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ABSTRACT Radiotherapy is a major treatment for head and neck cancer. Currently, computed tomog-
raphy (CT) is utilized to delineate the target area and make radiotherapy plans. Compared with CT
images, magnetic resonance (MR) images have excellent soft tissue contrast, which can distinguish normal
surrounding tissues. It is necessary to register MR and CT images since it helps physicists to improve the
accuracy of radiotherapy plans. Most of the current registrations require manual intervention to select regions
of interest, which increases the workload of doctors and the time of registration to a certain extent. In this
paper, an automatic registration method is proposed to delineate the regions of interest. Herein, surface
meshes are extracted from the CT and MR images and utilized to perform the surface matching, then the
regions of interest are extracted automatically by calculating the overlapped regions between the surface
mesh of the surface-aligned MR images and CT images. Furthermore, a multi-level resolution registration
mechanism is utilized to improve the registration speed. Surface matching is performed using low-resolution
images to obtain transformation parameters as initial parameters for rigid registration followed by deformable
registration. The experiments demonstrate that our proposed method performs better in the registration speed
and accuracy over the conventional methods of delineating regions of interest manually.

INDEX TERMS Automatic extraction, image registration, mutual information, surface matching.

I. INTRODUCTION
Nasopharyngeal carcinoma is a common head and neck can-
cer in southern China. In 2017, there were 5,609 new cases
of nasopharyngeal carcinoma. Radiation therapy is one of the
most commonly used treatments nasopharyngeal carcinoma.
The goal of radiation therapy is to adequately illuminate the
tumor area while reducing the dose of surrounding healthy
tissues. Most modern strategies, such as image guided radi-
ation therapy (IGRT) and intensity modulated radiation ther-
apy (IMRT), can accurately deliver high doses to the clinical
target volume (CTV), providing a progressive approach to
more focused treatment; here CTV is based on computed

The associate editor coordinating the review of this manuscript and
approving it for publication was György Eigner.

tomography (CT) [1], [2]. However, CT images cannot pro-
vide high contrast between healthy tissue and tumor tissue
so that the healthy tissue surrounding the tumor is likely to
be exposed to excessive radiation. In contrast to CT images,
magnetic resonance (MR) images provide a rich soft tissue
contrast so that can be taken as a reference for head and neck
tumor delineation [3]–[6]. In order to improve the effective-
ness of radiotherapy, it is necessary for radiotherapy plans to
be combined with MR images.

In general, there are three methods for MR-based radio-
therapy planning. One is based on MR-only planning,
which is proposed to generate pseudo-CT from MR 3D
images [7], [8], providing electron density information, but
pseudo CT and CT images are still fundamentally dif-
ferent. one is based on image synthesis for registration,
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which proposed using a structured random forest and auto-
context model to synthesize CT from MR and synthesize
MR from CT. However, it may not be so accurate in the
learning process, resulting in differences between synthesis
CT and CT in essence. Another is a registration method
to register MR images in planned CT scans in order to
improve targeting accuracy [9], [10]. By using registra-
tion method, the first step is to extract regions of inter-
est (ROI). McLaughlin et al. [11] proved that using mutual
information (MI) within the ROI on both MR and CT images
can reduce the effects of anatomical deformation. Their
method obtains good results, while requires manual inter-
vention to select the ROI. Some recent works with good
registration results can be referred to [12], [13]. All these
methods select the ROI manually, which makes the registra-
tion operation more complicated. At the same time, the size
of the ROI is of randomness because of manual delineation,
which may result in unreliable registration results in practice.

To avoid position shift of the patient, a trick of rigid reg-
istration [14], [15] is then introduced by letting the patient
wear a specific fixed mask and headrest during acquisition
of CT and MR images. However, imperfections of the fixed
mask result in non-rigid deformation between the CT and
MR images; a solution of this problem found in [16], [17]
is by deformable registration between CT and MR images in
head and neck region. In [16] the alignment of 4 patients was
evaluated using unspecified anatomic landmarks, and in [17]
the registration parameters were optimized with respect to the
best accuracy obtained over the entire dataset of 12 patients.
The key point in these works is that it is necessary to extract
the ROI for whether rigid or deformable registration.

To further better the case, in this paper, we propose an auto-
mated registration method to extract the ROI automatically.
In particular, surface meshes are extracted from the CT and
MR images and is utilized to perform surface matching for
aligning MR with CT spatially. In addition, multi-resolution
rigid registration is adopted to improve the performance of
MR-CT image registrations in head and neck region. Fur-
thermore, to decrease non-rigid deformation in the head and
neck region, the deformable registration is utilized after rigid
registration. Our strategy can improve the registration accu-
racy, simplify the registration procedure, and reduce the error
caused by manual intervention.

The rest of this paper is organized as follows. The proposed
method is introduced in Section II, followed by extensive
experiments conducted in Section III. In Section IV, the result
and discussion are analyzed. Finally, we conclude this paper
in Section V.

II. METHOD
Our automatic registrationmethod consists of three parts. The
first part is surface matching that includes images prepro-
cessing, surface meshes extraction, obtaining the overlapped
region by matching, and getting the ROI. The second part
is rigid and deformable registration that utilizes the ROI

FIGURE 1. The flowchart for automatically extracting ROI. Surface
matching is performed on surface meshes ML

CT and ML
MR , ML

MR is
resampled by using the matching matrix to obtain ML

MRT , and the

overlapping area of ML
CT and ML

MRT is calculated to obtain the ROI.

generated in the first part as the input of the rigid registration
followed by the deformable registration. The third part is to
fuse the CT images and registered MR images.

A. SURFACE MATCHING
Given a set of CT images VCT of head and neck region of
a patient and the corresponding MR images VMR, the goal of
the surface matching is to generate the ROI of the CT andMR
images. It mainly includes downsampling images, extracting
the surface meshes for matching, and resampling the meshes
and images by matching matrix; see Fig. 1.

1) IMAGE PREPROCESSING
Before registration, the images VCT and VMR are smoothed
with anisotropic diffusion filters, which was based on the heat
conduction (diffusion) equation. In higher gradient regions,
such as region boundaries, the diffusion effects to become
less noticeable, thus remains sharp of the region boundaries
of the image. In order to speed up the registration process,
the smoothed images are then downsampled by a factor of 2F

along the x-axis and y-axis, while the z-axis direction remains
unchanged. Let V↓CT and V↓MR be the downsampled versions
of VCT and VMR, respectively.
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FIGURE 2. Get overlapped regions: (a) The green, blue, and red one
repres- ent T , S, and ST , respectively; (b) Overlapped regions of two
point sets. The green, red one are the To and ST

o , respectively.

2) EXTRACT SURFACE MESHES
Surface meshes MCT and MMR are extracted from the V↓CT
and V↓MR with Marching Cubes (MC) algorithm [18], which
creates triangle models of constant density surfaces from
3D medical data and uses a divide-and-conquer approach to
locate the surface in a logical cube created from eight pixels;
four each from two adjacent slices to generate inter-slice
connectivity. However, MCT and MMR may have multiple
connected object regions, so the connected region of the
largest number of points is taken to be the accurate surface
meshes ML

CT and ML
MR.

3) GET OVERLAPPED REGIONS
It should be noticed that the parts scanned with CT and MR
may not be identical. So the corresponding images along z
direction may have uneven slices, while the two sets of slices
may have different resolutions along the x and y directions.
Therefore, to match surface meshes is to fundamentally find
the counterparts of the both sets of slices.

Here, we use Iterative Closest Point (ICP) algorithm [19]
to realize surface matching on ML

CT and ML
MR via

TMR→CT ,ML
MRT

, ε = ICP(ML
CT ,M

L
MR), (1)

where TMR→CT is the matrix that transforms the counterpart
of ML

MR to that of ML
CT , M

L
MRT

= TMR→CT (ML
MR), and

ε represents the error of surface matching. Take VMRT =
TMR→CT (VMR) and denote T , S, and ST as the sets of vertices
of the surface meshes ML

CT , M
L
MR, and M

L
MRT

, respectively.
After matching, the point set T is assembled with overlaps of
the point set ST ; see Fig. 2 (a).

Let C be the minimum cuboid containing both T and ST .
Now we divide C into n equal cubes c1, c2, . . . , cn of side
length P = 2ε. Denote by VC the volume of C . Then,
the number of the small cubes can be performed as n =
VC/P3. We keep all the small cubes of indices J ⊂ {1, . . . , n}
that satisfy ci ∩ T 6= ∅ and ci ∩ ST 6= ∅, for i ∈ J .
Then, the overlapped regions of T and ST are obtained as
To = ∪i∈J ci ∩ T , and STo = ∪i∈J ci ∩ S

T ; see Fig. 2 (b).

4) GET THE CORRESPONDING OVERLAPPED
REGIONS IN 3D IMAGES
In order to obtain the corresponding image region based on
To and STo , surface reconstruction is performed on STo to get

FIGURE 3. The surface model intersects the plane to get the intersection.
(a), (b) are the intersection of the surface reconstruction model of the MR
images, CT images, respectively.

MSTo
[20], then, VMRT is downsampled to the same resolution

as V↓CT assumed as V↓MRT , with the pixel spacing dx, dy, and
dz in the x-axis, y-axis, and z-axis directions. Let Nz be the
number of slices, and Nx and Ny be the length and width of
a slice.

FIGURE 4. Binary image of the ROI: (a) Set the pixel value of the
intersection to 255. (b) Connect the intersection end to end. (c) Fill holes.

Consider the plane Gz passing (0, 0, z) and perpendicular
to the z-axis V↓MRT , repeat the operation for V

↓

CT , the result is
shown in Fig. 3. Then take the intersection of Gz with MSTo

,
set the pixel values of the intersection points as 255. Connect
these points sequentially and fill the hole. The resulted slice
can be regarded as a binary image Iz; see Fig. 4 (c).
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FIGURE 5. Get the ROI of the original image. (a) Upsample Iz and then
use the closing operation in morphology to process. (b) Upsampled
Iz corresponds to the same resolution CT image. (c) Obtain the final ROI.

Now upsample Iz to the same resolution as the corre-
sponding slice in VCT and perform the closing operation in
morphology to eliminate the edge glitches of Iz. It results
in a hole-filling image Bz of smooth contours as illustrated
in Fig. 5 (a), which can be also regarded as a set that indicates
the domain of the ROI in slice Vz. The segment of Vz on Bz is
illustrated in Fig.5 (c).

Repeat the above operations for all the slices, and finally
obtain the ROI

V R
CT = ∪1≤z≤NzBz of VCT . (2)

Similarly, we can obtain the ROI V R
MR of VMRT by follow-

ing the above operations.

B. RIGID AND DEFORMABLE REGISTRATION

FIGURE 6. Workflow for the MR to CT images registration.

In order to speed up the registration process, lower resolu-
tion images V R

CT and V R
MR are utilized as the input of the rigid

registration in Fig. 6 and TMR→CT is utilized as the initial
parameters. The rigid registration can be denoted as

TMRR→CTR ,V
R
MR′ = T1(V R

CT ,V
R
MR,TMR→CT ), (3)

where T1 is the operation of rigid registration, TMRR→CTR

is the matrix that transforms V R
MR to V R

CT , and V R
MR′ =

TMRR→CTR (V
R
MR). Let V

1
MRT
= TMRR→CTR (VMRT ).

However, there are still non-rigid deformation in the head
and neck, so V R

MR′ is taken as the input of deformable regis-
tration, it can be denoted as

DMRR→CTR ,V
R
MR′′ = T2(V R

CT ,V
R
MR′ ), (4)

where T2 is the operation of deformable registra-
tion, DMRR→CTR deforms V R

MR′ to V R
CT , and V R

MR′′ =

DMRR→CTR (V
R
MR′ ). Let V

2
MRT
= DMRR→CTR (V

1
MRT

).

C. IMAGE FUSION
After registration, image fusion is performed on VCT and
V 2
MRT

to improve the image quality and evaluate the regis-
tration effect. For suitable weights a and b, the fused image is

VF = aVCT + bV 2
MRT

. (5)

III. EXPERIMENTS
A. DATASET
In order to evaluate the proposed method, we collected
CT and MR image data of 50 nasopharyngeal carcinoma
patients, including 6,100 CT images and 5,000 MR images.
In our experiments, the CT1c and T1c images are chosen
for registration.

More specifically, CT and MR images are acquired from
the same patients with nasopharyngeal carcinoma for radio-
therapy planning. CT images are acquired using a Siemens
scanner (SomatomDefinition as Germany), with 512×512×
122 voxels of 0.977 × 0.977 × 3 mm3, and MR images are
acquired using PhilipsMedical Systems, with 720×720×100
voxels of 0.694×0.694×3mm3. In addition, all patients wear
a patient-specific immobilization mask and headrest during
the acquisition under the treatment position.

B. EVALUATION CRITERIA
The evaluation criteria include the mutual information (MI)
[21]–[23] that ranges from 0 to 1; higher value ofMI indicates
better performance. In particular, through gradient descent
optimization method of regular step, MI value is calculated
per iteration. When the step size is less than the preset mini-
mum step size, or the number of iterations is greater than the
preset maximum iteration number, the iteration is stopped.
Then, MI value is recorded.

C. INFLUENCE OF DIFFERENT RESOLUTIONS
In order to evaluate the influence of different resolutions on
our method, images are downsampled by a factor 2F . Here,
the same optimizer parameters are set (the learning rate λL =
0.2; the minimum step size of the optimizer λS = 0.001) and
images are downsampled in the x-axis and y-axis direction,
and the z-axis direction remains unchanged in the compari-
son experiments. In addition, the center transform module is
utilized to initialize the transform center and translation, and
the center of rotation is approximately (0,−257.1, 8.4), and
the initial translation is approximately (−16, 176,−32).

As shown in Table 1, low resolution images are used in
the proposed approach reducing the computation time, and
improving the accuracy of registration in some extent. When
images are downsampled by 1/8(F = 3), MIMean is much
higher than that by 1/2(F = 1). When images are down-
sampled by 1/16(F = 4), MIMean is only about 0.5, because
images lose too much information.

D. EFFECTIVENESS OF OUR PROPOSED APPROACH
In order to verify the effectiveness of our method, we set
up three sets of experiments based on different resolutions.
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TABLE 1. Experimental results utilizing the proposed method with different samplings. MIMean and TimeMean are the average of MI and time for
50 patients. MIStdev and TimeStdev are the standard deviation of MI and time for 50 patients.

TABLE 2. Experimental results using the proposed method compared with Mattes mutual information(Mattes.MI) without delineating ROI and with
delineating ROI manually.

FIGURE 7. Image fusion of registered MR and CT image. (a) Original CT image. (b) Original MR image. (c) Registered MR image. (d) Fusion of the
original CT image and registered MR image.

The first group uses the Mattes mutual information with
delineating the ROI manually for registration. The second
group uses Mattes mutual information without delineating
the ROI. The third group is to automatically delineate the
ROI using the method shown in Fig.1, and then performs

the rigid and deformable registrations shown in equations (3)
and (4) based on the ROI. The results of the experiment shown
in Table 2.

It can be seen from Table 2 that without delineating ROI,
MIMean is only about 0.4 since that in a limited number of
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iterations, iterating through the entire image to calculate the
MI value is time consuming and does not get the optimal
value of MI. Table 2 shows that manual delineation of ROI
is a little slower than our method, but it cannot process large
amounts of data, and may cause some noise when delineat-
ing it manually. MIstdev of the manual delineation ROI is
larger than that of the automatic delineation ROI using our
method, because the size of the delineation area manually
is different which affects the registration result. In summary,
our method is more accurate than other methods in the reg-
istration of the test data. In addition, the time-consuming of
our method is reduce in a certain extent and the registration
can be made more flexible since ROI can be automatically
extracted, which reduces the impact of human operations on
registration.

IV. RESULT VISUALIZATION
As shown in Fig. 7, one slice of CT images is sampled
in Fig. 7 (a), and its corresponding slice of MR images
in Fig. 7 (b). The registered MR image is in Fig. 7 (c), and
the fusion result from the registeredMR image and CT image
is in Fig. 7 (d). It can be seen from Fig. 7 (a) and Fig. 7 (c)
that the registered MR image is basically consistent with the
CT image. In Fig. 7 (d), the registered MR image and CT
image can be fused to compensate for the poor contrast of
soft tissue to CT image. In particular, in the first row of
images, CT image is obvious for the tooth profile, but the
peripheral soft tissue is very blurred. In registeredMR image,
although the tooth profile cannot be seen, the peripheral
soft tissue is very rich. By fusing CT and registered MR
image, the tooth profile and peripheral soft tissue can be seen
simultaneously. In the second row of images, CT image is
obvious for the periorbital bones, but lacking of soft tissue
information. In registered MR image, no bone information
can be seen, but the soft tissue around the orbit can be clearly
seen. By fusing CT and registered MR image, the bone and
soft tissue parts of the orbit can be seen simultaneously, which
demonstrate the effectiveness of our proposed method.

V. CONCLUSIONS AND FUTURE WORK
In this study, a method is proposed for extracting the ROI
to register MR and CT images automatically. Our method
performs surface matching on the surface mesh, which
spatially align MR images with CT images and obtain
the overlapped region of the two images as the input of the
registration. The key innovation is to automatically extract the
ROI reducing artificial interference. At the same time, multi-
resolution registration is utilized. First, low-resolution images
are utilized for registration, and then transform parame-
ters are obtained to initialize the registration parameters of
high-resolution images. The result demonstrates that our
method can improve the accuracy of registration and reduce
the registration time in a certain extent. Although our algo-
rithm has better results in the head and neck region, it has
not been tested in other parts of the body, such as the lungs

and abdomen. In the future, we will be devoted to register
other parts with the proposed method and will try to use deep
learning for head and neck registration, because it does not
need to extract the ROI when registering, which simplifies
the registration process, but it needs a lot of head and neck
data to train to get better results, this will be our work in the
next step.
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