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ABSTRACT This paper proposes a line segment matching method by performing line mapping and
unmapping based on point correspondences. The goal of this paper is to improve the accuracy and the
robustness of line segment matching for two views, which will be conducive for generating a full single-
line structure for image sequences. In this paper, to improve the quantity and quality of line matches,
the topological adjacency of a point-line is first introduced for two goals: to find and filter the candidate line
segment by resorting to KD-tree data-index structure efficiently in the corresponding image and to leverage
the candidate line segment to improve the performance of planar homography. In addition, the shift threshold
parameter is theoretically analyzed, and trials are validated to determine the matching degree. Line mapping
and unmapping are then used for image sequences to reduce missing matches. The extensive experimental
results validate and demonstrate that our method is both more accurate and robust than existing line matching
methods for two views under the circumstance of a higher recall rate. In addition, our method contributes in
finding full line segments for image sequences using line mapping, with higher completeness of the 3D line
model than that obtained by the state-of-the-art methods.

INDEX TERMS Line mapping, line segment matching, planar homography, topological adjacency.

I. INTRODUCTION
Line segment matching [1]–[3] is a challenging and funda-
mental area with extensive applications, including 3D scene
reconstruction, scene recognition and image merging. The
above applications can be found in diverse fields, such as
reverse engineering, computer vision and photogrammetry,
where feature points and line matching are the focuses of
current research. Feature points play an important role in 3D
scene reconstruction [4], but they cannot usually capture geo-
metric information such as the outlines of buildings, win-
dows, and doors. Compared with feature points, line seg-
ment information can more fully describe structural details
and complement image line features [5], [6]. For example,
a box is clearly recognizable when using line segments [7].
Therefore, full line segment matching has great research
significance and application value.

However, line segments are typically not comprehensively
extracted by existing line segment detection methods, which
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sometimes divide a 3D line segment into multiple fragments
in different image views [8]. A fragmented single-line seg-
ment is more difficult to match than feature points [9], [10].
This problem not only increases the probability of mis-
matches and missing matches but also fails to deliver good
performance on a full line structure.

This paper proposes a novel line-matching method based
on image sequences to decrease the ratios of mismatches
and missing matches and generate a full line segment using
line mapping and unmapping. The workflow of the proposed
method is shown in Fig.1. First, the planar homography
is computed through pairs of keypoints in the vicinity of
the line segment, which can be determined by the topolog-
ical adjacency of the point-line. Candidate line segments
are then efficiently found in the corresponding image using
descriptors consisting of keypoints by the KD-tree data-index
approach. The line segment is then mapped onto the corre-
sponding image using the planar homography matrix, and the
candidate line segments are evaluated by the shift threshold
to determine the matched degree. For image sequences, a line
unmapping approach with inverse transformation is proposed
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FIGURE 1. The workflow of line matching (a) denotes the whole pipeline and (b) represents the stage of the matched
line group, in which the red dash rectangle denotes the line segment mapping process from the reference image to the
corresponding image sequences and the determination of the matched line. TIN denotes triangulated irregular network.
1©, 2© and 3© in (b) represent the serial numbers of the corresponding images, respectively.

to overcome incomplete line structure and reduce missed
matches.

This study is based on two research foundations. The first
is the keypoint matching algorithm [11], [12], whose robust-
ness and accuracy have been greatly improved in the past
three decades. Researchers have also attempted to find an
optimal algorithm [1], [13]–[17] based on the scale invariant
feature transform (SIFT) proposed by Lowe [18] to achieve
the goals of scale invariance and algorithm robustness. The
Affine-SIFT algorithm, which is a prominent example of a
SIFT variant and is also used in our experiments, solves
the nonrobustness issue that occurs in affine transformation
caused by changing viewpoints. The second foundation is
the line segment detection algorithm. This algorithm, named
line segment detection (LSD) [19], adopts the pixel-merging
approach and is both widely used and effective. Here, this
paper focuses on line segment matching based on the LSD
algorithm because this algorithm performs well for detecting
line segments without requiring tuning parameters for multi-
scale images [20].

Our contributions are as follows. To further improve the
mismatches and missing matches of line matching, this paper
makes some contributions to line matching from the fol-
lowing three perspectives: 1) building a 2D point-line topo-
logical adjacency, which can improve the performance of
computing the planar homography matrix based on matched
keypoints, to find the candidate line segments resorting to
the KD-tree efficiently (Part A of Section IV); 2) theoret-
ically analyzing and validating the shift threshold for fil-
tering candidate line segments to reduce mismatches and
applying wide-/short-baseline or scale changes with accu-
rate and robust performance (Part B of Section IV); and
3) introducing line mapping for image sequences to inte-
grate all fragments into full segments, which not only
decreases the possibility of missed matches but also com-
pletes the details of the 3D line model (Part C and Part D of
Section IV).

The remainder of this study is organized as follows.
Section II introduces related work on line segment matching.
Section III defines the parameters used to describe the algo-
rithm and the method. Section IV introduces the main pro-
cesses and the algorithm of the proposed method. Section V
presents the experimental results of comparisons with state-
of-the-art methods. Finally, Section VI presents the discus-
sions, conclusions and future work.

II. RELATED WORK
Researchers and experts have always aimed to improve the
accuracy and robustness of line segment matching through
experiments. The existing matching methods can be divided
into two classes [6], [21]: individual line segments, where
similarity is calculated based on the gray levels around the
line segment, length and direction, and line-line or point-line
group matching based on topological constraints.

In 1995, Tavares et al. examined the similarities between
line segments by considering Mahalanobis normalized dis-
tances or geometric constraints and estimating the values of
direction, length and midpoint position. In 1997, Schmid and
Zisserman [21] combined the gray level of an individual
line segment with multiview geometric constraints and deter-
mined the homography between two views based on copla-
nar curves and geometric characteristics. These methods are
highly dependent on the overlap between the corresponding
line segments. In 2000, Schmid and Zisserman [23] investi-
gated the correctness of line matching using a third corre-
sponding view that differed from the two views. However,
this method fails on wide-baseline images with low overlap.
In 2002, Werner and Zisserman [24] provided an implemen-
tation of the Schmid and Zisserman technique and made the
source code available. However, whether this method works
well depends on the quality of the auxiliary information, and
it is also sensitive to occluded areas. In 2005, Bay et al. [25]
proposed a line matching method for highly textured scenes
that obtained an initial set of line segment correspondences
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iteratively. However, this method fails on images with lit-
tle texture. Therefore, in 2013, Witt and Weltin [26] pro-
posed the iterative closest multiple lines (ICML) algorithm
with weight matching criteria to find the optimal matches
considering neighborhood lines, which can be applied to
weak texture scenes and sparse point regions with robustness.
However, the ICML algorithm requires a rectified image
and a disparity for stereo matching of 140 pixels or less.
In 2011, Elaksher [6] proposed a matching hypothesis using
multiview geometric constraints and evaluated the similar-
ity of line segments between corresponding arrays using
the correlation coefficient. The problem of matching fail-
ures due to inaccurate endpoints can be solved, but failure
is inevitable because the level of correlation in the match-
ing window decreases when the illumination or viewpoint
changes. In 2012, Ok et al. [27] used probability density func-
tions and seven relational pairwise constraints to obtain more
robust matches. In 2016, Gao et al. [28] combined the dis-
parity map in the rectified space with planar homography to
determine candidate line segments; they then removed incor-
rect segments from the candidate pool based on the geometric
information of the individual line segments. This method
requires a longer runtime to calculate the density functions
and seven relational constraints. In 2017, to reconstruct a
3D scene line-based model with good quality, Hofer et al. [5]
exploited weak epipolar constraints to establish line segment
correspondences and then evaluated them by directly analyz-
ing their 3D similarities. Unfortunately, this method requires
prior knowledge of spatial regularizers.

In 2009, Wang et al. [8] used the SIFT algorithm as the
basis for building the line-line description group and selected
the algorithm with the highest similarities as the correct
match. Thismethod does not require prior information or con-
straint conditions; however, themethod’s shortcomings are its
nonrobustness and low accuracy under conditions involving
scale changes. In 2009, Wang et al. [29] proposed the LS
algorithm to match line segments from corresponding wide
baseline views. Line segment matching is extremely sensitive
to endpoint inaccuracies due to the limitations of calculating
similarity based on the length and direction of line seg-
ments, thereby increasing the mismatch probability. In 2014,
Al-Shahri and Yilmaz [30] exploited epipolar geometry to
leverage intersections and endpoints of the line-pair to
remove ambiguous line-pair matches. They then mapped a
line-pair to the corresponding image to compute the projected
error and constructed an affinity matrix of the geometric
similarity metric to provide the final line matches. In 2015,
Sun et al. [2] triangulated coarsematching points to 3D points
and examined the correctness of homography based on pla-
nar homography, which filtered mismatches by line length,
consistency of point-line topology and projective invariance.
However, the given threshold in this method has no theo-
retical basis and applies only to aerial orthogonal images.
Fan et al. [31] used an existing point matching algorithm and
point-line topology to determine the correct matching line in
the query image. The method was proposed in 2010 under the

FIGURE 2. Illustration of line fragments generated by inaccurate
detection of image line segment: the red and green lines are different
parts of L3, which is a real 3D structure line, and correspond to lR and lC
in the reference and corresponding image, respectively. The solid black
triangles represent the position of the camera. (Illustration by [5]).

circumstance of affine-only invariance. In 2012, Fan et al. [9]
complemented the projective invariant in the original method.
They analyzed four different combinations based on two
point-line invariants and two types of similarity measures
through extensive experiments. Their conclusion showed that
combining the affine-invariant and similarity measure based
on the maximal median delivered the best performance. How-
ever, the search range of keypoints depends on the length and
position of the perpendicular line. Therefore, this matching
approach often fails due to the deficiency of keypoints in
the support region generated by short line segments. More-
over, this approach is time consuming. Lopez et al. [32]
proposed a novel line detection algorithm in the scale-space
pyramid in which the real perceived line corresponding to
fragments is generated and then applied to the subsequent
line matching process in low-texture scenes to improve the
matched line quality. However, the process costs increase for
rich texture scenes due to increasing line neighbors and the
involvement of some important thresholds (e.g., minimum
distance between endpoints and parallel or perpendicular dis-
tance) in line matching without theoretical analysis. In 2016,
Li et al. [33] and Li and Yao [34] evaluated the Euclidean dis-
tance between V-junction descriptors to match line segments;
then, they matched individual line segments by estimating the
local homography. Nevertheless, this method assumes that
adjacent line segments possess a higher probability of being
coplanar in 3D space, which causes this method to fail when
the outline of a building or window is matched. Subsequently,
Li et al. [35] proposed a line-junction-line (LJL) structure
descriptor to match line segments using a hierarchical method
in multi-scale pyramids of an image, which demonstrated
good performance on most scenes, including poorly textured
ones. Obviously, this method is very time consuming, espe-
cially for large-scale scenes. Jia et al. [36], [37] developed the
characteristic number, a new projective invariant, to match
line segments with the line-point invariant (LPCN), which
is not disturbed by mismatched points of interest and even
generates more matches from a shorter fragment across views
than [31] and [32]. However, the accuracy of line matches
declines for shorter fragments, which are usually noisy [38]
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FIGURE 3. Illustration of the process of distinguishing candidate line segments using TIN (namely, t in the reference image): the
red circles represent feature points that do not belong to the line descriptors. The green circles represent the endpoints of the line
descriptors. The solid red lines show the edges of the triangulated network intersecting without lR or lCP , and the dotted red lines
exist only in C due to the inaccurate endpoints of the line segments or the inevitable LC

P . The green lines denote DR or DC . Hi (H−1
i )

represents the homography matrix (and the inverse of the homography matrix). pR and pC denote the keypoints in the reference
and corresponding images, respectively, and lC denotes a noise line segment. All symbols are also defined in Section III.

under high matches, and it can be seen from the compu-
tational complexity O(kNM2)(the parameters are illustrated
in [37]) that this method is also time consuming for large-
scale scenes.

III. DEFINITIONS
In this section, for convenience, some notations are first
defined. The L3 in Fig.2 represents a 3D space line segment in
the real world. Two types of image views, namely, reference
and corresponding images, are available in the matching and
mapping processes of every line segment. The former is
represented as R = {ri, i = 1,2,3, ...} and the latter as
C = {ci, i = 1,2,3, ...}. The line segment1 is denoted as
LR = {lRi , i = 1,2,3, ...} in R and as LC = {lCi , i = 1,2,3, ...}
in C . Inevitably, line segment matching generates tentative
segments (also termed candidate line segments), which are
denoted as LCP = {l

C
Pi , i = 1,2,3, ...}. Here, L = {li, i =

1,2,3, ...} refers to the 2D line segment, and L3 denotes the
3D line segment. The two endpoints of the line segment are
denoted as ei(i = 1,2). To reduce the number of candidate line
segments and improve the efficiency of determining matched
line segments, this study introduces TIN, which is denoted as
T = {ti, i = 1,2,3, ...} [39]. An expression for the topology of
a point-point or point-line is provided and constructed for the
keypoints in the image view. Thus, PR = {pRi , i = 1,2,3, ...}
and PC = {pCi , i = 1,2,3, ...} represent the keypoints2 in R
and C , respectively. To search the candidate line segments,
this study defines the line descriptor that intersects with the
line segment and denotes it as DR and DC in R and C ,
respectively, as shown in Fig.3. The line segments that inter-
sect with the line descriptors (the solid green lines in Fig.3)
are selected as the candidate line segments. For example,
as shown in Fig.3, lCP3 , which passes through the green circle,

1Line segment is denoted as (A,B,C) from line: Ax + By+ C = 0.
2All point coordinates in this paper are homogeneous.

is added to LCP even though it does not rigorously intersect
the line descriptors; however, lC is not added because it does
not intersect with the line descriptors. In addition, please note
that the subscript denoting the index number is often omitted
unless it would be ambiguous for reading and understanding.

IV. LINE SEGMENT MAPPING MATCHING
Given that a line segment consists of sequential points and
possesses the properties of those points, one can rely on
research results that address robust point correspondence
instead of viewing line segment matching as an independent
study. However, a line segment not only has the properties of
its points but also its own unique characteristics. For example,
points are dimensionless (zero dimension), but a line segment
can be described by its length and direction (one dimension).
Therefore, a full line segment in the physical world might be
divided into several parts due to scale, viewpoint or illumi-
nation changes, as shown in Fig.4(left), which represents the
full line segment in the physical world, and Fig.4(a, b, c and
d), which shows the different parts belonging to a real line.
The inaccurate locations of endpoints and the existence of
multiple different parts of a single line might cause failure
to match the line segment with high quality and quantity [9].

In this section, this approach is introduced mainly to
improve the robustness and accuracy of line matching based
on point correspondences using the planar homography and
topological adjacency of the point-line. Subsequently, based
on the shift threshold, as analyzed from the LSD method
theoretically, the details of line mapping and unmapping
approaches are introduced. The following subsections intro-
duce the key technologies of the proposed method.

A. ESTABLISHING CANDIDATE LINE SEGMENTS
Because only the planar metric is considered, this paper
resorts to planar homography of the line segment to connect
the image pairs conveniently, which can be computed from
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FIGURE 4. Structure line segments: The left-hand image contains a line
segment that is not broken. The a, b, c and d fragments show several
fragments due to changes in scale, viewpoint and illumination. Matching
these fragments in different views is difficult due to the lack of exact
endpoints. For example, li (i = 1, 2 or3) in a, b, c and d represent parts of
line segment l.

the point correspondences obtained from keypoint matching.
However, the correlation and probability of coplanar points
and lines increases as the distance decreases. Another impor-
tant factor is that the accuracy of homography becomes worse
at points farther from the line [40]. That is, the precision of
homography transformation would disturb the line matching
directly if these points are only near the line segment. In other
words, to improve the line segment match rate to the maxi-
mum probability, it is necessary to find the closest points to
the line segment. For example, in Fig.3 (reference image),
one can see that the red circles are farther from the reference
line segment than the green circles. Hence, compared with the
green circles, these red circles are unsuitable for estimating
the homography.

In this proposedmethod, the TIN is considered to represent
the topological adjacency in the image and planar surface,
which can search the line that is topologically near the line
segment. The TIN of the keypoints is built to describe the
point-line topology and determine that the reference descrip-
tor (DR) lies in the triangle intersecting the reference line
segment. Subsequently, one can determine the corresponding
descriptor (DC ) in the corresponding image directly based on
keypoint correspondences constructed by the mature Affine-
SIFT algorithm. The TIN has two functions in the proposed
method: the first is to determine the keypoints near the line
segment and remove noisy line segments using point-line
topology, such as lC in Fig.3, which is removed using TIN.
The second is to improve the accuracy of the planar homog-
raphy matrix based on the topological adjacency of the point-
line.

A line segment usually occurs between two intersecting
planes. Due to the inaccurate keypoint correspondence and
the long distances between line segments and keypoints,
the 3D points generated by corresponding keypoints located
on one side of a line segment may not be conducive to fitting
into a real and precise plane. That is, whether the keypoints
lying on the left and right of the line segment are coplanar
is unknown. Thus, the RANSAC [41] algorithm is exploited

to check the reliability of the fitted plane and remove those
noise points iteratively until the real plane is produced.
If successful, the planar homography can be obtained using
Equation 1 [40]:

x′ = Hx (1)

where x′ and x are the coordinates of the keypoints in the
reference and corresponding image, respectively. In addition,
the mapped line segment lCR = ((eCR )

1, (eCR )
2) is provided by

lR = ((eR)1, (eR)2) in the corresponding image by Equation 2:

(eCR )
i
= H(eR)i, i = 1, 2 (2)

in which the symbols are introduced in Section III. In this
process, to calculate the planar homography successfully,
the number of keypoints lying to the right or left of the line
segment should be no fewer than 4, and the planar homogra-
phy transformation may fail when three of the keypoints are
collinear.

For the corresponding image, the opposite process is con-
ducted compared with that in the reference image: the candi-
date line segment will be determined by the descriptors in the
corresponding image. The above process of establishing line
segment correspondence removes most of the noisy line seg-
ments using point-line topology. Additionally, the KD-tree
data-index structure is used to improve the computation time
for finding descriptors and candidate line segments, which
was inspired by Sun et al. [2]. The vertices and center of
each triangle in the TIN are built in the KD-tree, as are
the endpoints and midpoints of the line segments. Note that
they are two different KD-trees for the reference and corre-
sponding image. Subsequently, we select the midpoint of the
line segment and its length as the target and search radius
respectively to find the triangles by traversing the KD-tree in
the reference image. Similarly, in the corresponding image,
the center of the minimum bounding rectangle (MBR) of the
line descriptors and the diagonal line of the MBR are used as
the anchor and search range to determine the candidate line
segment using the other KD-tree. The KD-tree is exploited
only to approximately determine triangles (candidate line
segments) to reduce the computation time, and then we fil-
ter the remaining noises by intersecting with the line seg-
ment (line descriptors) in the reference image (corresponding
image).

B. THEORETICAL ANALYSIS OF LINE SEGMENT
DETECTION
When the endpoints of line segments are accurate in the
orthogonal direction, the mapped line segment will partially
or completely overlap with the matched line segment if it
exists. However, due to the errors resulting from keypoint
extraction and matching and from line segment extraction,
the ideal mapped line segment may not appear. To determine
a line segment from all candidate line segments, the com-
mon solution to find a matching line segment is to set a
constant threshold with an empirical value to remove noisy
line segments for a given image. However, the subjectivity
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and limits of this solution are obvious. Selecting a too-large
threshold will produce a mismatch towards a candidate line
segment that is not a corresponding line segment, and a too-
small value will prevent the seed line segment from being
matched. To prevent this problem, it is necessary to improve
the correct matching rate and the number of matches and
select a reasonable threshold.

For a gray-level image, each pixel or point corresponds to a
specific gray value that is quantized and therefore inaccurate.
In a natural image, straight edges usually have a gray-level
transition corresponding to many pixels, which is particularly
thick due to the quantization. Desolneux [42] applies the
Shannon principles [43] for an image to a level line with a
constant gray level. In other words, the level line can collect
the neighboring points with the same gray level and con-
tribute to the geometric structure. Additionally, an a-contrario
noise model for the Helmholtz principle is used to determine
the meaningful boundaries and edges of infinite details in
the finite resolution image. In the LSD algorithm, rectangles,
which denote line segments with a certain width, are involved
in describing the straight geometric structure on the basis of
the above mentioned a-contrario noise model where pixels
at a distance larger than two pixels are independent. That
is, whether less than two pixels at a distance lie in the line
segment or not depends on the rule of the LSD algorithm to
the maximum extent.

The gradient orientation orthogonal to the level line is
computed by the neighbor (right-, down- and downright-)
pixels, which is the simplest local contrast invariant informa-
tion. In this transition field, the contrast of the gradient level
would be small compared with the highly contrasted edges
at the meaningful boundary. Note that the final segment is
from the meaningful segments in the middle by the exclusion
principle, which denotes that any two alignments cannot
overlap. Likewise, the line-support region proposed by [44] is
introduced into the LSD algorithm to describe the criteria for
detecting line segments using several parameters (e.g., image
scale, balance value, gradient threshold, angle error, aligned
point density and number of false alarm thresholds).

However, some of those parameters are unable to improve
line segment extraction from most images. This is evident by
reports such as “works better sometimes before and some-
times after the width refinement, and there is no serious
caveat in performing both ”, as stated in [20]. Hence, in this
study, only the image scale and balance value, which play
prominent roles, are considered. The LSD algorithm usually
select half-pixels as a balance value. Following [43] and [45],
the gray-level distribution is Gaussian or uniform in the
noise image, while the direction is always uniform distribu-
tion. Therefore, the triple balance value [46] is determined
as a believable threshold conservatively; when subsequently
changed back to full scale (from 0.8 to 1.0), approximately
two pixels are obtained, the result of which coincides with
that of the a-contrario noise model.

Assumption that there is no error for computing planar
homography using the point correspondences and occlusion,

the matched line segment should be found in two pixels if it
exists. Nevertheless, if the threshold is not reasonable to dis-
tinguish two segments, two cases might occur: one is that two
segments at a distance of less than two pixels are not matched,
and the other is that two segments at a distance of greater than
two pixels are actually amatched pair. Given inaccurate quan-
tization of image, the first case can be excluded. The other
occurs only if the assumption is rejected. Therefore, the final
threshold is relaxed by half-pixels to solve the second case
through the different types of scene experiments, the details
of which are demonstrated in Part A of Section V. As the shift
threshold increases, the mismatching probability of the line
segment increases, especially for the line segment for which
matches do not actually exist. The final threshold could give
attention to both precision and recall rate and then match line
segment(see Part A of Section V).

C. DETERMINE THE MATCHED LINE SEGMENT
As mentioned above, the LSD algorithm offers a mean-
ingful alignment threshold and is applicable to any scale
and scene without tuning the value. Hence, one can find
matched line segments using the orientation and fixed posi-
tion shift between the candidate and mapped line segments.
Then, the orientation between the candidate line segment and
mapped line segment can be computed by Equation 3 where
θ represents the angle between lCPi and lCR . To calculate the
position shift between lCPi and lCR , the means of the distances,
including those between the two endpoints of lCPi and lCR and
between the two endpoints of lCR and lCPi , are evaluated by
Equation 4, where d denotes the position shift, d1, d2, d3, and

d4 denote the four distances, and d1 =
|(eCPi )

1
·lCR |√

(ACR )
2+(BCR )

2
, d2 =

|(eCPi )
2
·lCR |√

(ACR )
2+(BCR )

2
, d3 =

|(eCR )
1
·lCPi |√

(ACPi )
2+(BCPi )

2
and d4 =

|(eCR )
2
·lCPi |√

(ACPi )
2+(BCPi )

2
,

in which (eCPi )
1, (eCPi )

2, (eCR )
1, (eCR )

2 represent the endpoints
of lCPi and l

C
R , respectively.

θ = arccos
|lCPi · l

C
R |

|lCPi ||l
C
R |

(3)

d =
1
4
· (d1 + d2 + d3 + d4) (4)

D. LINE SEGMENT MAPPING AND UNMAPPING
It is inevitable that the LSD algorithm will generate line frag-
ments because the gradient orientation and level-line angle
change when the image scale changes. A long spatial line
in an image contains more pixels than a short spatial line
at the same scale; thus, a long spatial line is more likely to
be detected as many fragments. The existence of such frag-
ments increases the probabilities of mismatching and missed
matches.

To solve this problem, this paper proposes line segment
mapping and unmapping to integrate such fragments into
full line segments based on image sequences. Significantly,
the proposed method not only improves the number of line
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FIGURE 5. Schematic of updating line segment endpoints: a-c denote
three cases ideally and d-i represent the approaches to update the new
line segment (the green dash line segment) when the endpoint’s position
or orientation of fragment in case c is inaccurate. The black solid and
dash line represents the overlap parts and biases between lRM and lR ,
respectively. The black dot represents the intersection point of lR (lRM ) and
the black dash line located in the extended line of lR (lRM )(the purple dash
line). The black solid triangle denotes the midpoint of the black dot and
the endpoint of lRM (lR ), which is also the endpoint of the new line
segment. Note that the green solid line is longer than the red solid one in
cases d-j.

matches but also produces more full-line segments. First,
the line segment is mapped from R to C to determine the
matched line (lCM ), which is then unmapped into R to update
lR. The method aims to collect fragments in the differ-
ent views iteratively and solve the problem of one-to-many
matching in one image to complete the line segment struc-
ture gradually. This strategy is helpful for improving the
missing matches rate and 3D line structure using topologi-
cal adjacency. In this unmapping process, our strategy is to
map lCM to R as lRM and merge lRM and lR as a new line in
R using planar homography. Ideally, lRM and lR should be
completely collinear along the fragment orientation with the
different lengths and endpoint positions (see Fig.5(a-c)). Due
to the inevitable position and orientation errors between lR

and lRM , the endpoints of the new line segment are updated
using the mean values of their endpoints, a simple approach
to adjusting bias, to produce new endpoints. In Fig.5(a-b),
the new line segment is updated using the longer fragment
(e.g., lR in case a and lRM in case b) since the shorter fragment
is more likely to be noise [38]. In Fig.5(c), there are six
cases in which the endpoints of the line segment must be
updated according to the relative position between lR and
lRM : a schematic is shown in Fig.5(d-i), in which cases d-f
denote that lR is longer than lRM and cases g-i demonstrate the
opposite cases. Please note that these six cases apply to their
symmetric circumstance (e.g., in Fig.5(i) and (j)). When the
line segment is regenerated, more fragments are produced by
the line detection algorithm to be matched, and a real and full
single line will be obtained.

E. ALGORITHM IMPLEMENTATION
This study employs two main procedures to achieve line
segment matching. The first procedure involves keypoint

extraction, matching and line segment detection from the
image. The Affine-SIFT method is used in the experiments to
find additional keypoints to support this algorithm. The 2D
point correspondences are then filtered through the double
cross-direction consistency method, in which the coarsely
matched point-pairs in R and C are checked as references for
each other. To refine matching, the process of filtering 2D
point correspondences is considered in this paper. The LSD
algorithm is used to extract the feature line from the image
because it performs better than the Hough transform [47] and
the line detection method introduced by Wang et al. [29].
The second step is line mapping and unmapping. This
approach requires no parameter tuning (the orientation is set
to cosθ = 0.99, and the position shift is set to 2.5 pixels),
excluding special instructions. The pipeline of the algorithm
is shown in Algorithm1.

AssumeNt denotes the number of center and vertex of TIN
and Ne as the midpoints and endpoints of line segments. For
each view, the KD-tree is constructed with the worst-case
complexity O(Nt log2Nt ) for TIN and O(Nelog2Ne) for line
segments, and the worst performance on the range search is
O(N 1/2), in which N represents the maximum number of Nt
and Ne. Thus, the computational complexity of this proposed
method is approximately the maximum between O(MN 1/2)
and O(Nlog2N ), in which M represents the number of line
segments.

V. EXPERIMENTS AND ANALYSIS
All experiments were executed on a computer running a
Windows 7 operating system with 1.6 GHz. In the proposed
method, the shift threshold has a strong effect on the line
segment matching accuracy. Hence, in the experiments, orig-
inal images of five different types of scenes were selected
to analyze the relationship between the line-matching pre-
cision and recall rate (PR curve) for the different shift val-
ues. Additionally, to analyze and compare the efficiency and
accuracy of the proposed method with the existing line-
matching algorithms, three comparison experiments were
designed. The first experiment, belonging to the first class
(Section II), compares the proposed method with the method
of Schmid [21], [23] using the three datasets from Werner
and Zisserman [24]. The second experiment, for the second
class (Section II), analyzes the accuracy and time cost of line
segment matching using the abovementioned five types of
scenes. The last experiment focuses primarily on comparing
the total matches, correct matching rate, match completeness
and line segment completeness for image sequences of the
proposed method with that of the state-of-the-art 3D scene
reconstruction method (Line3D++ software) using a 3D
line-based model.

All the line segments used in the experiment were detected
using the same line segment extraction algorithm (LSD), and
only those greater than 1% of the image diagonal line remain
to be matched since shorter fragments are usually noise and
do not represent line features. Furthermore, shorter fragments
are usually not supported by at least two other views [38]
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FIGURE 6. Images with four transformation types and UAV images.

and thus would not play an active role in reconstructing the
3D lined model or other models. The experiments analyze
the running efficiency (T), total matches (TM), mismatches
(MM), extracted 2D segments (S2D), total of 3D lines (L3D)
and correct matching rate (CMR) for comparison. Note that
all the matched line segments are drawn into the original
image with different colors to aid distinguishing the different
matched pairs, and a label is created with the image serial
number near one endpoint of the line segment to conveniently
check for mismatches.

A. THRESHOLD TRIALS AND VALIDATION
In this proposed method, the accuracy of line segment match-
ing depends heavily on the shift threshold. A too-small
threshold parameter results in missed matches, while a too-
large threshold parameter produces mismatches. Although
the maximum similarity is introduced into the process of
filtering the candidate line segments to determine thematched
line after the larger threshold is applied, mismatches still
exist. In addition, the accuracy of keypoint extraction and
matching and the planar homography are also critical factors
in line matching, but this problem can be controlled within an
acceptable range based on the mature Affine-SIFT and LSD
algorithms.

In this experiment, five different scenes, including four
types of transformation and unmanned aerial vehicle (UAV)
images, are selected as shown in Fig.6 to validate the robust-
ness of the proposed method. These images were captured
from a desk (Fig.6(a)) and entrance (Fig.6(b)) in our labo-
ratory; the image in Fig.6(c) was acquired from a district in
Hubei Province; the image in Fig.6 was introduced by [9]
and [31], and the image in Fig.6(e) comes from the Hofer [5]
algorithm and is a synthetic case. In addition, a portion of the
UAV image (733×833) is selected as the research area to sim-
plify checking and aid in demonstrating clearly in Part C of
Section V. Table 1 lists some of the details of the experimental
dataset, including the types and sizes of the images, the total

TABLE 1. The datasets of the five scene descriptions.

FIGURE 7. The different color curves represent the PR curves of the five
scenes. Each curve varies with the range of different threshold sets of 1.0,
2.0, 2.5, 3.0, 3.5, 4.0, 5.0 and 6.0 pixels, in which the smaller the
threshold, the higher the precision and the lower the recall rate.

number of keypoint pairs based on the Affine-SIFT algorithm
and the line segments detected by the LSD algorithm.

The line-matching rate is counted and analyzed, given
accurate keypoint extraction and matching and line segment
detection, for the above scene datasets at full scale (in Fig.6).
The proposed method under the different shift threshold set-
tings is validated using the PR curve. The ideal line-matching
PR curvewould fall in the top-right corner with high precision
and recall rate. As shown in Fig.7, the best line matching
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Algorithm 1 Line Segment Matching for Image Sequences
Require: A sequence of images
Ensure: The matched line group �

Preliminary:
1. Keypoint extraction, coarse/refined matching and
structure line extraction;
2. Generate TIN;
3. Construct the KD-tree for line segments and TIN;

1: for i = 0 to sum of images do
2: for j = 0 to sum of line segments do
3: Initialize t = 1;
4: while t do
5: Initialize t = 0 && d0 = 2.5
6: for k = 0 to 10 nearest neighbors of images do
7: Determine the descriptors DR of image i;
8: Find the 2D keypoints correspondence;
9: Determine the descriptors DC of image j;

10: Divide all the keypoints into two parts by the
line segment;

11: Refine the corresponding keypoints of each
part using RANSAC;

12: if the sum of keypoints is less than 4 then
13: break;
14: else if three existing keypoints are collinear

then
15: break;
16: end if
17: Find LCP ;
18: Map lR from image i to image j as lCR ;
19: for m = 0 to sum of LCP do
20: Compute the orientation2 and position shift

between lCR and lCPm ;
21: if fabs(cos2) ≥ 0.99 and fabs(d) ≤ 2.5 and

d0 > d then
22: d0 = d ;
23: end if
24: end for
25: if d0 < 2.5 then
26: Add lCPm into � and mark it as “Use ”if lCPm

meets the condition;
27: Map lCPm to R if lCPm meets the condition;
28: t = 1 && break;
29: end if
30: end for
31: end while
32: Map a new lR to the matched line segment in the�;
33: end for
34: end for

results could be produced using 2.5 pixels for five different
scenes.

B. COMPARISON WITH SCHMID
In this section, the proposed method is compared with the
Schmid method, which is the classical method in the first

TABLE 2. Comparison of the proposed method with Schmid.

class. Werner [48] implemented the method proposed by
Schmid, and an implementation version of this approach
is available in the MATLAB toolbox.3 Hence, their scenes
and the matching projection matrix are used to conduct the
comparison experiment. The line segment matching results
are listed in Table 2 (bold font denotes the top-rank perfor-
mance on the corresponding metric among all line-matching
methods in this table and in Table 3 and Table 4).
One can see that the proposed method has better per-

formance regarding the correct matching rate and achieves
higher completeness than the Schmid method either with
or without epipolar ordering constraints, especially for the
correct matching rate. There are two reasons for our method’s
lower completeness on the Valbonne scene. The first is the
lack of keypoints caused by the low resolution, and the second
one is the occurrence of many sharp edges in the keypoint
distribution area. Hence, when there are sufficient numbers
of keypoints, the proposed method achieves higher accuracy
on line segment matching. The matched line segments from
the proposed method are drawn in the corresponding image
pairs (Fig.8-Fig.10 demonstrate the extracted line segments,
total matches and correct matches) using different colors.
Please note that in this experiment, the processing time was
not evaluated because the implementation of Schmid with
and without epipolar beam ordering constraints runs on the
MATLAB platform, which is different from the proposed
method.

C. COMPARISON WITH MSLD, LPI, PHLM, LJL AND LPCN
In this section, the proposed method is compared with
the MSLD [8], LPI [9], PHLM [2] and LJL [35] algorithms
using the same keypoint pairs and line segments. LPCN [37]
only runs with the same line segments, and the keypoints
are produced by the shared code available in [37] since a
large number of keypoints would be very time consuming.
In addition, please note that Method IV, which is the general
case and the most robust of all methods in LPI, is applied to
our experiment. In addition, only Case I of the PHLMmethod
is used for this comparison because Case II is suitable only for
approximate orthogonal aerial images. The matching results
are shown in Table 3, where one can see that the proposed
method performs well in terms of the completeness of line
segment matching, correct matches and time consumption.

3The source code and dataset of the Schmid algorithm are available at
http://cmp.felk.cvut.cz/cmp/software/lmatch.
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FIGURE 8. Line matches of Merton: Extracted line segments: 786, 757. Total matches: 331. Correct matches: 330.

FIGURE 9. Line matches of Merton-a: Extracted line segments: 1095, 1012. Total matches: 553. Correct matches: 552.

Note that the underline denotes the second-best perfor-
mance. For all scenes, this proposed method achieves robust
performance on the correct matching rate (1%-2%) for
the different scenes with different types of transformations
because of higher completeness, especially for the accuracy,
as scenes b-e are better than others and scene a is the second-
best one. The MSLD algorithm performs better regarding
line matching efficiency, but it usually fails in the rotation
transformation (e.g., (b) in Table 3) and has a lower line
matching completeness than the other methods. For the LPI
method, the total matches and correct matches of (d) are
slightly different from those reported by [31] because the
line segments are generated by a different method in this
experiment. However, the results are still convincing and can
be compared with our method.

Notably, this proposed method could produce more line
matches than PHLM with higher accuracy and lower time
consumption per matched line. By contrast, compared with
the proposed method, the LJL and LPCN methods can pro-
duce more line matches, but the accuracy is lower, and the
time consumption is greater per matched line, especially for
the scene with rich lines (scene b) or keypoints, as stated

TABLE 3. Comparison of the proposed method with MSLD, LPI, PHLM, LJL
and LPCN.

by [35] and [37]. Additionally, the proposed method also
performs more robustly than the others in terms of accuracy,
which varies in the range of 98.1 to 99.3 for all scenes. Note
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FIGURE 10. Line matches of Valbonne: Extracted line segments: 575, 556. Total matches: 107. Correct matches: 105.

FIGURE 11. Line matches of (a) with scale: Extracted line segments: 1231, 1080. Total matches: 213. Correct matches: 209.

that LPCN exploits the matched line neighbors to find more
potential matching lines (e.g., short lines) for two views,
whereas the proposed method does not because the shorter
fragments might be noise that might produce mismatches.
However, in this paper, an iterative method of line mapping
and unmapping is introduced for image sequences (more than
two views) to collect and merge fragments into the same
perceived line to generate a full line structure resorting to
topological adjacency and thereby avoid missing short line
matches or mismatches. The details are shown in Part D of
Section IV.

Fig.11-Fig.15 show the results of line segment matching
by the proposed method. Likewise, a different color is also
used to distinguish the different line segments to verify the

validation of the proposed method. However, due to occlu-
sion and viewpoint changes, there are still fractions of the
reference line (e.g., line segment 97(case(c)) in Fig.13) for
the two views that produce missed matches. Line mapping
for image sequences paved the way to solve the above
problem, and its performance will be verified in Part D of
Section V.

In order to validate the reliability of the line matching
methods, five groups of experiments, each consisting of two
unrelated views (e.g., a-b, b-c, c-d, d-e, e-a) in the top row of
Fig. 6, are selected to match line segments inspired by [32].
There are no line matches, which is the desired line matching
result since the two views are actually unrelated. As shown
in Table 4, PHLM and the proposed method do not find
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FIGURE 12. Line matches of (b) with rotation: Extracted line segments: 1550, 1512. Total matches: 680. Correct matches: 672.

FIGURE 13. Line matches of (c) from the UAV image: Extracted line segments: 855, 790. Total matches: 136. Correct matches: 135.

TABLE 4. Comparison of line matching on two unrelated views among
the proposed method, MSLD, LPI, PHLM, LJL and LPCN.

line matches for all scenes, and MSLD, with a maximum
of 9 matches, performs behind LPI(3), LJL(4) and LPCN(5).

D. LINE MATCHING BASED LINE MAPPING FOR IMAGE
SEQUENCES
For image sequences, the line-matching rate cannot be
counted and evaluated easily using the above method in Part
C of Section V. Therefore, one could adopt the analysis
method following Li et al. [33] and Elaksher [6] to evaluate

the total matches, mismatching rate, match completeness and
line segments. Then, one reconstructs a 3D line-based model
using matched line segments with at least three support lines
each to count the total matches, and all matched 2D line
segments whose reprojection error is greater than the shift
threshold value are counted as mismatches. Although using
the reprojection error may be inaccurate for small baselines,
it does not change the score substantially when evaluating the
line matching results.

One defines the ratio of themismatches and the total sum of
matched lines from image sequences as RMM and the ratio
of the total matches and all the extracted line segments as
ROM to evaluate the completeness of matches. The relevant
rules are shown in Equation 5. In this section, five scenes,
including synthetic, street and UAV image sequences (three
scenes), are designed to analyze and verify the robustness and
advantage of the proposed method. The synthetic scene con-
sists of 21 views (the details are in Table 1(e)), and both the
street (3072×2048) and UAV scenes (4000×3000) include
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FIGURE 14. Line matches of (d) with illumination: Extracted line segments: 826, 486. Total matches: 264. Correct matches: 260.

FIGURE 15. Line matches of (e) with viewpoint: Extracted line segments: 370, 311. Total matches: 184. Correct matches: 182.

FIGURE 16. 3D scene line-based model of the synthetic image: 3D lines: 321, 440. Time: 1 min, 10 mins.

VOLUME 7, 2019 39891



X. Jia et al.: Robust Line Matching for Image Sequences Based on Point Correspondences and Line Mapping

FIGURE 17. 3D scene line-based model of the synthetic image: 3D lines: 1267, 1645. Time: 6 mins, 58 mins.

FIGURE 18. 3D scene line-based model of UAV-1: 3D lines: 504, 1245. Time: 2 mins, 22 mins.

FIGURE 19. 3D scene line-based model of UAV-2: 3D lines: 598, 2865. Time: 7 mins, 64 mins.
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FIGURE 20. 3D scene line-based model of UAV-3: 3D lines: 463, 2537. Time: 6 mins, 60 mins.

TABLE 5. Results of line matching and 3D line reconstruction.

10 views. For the Line3D++ algorithm, ROM and RMM
are not evaluated because these metrics are not mentioned
in [5] and [38]. Hence, the experimental details for only the
proposed method are listed in Table 5. One can see that the
proposed method not only produces more matches but also
results in fewer mismatches. In addition, for the different
scene types, the proposed method performs robustly regard-
ing ROM and RMM (approximately 5%± 2%).

RMM =
the total sum of mismatches
the total sum of matched lines

× 100%

ROM =
the total sum of matched lines
the total sum of extracted lines

× 100% (5)

To intuitively analyze the robustness and completeness
of the proposed method, the experiment reconstructs the
matched line segments from the above five scenes to a
3D line-based model. In addition, it also compares the 3D
line-based model generated by mapped line segments from
the state-of-the-art 3D reconstruction method (Line3D++
software), which is based on line segment matching.
Fig.16-Fig.20 show real images and two 3D models for
each scene reconstructed by Line3D++ and our approach
based on line mapping, ordered from left to right. This
experiment uses Ceres-Solver [49] for bundle adjustment to
solve the optimization problem in our method as well as
Line3D++.

In Fig.16-Fig.20, one can see clearly that the proposed
line segment mapping matching method not only produces

many more line matches than the existing method but also
completes the line segment structures to obtain a full 3D
line-based model (e.g., the roof in Figure 16). Line3D++
generates more details for the synthetic and street scenes than
for the UAV scenes. By contrast, our method describes more
structural information using a line-based model. However,
due to its dependence on the keypoint matching performance,
our method will fail when there are mismatched points or
when feature points are missing near the line segment (e.g.,
some of the windows and doors in Figure 17 and the roof
in Figure 20). In addition, although one can see that the pro-
posed method consumes slightly more time than Line3D++,
which uses massive parallelism, the proposed method gener-
ates more 3D lines (up to 5 times more than the Line3D++
method). In general, the proposed algorithm is more efficient
than the existing method and performs well overall regarding
the robustness and completeness of line structures and line
matches on most types of scenes.

VI. DISCUSSION AND CONCLUSIONS
Note that this proposed method builds on [2], [9], and [31];
hence, it is necessary to discuss the differences between
our method and their methods. In Sun’s method, the can-
didate line segments are determined by surrounding points
corresponding to those of the reference line segment, which
are searched in the specific range to obtain the center and
length of the line segment. The LPI method [31] finds
point correspondences using a similar approach. Addition-
ally, the LPI method [9] introduces the affine-invariant and
projective-invariant into different cases with similar mea-
sures based on the maximum and maximum median, respec-
tively. Jia et al. [36], [37] extends the cross ratio using CN
to find more potential matched lines, especially for shorter
fragments.

However, none of these methods find the most ideal point-
line pairs to compute the planar homography matrix. In [40],
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the precision of the homography transformation will disturb
the line matching directly if these points are not closest to
the line segment. That is, the accuracy of planar homography
will decrease with increasing distance of the point-line. The
error is also influenced by the choice of the shift threshold
value.

In this paper, topological adjacency is introduced to elimi-
nate the negative factor of the maximum probability. Another
advantage is the ability to find the coplanar point-line resort-
ing to the KD-tree data-index structure more efficiently than
the above methods. In addition, to determine the matched
line segments accurately, the shift threshold is introduced for
line matching, and its feasibility is then validated by theory
and trials. In Part A of Section V, five different scenes are
designed with four different transformation types, and the
shift threshold settings are verified using the PR curve, which
demonstrates higher precision under the stable recall rate.
Subsequently, in Part B and Part C of Section V, two groups of
experiments are designed: the first compares Schmidwith and
without epipolar ordering constraints, in which the correct
matching rates of the proposed method for three scenes are
much better than Schmid(+) excluding the total matches
of Valbonne caused by weak texture. The next compares
the second class of line segment matching methods. Again,
our method also improves the performance on the correct
matching rate and time cost for each matched line segment
(more matched line segments per second) for the two views,
whereas LJL and LPCN focus on matching more line seg-
ments. However, the proposed method resorting to line map-
ping and unmapping is devoted to matched lines that are
supported by at least three views for image sequences, which
is more robust and results in lower mismatching. This is the
main reason that the total matches are less than for the LJL
and LPCN methods.

Linemapping is performed not only for the sake of improv-
ing line segment matching but also to complete the 3D line
structure. In Part D of Section V, synthetic, street and UAV
scenes are designed to verify and compare the robustness
of our method and the state-of-the-art Line3D++ method.
Our method achieves better performance in terms of com-
pleteness and robustness by combining geometric and texture
information compared to Line3D++, which depends only on
epipolar constraints.

In conclusion, the experiments indicated that for two or
more views, the proposed method performs better in terms
of the quality and quantity of matched line segments than
existing methods and is practical for matching line segments
from different types of scenes. However, the proposedmethod
fails for sharp or wiry edges (e.g., eaves and power towers)
due mainly to changes in neighborhood keypoints caused by
the noncoplanar line-point topology, which is introduced in
the Valbonne scene (Fig.10) in Part B of Section V and the
case in which line segments have few or incorrect nearby
keypoint pairs due to weak textures. As shown in Fig.21,
there are fewer feature points near line segments and key-
point pairs even with many mismatches (e.g., 27, 56, 76,

FIGURE 21. The line segment extraction and key point pairs for two views
in the sparse texture: all feature points are marked using different colors
and serial numbers. The red solid segment is detected by the LSD
algorithm.

98, 99 in Fig.21), which might directly produce an incorrect
TIN. As a result, the line segment matching fails completely.
Future studies should strive to improve the approach to better
determine candidate line segments combining pure geometric
and machine learning and correct the 3D surface mesh model
using a 3D line-based model.
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