.1%/1.4% in
terms of precision and success rate, respectively. This sug-
gests that the proposed method is more robust in handling
complex scenarios. Comparing to BACF, our LSDCFc tracker
achieves tracking performance gains of 5.6% and 0.7% in
precision rate and success rate, respectively. Comparing to
one of the part-based methods, RPT, our method also shows
a superior tracking performance (+9.0%/+ 7.8%).

Furtherly, we present the precision plots and success plots
of OPE for 9 attributes in Fig. 5. From the figure plots it shows
that the proposed LSDCFc and LSDCFd trackers rank top in
these challenge scenarios. Excluding our LSDCFd tracker,

LSDCFc outperforms the second best method in 7 attribute
comparisons, which is listed as follows: OPR (+2.6%/ +
0.5%), SV (+8.1%/ + 4.7%), OCC (+2.3%/ + 0.2%),
FM (+2.0%/+1.0%), OV (+0.5%/+0.4%), BC (+2.9%/+
1.2%) and LR (+14.9%/ + 11.7%). In particular, the large
margin of improvement in the LR scenario demonstrates
that the proposed LSDCF method can robustly handle low
resolution target by using a relative small padding margin and
learning from local target appearances. For the factors of IV
and IPR, our LSDCFc tracker performs better than the second
best tracker in the precision plots (+2.1%,+2.5%), but per-
forms slightly worse than the best tracker in the success plots
(−0.4%,−1.7%), respectively. In these two challenging sce-
narios, our LSDCFc tracker can effectively locate the target
but does not adapt well to the target scale change, resulting in
a slightly worse bounding box overlap score.

2) QUANTITATIVE PERFORMANCE ON OTB2015
To evaluate the proposed LSDCF method more comprehen-
sively, we conduct more experiments on a larger benchmark,
namely OTB 2015. Fig. 6 shows the OPE precision plot and
success plot of the top 10 best performing tracking methods.
In this comparison, the proposed LSDCFc tracker ranks the
first place and shows a comparable or better performance
than the selected state-of-the-art trackers. It should be noted
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FIGURE 5. Precision plots and success plots of 9 attributes (IV, OPR, SV, OCC, OV, FM, IPR, BC, LR) on the OTB 2013 benchmark. Our method ranks top on
most of the attribute plots.

FIGURE 6. Overall performance comparison on the OTB 2015 benchmark using precision plot and success plot
under OPE criterion. For clarity, only the top 10 trackers are displayed. In general, our LSDCF tracker performs
favorably against the state-of-the-art trackers in terms of precision rate and AUC rate.

that the proposed LSDCF method adopts the same moving
average update scheme, and extracts the same deep features
as the CFNet tracking framework, but achieves a large margin
of improvement (+12.3%/ + 6.6%). This suggests that the
proposed method learns a more effective discriminative cor-
relation model by considering local structural information.

Similarly, we also illustrate the performance of the track-
ers on different attribute challenges in Fig. 7 and Table 2.
In Table 2, we compare the proposed two trackers with holis-
tic model based methods SRDCF, DeepSRDCF and SRD-
CFdecon. It can be found that the LSDCFc tracker performs
the best in most of the challenge scenarios. From the fig-
ure plots we may find that the proposed LSDCFc tracker
can effectively cope with the challenges of IV (+2.6%/ +
0.5%), OPR (+3.4%/+ 0.4%), SV (+5.3%/+ 1.5%), OCC
(+2.8%/+ 1.7%), DEF (+5.1%/+ 1.7%), FM (+1.6%/+
2.3%), OV (+2.5%/+3.6%) and LR (+10.5%/+6.5%), and
ranks the first place among these challenges under both eval-
uation metrics. The most significant improvement is achieved
in the LR scenario with a 10.5% in precision rate increment

and 6.5% in success rate increment, compared to the selected
trackers. This is consistent with the experimental results
evaluated on the OTB 2013 benchmark. Compared to the
evaluation results on OTB 2013, our method ranks highest
in the OTB2015 DEF scenario with more video sequences,
indicating that the proposed LSDCF method can robustly
handle target deformations in more challenging scenarios.

3) QUALITATIVE PERFORMANCE ON CHALLENGE
SEQUENCES
In this section, we discuss the qualitative performance of
the proposed LSDCFc tracker in six challenging attributes.
Tracking results of 11 top performing trackers are plotted
in 12 video sequences, as illustrated in Fig. 8.

a: ILLUMINATION VARIATION
The first row of Fig. 8 shows the tracking results in sequence
Ironman andMatrix. In these two sequences, it shows signifi-
cant illumination changes which severely affect the extracted
target appearances. The MEEM tracker shows a gradual drift
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FIGURE 7. Precision plots and success plots of 9 attributes (IV, OPR, SV, OCC, DEF, LR, FM, IPR, OV) on the OTB 2015 benchmark. Our proposed two
trackers, LSDCFc and LSDCFd, both rank top on most of the attribute plots.

TABLE 2. Precision (top) and success rate (bottom) of the evaluated trackers. Top two trackers of each column are shown in red and blue.

in the Ironman sequence. The RSSTDeep tracker drifts away
from the target rapidly in theMatrix sequence. Comparing to
the other trackers, our tracker has the smallest drift distance
from the target center and performs the best. Part of the reason
is that our tracker exploits the deep features that extract mid-
level structural information. At the same time, the conserva-
tive template update strategy make the illumination variation
affect less on the learned correlation model.

b: OUT-OF-PLANE ROTATION
The second row of Fig. 8 shows the tracking results in
sequence Box and Football. In these two sequences, the target
often rotates out of the image plane and gives unstable appear-
ances. In the Box sequence, the MEEM, RSSTDeep and
MUSTer trackers all track the foreground part that appears
in previous frames and do not locate well to the newly
emerging part. In the Football sequence, some trackers are
misled under the situation that background objects share a
highly similar appearance with the rotated target. In both
cases, our tracker shows a more robust tracking performance.
We attribute this to the adoption of local structures inside the
holistic model that reinforces the response from local stable
features.

c: SCALE VARIATION
The third row of Fig. 8 shows the tracking results in sequence
Human3 and Human9. Despite the targets experience great
scale change during the movement, the simple but powerful
multiscale search strategy adopted in the proposed method
shows a robustness. Since the scale changes of the target are
not well handled, the models learned by the rest trackers,
such as SRDCF and DeepSRDCF, quickly degenerate and
eventually lose the target.

d: DEFORMATION
The fourth row of Fig. 8 shows the tracking results in
sequence Girl2 and Skater2. Usually, the target deforms
locally and resulting in an increase in the representation error
of the rigid appearance model. It shows in the two sample
sequences that the RPT, MEEM trackers all successfully
tracks the deforming target. But the proposed tracker achieves
a more precise bounding box prediction.

e: LOW RESOLUTION
The fifth row of Fig. 8 shows the tracking results in sequence
Biker and Skiing. From the quantitatively results on attributes
comparison in previous section it shows that the proposed

VOLUME 7, 2019 39167



C. Guo et al.: Learning Local Structured Correlation Filters for Visual Tracking via Spatial Joint Regularization

FIGURE 8. Tracking results of the top 11 trackers on the 12 video sequences: Ironman, Matrix, Box, Football,
Human3, Human9, Girl2, Skater2, Biker, Skiing, MotorRolling, and Jump. The frame index is shown in yellow color
at the top left of each frame. Each row in the figure illustrates the tracking results of two sequences with the same
dominant attribute.

method achieves the largest improvement in this scenario.
The tracking results illustrated in sequence Biker and Skiing
also confirm this conclusion. These two sequences are quite
challenging for visual trackers since the targets experiences
SV, OCC, FM, OPR, OV, LR. However, the proposed tracker
effectively extracts information from limited image pixels
and robustly handles the target movement, which may benefit
from using a relative small padding margin and learning from
local target appearances.

f: IN-PLANE ROTATION
The last row of Fig. 8 shows the tracking results in sequence
MotorRolling and Jump. From these two sequences it shows
that the proposed tracker performs the best in handling the
rotated targets. This also suggests that the proposed method
learns an effective discriminative correlation model by adopt-
ing the proposed spatial joint regularization.

D. PERFORMANCE EVALUATION ON
VOT2017 BENCHMARK
Fig. 9 shows the ranking results in terms of expected average
overlap (EAO) in VOT2017, from which we can observe that
our proposed LSDCFc tracker exceed the reported state-of-
the-art bound set by the VOT 2017 report. Compared to the
51 trackers reported in the VOT2017, our tracker achieves
a state-of-the-art performance and is superior to the holistic

TABLE 3. Comparison with some recent trackers on Temple
Color-128 benchmark. Precision (at 20 pixels threshold) and success rate
(AUC score) are displayed.

model SRDCF, indicating that the proposed method enables
the tracker to benefit from processing local information.

E. PERFORMANCE EVALUATION ON TC128 BENCHMARK
Furtherly we compare the proposed two trackers, LSD-
CFd and LSDCFc, with some recent state-of-the-art trackers
on the Temple-Color-128 benchmark, as listed in Table 3.
It shows in the table that our tracker LSDCFc ranks the fourth
place in this comparison list. The proposed LSDCFc tracker
outperforms the baseline tracker SRDCF and its two variants
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FIGURE 9. Expected average overlap (EAO) graph with trackers ranked from right to left on VOT2017. Our proposed LSDCFc tracker exceed the
state-of-the-art bound announced by the report of VOT2017.

in precision and achieves a comparable performance in suc-
cess rate. Meanwhile, our tracker LSDCFc gains of 4.2% in
precision and 2.1% in success rate compared to the recent
part-based tracker OAPT [66]. Overall, our proposed tracker
achieves competitive results against the state-of-the-art track-
ers on the Temple-Color-128 benchmark.

V. CONCLUSION
In this paper, we propose a robust visual tracking method
based on the spatial joint regularization, which combines
the tree-structured group sparsity regularization and the local
response consistency regularization. In our tracker, the depen-
dency between hierarchical local filter parts inside the tar-
get region are characterized by adopting the proposed spa-
tial joint regularization. The accelerated proximal gradient
method is employed to optimized this joint regularization
problem. Extensive experiments demonstrate that, under the
challenging scenarios such as illumination and scale vari-
ation, rotation, deformation, low resolution, the proposed
tracking method achieves higher precision or better robust-
ness compared to the state-of-the-art methods.
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