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ABSTRACT Aiming at improving the localization accuracy, reducing network cost, and energy loss in the
3-D environment, this paper proposes a mobile node localization algorithm based on compressive sensing for
underwater acoustic sensor networks (UASNs). By dividing the cubic module of the underwater monitoring
area and using the energy between the mobile anchor node and the unknown nodes, the sparse localization
problem based on the cubic module is transformed into the nodes localization problem based on compressive
sensing. Since the energy localization between nodes based on cubic modularization is adopted, the path of
the mobile node does not need to be specially designed, as long as the mobile beacon node traverses the entire
cubic module. Considering the distance problem of the moving path, the mobile node path is based on the
random waypoint (RWP) and the LAYERED-SCAN model. The simulation results show that the proposed
algorithm can be applied to the node localization problem of UASNs. It can reduce network cost and node
energy loss while obtaining higher localization accuracy.

INDEX TERMS Underwater acoustic sensor networks, node localization, compressive sensing, mobile
anchor node.

I. INTRODUCTION
With the increasing demand for abundant marine resources
and the continuous development of ocean detection tech-
nology, in the underwater communication scenarios, it is
important to improve system capacity and spectral efficiency
[1], [2]. Underwater Acoustic Sensor Networks (UASNs)
plays an irreplaceable role in the field of ocean exploration
technology [3], [4]. UASNs have been widely used in marine
data collection, pollution monitoring, offshore exploration,
disaster prevention, auxiliary navigation, tactical surveil-
lance, etc., and have attractedmore andmore research interest
in recent years [5], [6]. However, due to the particularity
of the underwater channel, the UASNs has the following
characteristics compared with the traditional wireless sensor
network [7]–[9]: 1) high transmission delay and limited avail-
able bandwidth. Since the propagation rate of acoustic wave
under water is 5 orders of magnitude lower than that of radio
waves in the air, it has a communication delay of 0.67 s/Km
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and varies with the temperature, salt and pressure of thewater;
2) broadcast loss is large and multipath is serious. The acous-
tic wave has a large attenuation of signal transmission energy
due to the existence of propagation loss, absorption loss,
scattering loss and reflection loss in the underwater channel.
Due to the refraction of the layered medium in the water area
and the reflection of the water surface and the bottom, there
are many different paths between the acoustic sources and
the nodes, so that the amplitude and phase of the received
acoustic signal will be distorted; 3) limited node energy.
Security is a challenging issue for UASNs to be used [10], and
spectrum sensing and channel optimization issues cannot be
ignored [11]–[13]. Due to the lack of convenient and renew-
able resources underwater, the operation of the UASNs relies
mainly on the limited load of battery work on the nodes. And
the underwater environment is complicated, the sensors in
the waters cannot replenish energy by replacing the batteries,
so the energy consumption of the underwater nodes must be
required to be lower. In addition, due to the floating of water
flow, how to make the deployment of nodes stable is also an
important issue in the deployment of UASNs. Therefore, how
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to accurately locate the underwater unknown nodes position
with low network cost and energy consumption is a hot issue
in UASNs localization research, and it is also a basis for its
application.

Mobile node localization as a drone surveillance has
become a very important but largely underexplored topic
[14], [15]. Existing 3-D environment mobile node local-
ization mainly has two research directions, node self-
localization algorithm and mobile node path selection [16].
The typical node self-localization algorithm can be divided
into range-based localization algorithms and range-free local-
ization algorithms. The range-based localization algorithm
requires the sensor nodes to measure signal strength indicator
(RSSI) [17], time of arrival (TOA), time difference of arrivals
(TDOA) and angle of arrival (AOA) [18], [19]. And then com-
bined with trilateral, trigonometry, least squares methods,
etc. The range-free algorithm mainly relies on the connected
information of the nodes to complete the localization, such as
DV-hop, convex optimization algorithm, centroid algorithm,
etc. In general, the range-free algorithm is lower in cost
than the range-based algorithm, but the localization accuracy
is also lower. This paper prioritizes the energy-based range
algorithm. At this stage, the path planning of mobile nodes
in 3-D environment is also a research hotspot. The researchers
are committed to how mobile nodes can traverse the entire
monitoring area with the shortest path in the shortest time
and obtain high localization accuracy. Literature [16] gives
an overview of mobile node path planning, including single
mobile node localization, multiple mobile nodes localization,
and some paths design issues. Although there are more path
planning, the starting point of these path planning is based on
the trilateration algorithm, and to obtain better localization
accuracy, complex moving paths are needed, which is a big
test for localization time and node energy consumption. And
because of the large delay under water, the range-based algo-
rithm cannot be well applied. The problem of signal process-
ing is becoming more and more interesting [20]–[22]. In the
sensor networks, how to solve the problem of insufficient
information processing capability of nodes is also the key to
locate.

Compressive sensing(CS) [23], [24] theory as a new sam-
pling theorem can be sampled far below the Nyquist sam-
pling theorem. Applying the compressive sensing to the node
localization algorithm can solve the problem of insufficient
information processing capability of the node. By acquiring
the information of a small number of nodes of the network,
the entire network can be known, the network cost is reduced,
and the energy consumption is saved.

In summary, this paper proposes amobile node localization
algorithm based on compressive sensing, which is applied
to the node localization of UASNs. The localization of the
energy information between the nodes effectively solves the
problem of ranging error caused by the transmission delay in
the underwater. In addition, for higher localization accuracy,
trilateration requires complex planning of the mobile node
path. The algorithm of this paper is based on the sparse

cube lattice localization algorithm, without considering the
collinear problem of the mobile node, as long as the mobile
node traverses the entire square. Therefore, the LAYERED-
SCAN path can achieve higher localization performance,
save localization time and energy consumption. According
to the literature [25]–[27], an Orth-based sparse target local-
ization algorithm is proposed. The observation dictionary
cannot satisfy the RIP property, and QR-decomposition is
performed on the sensing matrix. The new observation dic-
tionary satisfies the RIP property and does not affect the
sparsity of the original sparse signal in the QR-decomposition
preprocessing process, thus ensuring the reconstruction per-
formance of the algorithm and improving the localization
accuracy of the node. In this paper, the Orth algorithm and
QR-decomposition algorithm are studied. When the mobile
node follows the RWP path and the LAYERED-SCAN path,
the localization error varies with the number of times the
mobile node sends information, the SNR and the number
of unknown nodes. The simulation results show that the
proposed QR-decomposition algorithm has higher localiza-
tion accuracy and robustness when the mobile beacon node
follows the LAYERED-SCAN path.

The rest of this paper is organized as follows. The second
section explains the related work of this paper. The third
section introduces the network localization model and algo-
rithm. The fourth section analyzes the simulation results. The
full text is summarized in the fifth section.

II. RELATED WORK
For the underwater acoustic sensor mobile node localization,
the mobile beacon node path and localization algorithm is
worthy of our two research directions, of course, the network
security of UASNs cannot be ignored. How to use simple
path planning, lower network cost, and higher localization
accuracy has always been the focus of research by scholars.
Many existing path plans are applied under specific algo-
rithms. Among them, there are many paths designed for the
trilateration method. In order to solve the collinear problem
of the trilateral method, it is necessary to design a compli-
cated path, which brings time to the localization and Energy
consumption. How to find an algorithm that is suitable for
simple paths and obtain better localization accuracy is also a
problemworth considering. In addition, the application of the
compressive sensing algorithm in sensor network localization
has been a topic of great interest in recent years. Compressive
sensing can greatly reduce the network cost and avoid the
problem of insufficient information processing capability of
nodes.

Han et al. [28] addressed the problems of energy
constraints and characteristics of water delamination of
autonomous underwater vehicles (AUVs) in UASNs, propos-
ing a stratification-based data collection scheme. By stratify-
ing the network, the power consumption of data collection is
reduced, and the network lifetime is improved.

Jiang et al. [29], [30] proposed a novel trust model based
on cloud theory (TMC) for UASNs. The algorithm effectively
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solves the uncertainty and ambiguity of traditional cloud the-
ory and improves network security. Han et al. [31] proposed
an attack-resistant trust model based on multidimensional
trust metrics (ARTMM). This method realizes accurate and
efficient trust evaluation for UASNs system, compared with
the traditional method, the accuracy of evaluation is improved
and the energy consumption is reduced.

Yan et al. [32] studied the relationship between propaga-
tion delay and node position in UASNs, and proposed an
asynchronous localization algorithm with mobility predic-
tion. It is used to estimate the future position of the active
and passive sensor nodes, which reduces the ranging errors
caused by the delay to some extent. Compared with the
synchronous localization algorithm, the algorithm improves
the localization accuracy and time.

Lee and Kim [33] applied a mobile beacon-based range-
free localization method to UASNs, which periodically
broadcasts beaconmessages containing its location. Ordinary
nodes receive a set of potential candidate values by receiving
this information, and use a weighted centroid algorithm to
locate unknown nodes.

Alomari [34] made a new plan for the path of the anchor
node’s movement, called the H curve. It has higher cover-
age and localization accuracy than some traditional paths.
However, the path is proposed for the trilateration localiza-
tion algorithm. In the UASNs, the range-based method is
not well applicable due to the different acoustic propaga-
tion speeds and the transmission delay. In addition, complex
paths also burden the movement of anchor nodes. In order to
achieve high network connectivity and coverage, and improve
localization accuracy, Han et al. [35] studied node deploy-
ment in UASNs. The simulation results show that the pos-
itive tetrahedral deployment scheme is better than random
deployment and cube deployment in reducing localization
error and improving localization rate when using trilateration
method localization, while maintaining the average number
of adjacent anchor nodes and reasonable network connec-
tivity. Therefore, in addition to the localization accuracy,
whether the localization of unknown nodes in the whole
network can be realized is also an issue that our algorithm
should consider. From the perspective of achieving the best
localization performance with the simplest path and con-
sidering the underwater environment, we hope to locate the
unknown nodes by moving the energy of the anchor node and
the unknown nodes.

In the literature [36], Zhao et al. proposed a sparse target
localization algorithm based on LU-decomposition. Based on
the Orth algorithm, the algorithm decomposes the sensing
matrix, which satisfies the compressive sensing RIP property
without changing the sparseness of the original signal, and
obtains good localization performance. Although the algo-
rithm is proposed for 2-D environment and static beacon
nodes, it brings great inspiration to our work.

Although underwater localization technology has always
been the focus of people’s research, many existing algorithms
are developed for static node positioning, and in order to

achieve better localization performance, complex planning
of paths in 3-D environment is required. This paper com-
bines compressive sensing to improve the orth sparse tar-
get localization algorithm and propose a QR-decomposition
algorithm. By dividing the monitoring area into cubes,
according to the energy relationship between the anchor node
and the unknown node, combined with the centroid algorithm
to locate unknown nodes. This algorithm does not require
complex design of the mobile node path, nor does it need
to consider the collinear problem. The basic SCAN path can
be well applied and can locate all unknown nodes. After
simulation, the location error of the two algorithms under
RWP and layered scan path is compared with the times
of the anchor node sends information, the SNR and the
unknown nodes number change. The results show that the
QR-decomposition algorithm has smaller localization errors
under the LAYERED-SCAN path conditions. The specific
localization model and algorithm will be elaborated in the
following.

III. SYSTEM MODELS AND ALGORITHMS
Suppose that in a 3-D environment underwater sensing area,
we first divide it into modules and divide it into N small cube
modules. Then we use the winch device proposed in [35]
to deploy K unknown locations. The sensor can control its
own height by air pump, which can avoid unknown nodes
floating with water flow. Through the energy relationship
between the mobile anchor node and the unknown nodes,
the localization problem of the unknown nodes is transformed
into a square-based localization problem. The anchor bea-
con node first needs to send M pieces of information in
the sensing area, and the signals of each unknown node are
received, and then respectively send the signal strength values
of the respective unknown nodes received to the fusion center.
Finally, the fusion center uses the target algorithm based
on compressive sensing to locate the nodes, determine the
specific position of the unknown nodes in the grids, and
then combine the centroid algorithm to further reduce the
localization error. In addition, since the localization algorithm
adopts the compressive sensing algorithm and locates the
energy between nodes, the mobile anchor node can locate all
unknown nodes by receiving a small amount of information,
so the path of the mobile node selects the basic RWP model
and LAYERED-SCAN model.

The actual underwater environment is more complicated
than the ideal environment. The theoretical model is relatively
complicated due to the absorption of the water medium itself,
the expansion of the acoustic wave front and various uneven
scattering in the water. According to the law of acoustic
wave propagation under water, the main influence of energy
attenuation of target signal in the process of underwater
acoustic channel transmission comes from the following four
aspects [37]: 1) geometric extension of the wavefront; 2) Loss
of acoustic waves on the surface of the water and the bottom
of the water; 3) absorb; 4) scattering. The first two of them
cause an exponential decay of the acoustic intensity, which
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FIGURE 1. RWP model.

FIGURE 2. LAYERED-SCAN model.

is the attenuation loss. According to the empirical formula of
underwater acoustic propagation, in a homogeneous medium,
the change of the intensity of the target radiation signal is
expressed by the TL (Transmission Loss), which quantita-
tively describes the attenuation relationship of the acoustic
intensity as a function of distance:

TL(d, f ) = n× 10 lg d + αf · d × 10−3 (1)

The first term of equation (1) represents the spread loss
of underwater acoustic signals in water, the second term
is the absorption loss (caused by absorption and scattering
factors), and n is the mode of acoustic wave propagation. d
is the Euclidean distance between the target and the node.
The acoustic absorption coefficient αf satisfies the following
empirical formula, where f is expressed in kHz.

αf =
0.102f 2

1+ f 2
+

40.7f 2

4100+ f 2
+ 2.75× 10−4f 2 (2)

Although the underwater environment is more compli-
cated, the attenuation of acoustic energy is affected by the
density, salinity and temperature of the water medium, but
in a small water range (when the transmission distance is less
than 2km), the attenuation loss term of the target signal during
the underwater acoustic channel transmission is the determi-
nant of the signal energy loss. The absorption and scattering
factors have very little influence on the acoustic energy atten-
uation, which can be ignored. That is, in the propagation loss

TL(d, f ) = n× 10 lg d + αf · d × 10−3, the absorption loss
term αf · d × 10−3 can be omitted, there is:

TL(d, f ) ≈ n× 10 lg d (3)

n is the way the target sound wave propagates underwater.
For example, when n = 0, the acoustic wave propagates in the
far-field plane wave, n = 1 is the cylindrical wave, and n = 2
is the spherical wave. Since this paper is based on the near-
distance underwater acoustic signal intensity transmission
model, the far-field plane wave condition is not applicable
when n = 0, and the cylinder wave is assumed to be sim-
ulated. Based on this principle, we can give a simplified
channel model, given by equation (3):

RSS(d) = Pt − 10 lg d (4)

where RSS(d) is the received signal strength, which is the
distance between the cube where the signal source is located
and the cubewhere the receiver is located, andPt is the source
signal strength. In our model, we made a few assumptions:

1) The monitoring environment is a 3-D static underwater
area, and the movement of unknown sensor nodes is within
an acceptable range, which can be ignored.

2) The nodes are independent of each other, and all
unknown nodes are in the area to be monitored.

3) There is only one sensor node in each small cube, and
the sensor nodes have the same communication radius.

IV. INTRODUCTION TO LOCALIZATION ALGORITHM
In the localization model based on compressive sensing,
assuming that the sequence number of the cube of the k -th
(1 ≤ k ≤ K ) unknown node is n, the position of K unknown
nodes in the cubic lattice can be represented by an matrix
µN×K of N × K as follows:

µ = [µ1, · · ·, µk , · · ·, µK ] (5)

where µk is a vector of N × 1 except that elemen µk (n)

Y = 89µ+ ε (6)

where YM×K is the observed value, 9N×N is a sparse trans-
form base, which can be obtained by signal transmission
attenuation model 9i,j = RSS

(
di,j
)
, indicating the received

signal strength from the i-th cube to the j-th cube. 8N×M is
an observation matrix whose i-th (1 ≤ i ≤ M ) row element
represents the ordinal number of the cubic lattice in which
the mobile beacon node i-th sends the message. If it is 1 in
the cube, otherwise it is 0, that is, each element of its row has
only one element value of 1, the others are all 0, ε is Gaussian
white noise.

Since the sparse transformation matrix and the observation
matrix in the model are related, the resulting observation dic-
tionary cannot satisfy the RIP properties. In order to solve this
problem, Feng et al. [26] proposed a sparse target localization
algorithm based on Orth. The algorithm first performs orth-
based pre-processing on the signal, and then performs signal
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reconstruction and target localization. Signal pre-processing
is as follows:

Y ′ = TY = T (89µ+ ε) (7)

where T represents a linear transform operator. Let the obser-
vation dictionary A = 89 then there is T = QA∗, where (·)∗

represents the inversion of the matrix, Q = orth(AT )T . orth
(·) represents a matrix column orthogonal transform, and (·)T

represents a matrix transpose operator.
After pre-processing, the new sensing matrix is an orthog-

onal transformation matrix, which satisfies the RIP property,
but affects the sparseness of the newly reconstructed signal,
so it affects the performance of the localization result. There-
fore, we have done amatrix decomposition on the observation
dictionary to improve the positioning performance.

First, QR-decomposition is performed on the observation
dictionary a as shown in the following equation:

AT = QR (8)

where Q is a standard orthogonal matrix of N × N and R is
an upper triangular matrix of N ×M . Therefore, the matrix
A can be expressed as:

A = RTQT (9)

where RT = [SM×M0M×(N−M)], and S is the lower triangular
array. Multiply the left side of A by an inverse matrix S∗, and
obtain the matrix U as follows:

U = S∗A = S∗RTQT = [IM×M0M×(N−M )]QT (10)

where IM×M is aM -order unit matrix, it can be seen from the
above formula that the matrix formed by the first M rows of
QT is the matrix U . Therefore, the row vectors of U are unit
vectors and are orthogonal to each other.

Then, the matrix U is unitized, and the new observation
dictionary B is determined to be:

B = U


1/ ‖U1‖

0
...

0

0
1/ ‖U2‖

...

0

· · ·

· · ·

. . .

· · ·

0
0
...

1/ ‖UN‖

 (11)

Finally, we can obtain a new observation Y ′:

Y ′ = B


‖U1‖

0
...

0

0
‖U2‖
...

0

· · ·

· · ·

. . .

· · ·

0
0
...

‖UN‖

µ = Bµ′ (12)

It can be seen from the above formula: µ′ is obtained by
multiplying the left side of µ by a diagonal matrix. Since µ is
sparse, µ′ is also sparse, and µ′ is the same as µ sparseness.
And because the matrix B fully satisfies the RIP properties,
therefore, according to the theory of compressive sensing, µ′

can be accurately reconstructed. Further, the original signal
µ can be obtained by the following formula:

µ =


1/ ‖U1‖

0
...

0

0
1/ ‖U2‖

...

0

· · ·

· · ·

. . .

· · ·

0
0
...

1/ ‖UN‖

µ′ (13)

Since the actual unknown nodes are randomly distributed,
that is, the unknown nodes are not necessarily at the center
of the grid, the original signal reconstructed by CS is only an
approximate sparse signal. In order to reduce the localization
error, this paper uses a weighted centroid algorithm to esti-
mate the position of the nodes.
First, the position vector µk of the k-th unknown node is

normalized to obtain the weight ωk (n) of the n-th cube unit
for estimating the coordinates of the k-th unknown node.

ωk (n) = µk (n)/
N∑
n=1

µk (n) (14)

Then, the weighted centroid algorithm [38], [39] is used to
estimate the position of the k-th unknown node:

(xk , yk ) =
N∑
n=1

ωk (n)(xn, yn) (15)

where (xk , yk ) represents the estimated position of the k-th
unknown node and (xn, yn) represents the coordinates of the
center of the n-th cube.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. SELECTION OF ANCHOR NUMBER
In the entire monitoring area, as the anchor node moves,
the number of anchor points perceived by unknown nodes
continues to increase. It is known in [40]: when M is greater
than or equal to O(C · k · µ2

· (logN )4), the algorithm can
accurately reconstruct the original signal, where k is the
sparsity of the signal andC is a constant,µ =

√
N max

i,j

∣∣8i,j
∣∣.

In other words, the unknown nodes does not need to perceive
all anchor nodes for localization. In order to select the appro-
priate number of anchor points, this paper first abstracts the
monitoring area as a single unknown node location problem.
The sensing area to bemonitored is set to a cubic area of 100m
× 100 m× 100m, which is divided into 1000 cubic cells
of 10m × 10m × 10m. M sensors are randomly distributed,
and the energy transmitted by the node is−40dB.We increase
the number of sensors and get a rough curve of the localiza-
tion error as a function of the number of sensors.

As can be seen from the figure 3, with the number of
sensors increases, the localization errors of both algorithms
are decreasing. When the number of sensors reaches 25,
the localization error no longer changes significantly, which
reflects to some extent the minimum number of sensors
needed to locate an unknown node, that is, the number of
times the mobile anchor node information is received. There-
fore, in practice, for the sake of insurance, any unknown
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FIGURE 3. The relationship between localization performance and the
number of sensors.

FIGURE 4. Node localization diagram.

node can select its energy relationship with the 30 beacon
nodes with the largest energy to locate it, which ensures the
localization accuracy under the premise of reducing energy
consumption and localization time.

B. NODE LOCALIZATION
Figure 4 is a schematic diagram showing node localization
of the two algorithms under the condition that the unknown
node K is 6, the mobile anchor node selects the RWP model,
and the unknown node senses the anchor node number M
is 30. The green dot indicates the original signal, the red
diamond indicates the signal position obtained based on the
QR-decomposition algorithm, and the blue triangle indicates
the signal position obtained based on the orth algorithm.
From the figure we can find that the localization algorithm
based on QR-decomposition is obviously better than the orth
localization algorithm. This is because the sparse target local-
ization algorithm based on orth pre-processing guarantees
that the observation dictionary satisfies the RIP property, but
the sparsity of the signal is affected in the orth pre-processing
process. The sparse target localization algorithm based on
QR-decomposition guarantees that the observation dictionary
satisfies the RIP property without affecting the sparsity of
the signal. Therefore, the localization performance of the
sparse target location algorithm based on QR-decomposition
is superior to the sparse target localization algorithm based
on orth pre-processing.

FIGURE 5. Relationship between localization performance and SNR.

C. INFLUENCE OF NOISE ON LOCALIZATION
PERFORMANCE
In the 100m × 100m × 100m cube monitoring area, it is
divided into 1000 small cubic cells of 10m × 10m × 10m,
and 40 unknown sensor nodes are randomly distributed.
The moving path of the anchor node are LAYERED-SCAN
and RWP. The moving speed is 10m/s, the anchor node is
broadcasted once every 1 second, and the broadcast signal
is broadcasted 1000 times. When the anchor node sensed
by the unknown node exceeds 30 times, 30 of the signals
with the strongest signal strength are selected for localization.
When less than 30 times, the actual number of times is used
for localization. Figure 5 shows the variation of localization
error with increasing SNR between the two algorithms in two
paths. As can be seen from the figure, as the SNR increases,
the localization error is decreasing. Under the same path
conditions, the QR-based algorithm has better localization
performance than the Orth algorithm, and the QR algorithm
with layered scan path has the smallest localization error
when the SNR is fixed. In addition, we can also find that
for the same algorithm, the localization performance of the
LAYERED-SCAN path is much better than the RWP path.
This is mainly because the anchor node can traverse to the
center of each small cube along the LAYERED-SCAN path,
which fits perfectly with our algorithm model, assuming that
the anchor node are distributed in the unit cube. When the
RWP path is adopted, the anchor node is not necessarily at
the center of the unit cell, and because of the randomness,
the information of the anchor node in the monitoring area is
unevenly distributed, which may result in the unknown node
in some areas not being well positioned.

D. INFLUENCE OF THE NUMBER OF UNKNOWN NODES
ON THE LOCALIZATION PERFORMANCE
Figure 6 is a localization performance diagram of differ-
ent algorithms and paths as the number of unknown nodes
changes when the SNR is 30 dB. We still find that the
QR-decomposition algorithm with LAYERED-SCAN path
has the smallest localization error when the number of
unknown nodes are constant, and the Orth algorithm
with RWP path has the worst localization performance.
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FIGURE 6. Relationship between localization performance and the
number of unknown nodes.

In addition, we will find that as the number of unknown
nodes increases, the localization error will increase to some
extent. This is because the unknown nodes are used as the
reconstructed original signal in this paper. In the theory of
compressive sensing, the more sparse the signal, the better
the reconstruction performance. Therefore, as the number of
unknown nodes increases, the sparseness of the equivalent
signal decreases, and the localization error increases.

VI. CONCLUSION
In this paper, the UASNs anchor node localization problem
is transformed into a dimensionality vector reconstruction
problem with a sparsity of 1. For the problem that the obser-
vation dictionary does not satisfy the RIP property, a new
node localization algorithm based on QR-decomposition is
proposed. The algorithm obtains a new observation dictio-
nary through QR-decomposition, which fully satisfies the
RIP properties. Different from the Orth-based sparse tar-
get localization algorithm, the signal pre-processing of the
proposed algorithm does not affect the sparseness of the
original signal, thus ensuring the performance of the com-
pressive sensing reconstruction algorithm and improving
the performance of the multi-nodes localization algorithm.
In addition, this paper applies the algorithm to anchor node
localization, introducing RWP path model and LAYERED-
SCAN path model. The experimental results show that the
node localization algorithm based on QR-decomposition can
be well applied to mobile anchor node localization. When
the mobile anchor node follows the LAYERED-SCAN path
model, it achieves a better localization effect. Compared with
the RWP path model, it has better noise immunity, adaptive
and lower localization accuracy. Therefore, the algorithm
does not require complex planning of the mobile anchor
node path. Since the node localization based on the energy
between the nodes avoids the influence of the underwater
environment on the trilateration localization, and does not
need to consider the collinear problem of the mobile anchor
node. The LAYERED-SCAN path model can be well applied
to the localization model of the algorithm, avoiding the local-
ization time consumption and energy consumption caused by

the complicated path. The algorithm reduces network cost
while achieving better localization performance, so it is a
promising thing to apply the algorithm to UASNs localiza-
tion. Of course, whether there is a better moving path and
the localization performance of the algorithm in an obstacle
environment is a subject worthy of our study.
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