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ABSTRACT In this paper, a general parametric controller design method is presented for two-
dimensional (2D) linear discrete systems described by the Fornasini–Marchesini second model. This
method is based on the discriminant systems of polynomial and Hurwitz theorem. By the fractional linear
transformation, the problem of stability analysis for 2D systems can be turned to a new problem whether the
polynomials are Hurwitz stable. Thus, the process of stability analysis is changed into a problem whether
some polynomials are positive definite, which can be easily checked by the discriminant system of the
polynomial. It simplifies some existing methods of analyzing stability for 2D systems. Then, we apply the
process proposed stability analysis method to consider the stabilization problem. A parametric controller is
derived. The form of the parametric controller designed by the proposed method is simple, the parameters
of the controller law can be fully solved. Finally, we give two numerical examples and a practical example
of a chemical reactor thermal process to show the validity of the proposed methods.

INDEX TERMS Parametric controller, 2D system, the Fornasini-Marchesini second model, the discriminant
system of polynomial.

I. INTRODUCTION
Two dimensional systems are a class of dynamic systems
which propagate information in two independent direc-
tions. This propagation feature makes 2D system’s dynamics
depend upon two independent variables [1]. That make the
analysis of 2D systems much more complicated and diffi-
cult than common one-dimensional (1D) systems, especially
for uncertain 2D system [1], [2]. Recently, the heightened
research interest in the study of 2D systems can be attributed
to its widespread applications in processing 2D sampled
data, such as seismic data, photogrammetric data [1], [3]–[6].
And 2D systems under different scenarios have been widely
studied in [7]–[9]. Various types of 2D state space models
are proposed [3], [4], [10]. The Fornasini-Marchesini second
model studied in this paper is first introduced in the research
of 2D image processing [4], [10].

The associate editor coordinating the review of this manuscript and
approving it for publication was Guangdeng Zong.

The Fornasini-Marchesini second model for 2D system is
as follow:

x(k + 1, l + 1) = A1x(k, l + 1)+ A2x(k + 1, l), (1)

where A1,A2 are n × n real constant matrices, x(k, l) is the
state vector at (k, l).

The stability properties of 2D systems described by the
Fornasini-Marchesini second model have been investigated
extensively [11]–[16]. Precise definition of the asymptotic
stability of the 2D system was first made in [4]. The
Fornasini-Marchesini second model (1) is asymptotically sta-
ble if and only if

det(In − z1A1 − z2A2) 6= 0, (z1, z2) ∈ Ū , (2)

where Ū = {(z1, z2) : z1, z2 ∈ C | |z1| ≤ 1, |z2| ≤ 1},
In denotes the n × n identity matrix and ’det’ stands for
determinant [4], [5].

Unfortunately, condition (2) is not numerically tractable
since they should be checked at infinitely many points over
the range of (z1, z2) [17], [18]. It is difficult to determine the
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stability of system (1) by directly analyzing condition (2).
To overcome the difficulty, Galkowski and Ito et al. provide
brief linear matrix inequality (LMI) conditions for condition
(2) to hold [19]–[21]. These methods in terms of LMI made
the effort to convert condition (2) into feasibility tests of LMIs
via Lyapunov’s stability theory [18], [21], [22].

Note that most LMI conditions in [11], [12], [21], [22]
are only sufficient and far from necessity. These methods
use Lyapunov functions of restricted form [21] and thus
satisfactory results have not been obtained on the exactness
of the resulting LMI-based conditions [18]. And the analysis
conditions are computationally demanding since the size and
the number of scalar variables of the proposed LMIs grow
rapidly with respect to the problem size [18], [21], [23], [24].
Although Ebihara et al. report the necessary and sufficient
LMIs conditions for the 2D state space model in [18].
However, the proposed conditions in [18] are computation-
ally more demanding than the only sufficient conditions
in [20], [22]. In particular, the LMI conditions in [20], [22]
is promising for state-feedback controller design, whereas the
necessary and sufficient conditions in [18] are not suitable for
controller synthesis [18].

As for the issue of controller design, many fruitful theoreti-
cal methods have been extensively studied in many fields [9],
[20], [22], [25]–[28]. Among these methods, the significant
results of various practical 1D systems on the control design
have been reported in [25]–[28]. And the stabilization issue
of 2D systems have been derived in [9], [20], [22]. Note that
the methods based on LMIs [9], [20], [22] are derived for
2D systems that can only derive a control law of the specified
system. In practical engineering, the designed controller is
complex and difficult to achieve. In this paper, by the frac-
tional linear transformation and applying the Hurwitz The-
orem, some polynomial inequality conditions are obtained.
Afterwards, the process of stability analysis is changed into
a problem whether some polynomials are positive definite,
which can be easily checked by the discriminant system
method of polynomial [29]. Then, we apply the process pro-
posed stability analysis method to consider the stabilization
problem. Thus, the interval values of the parameters can be
obtained and the controller meeting the requirements can be
achieved.

Due to the method of the controller designed in this paper
gives a complete range of parameters of control law, as long as
the controller law is selected in this range when the controller
is designed in practical engineering, the system would be
stabilized. It is more applicable than the existing methods
based on LMI. This kind of method can be widely used
in practice. On the other hand, multiple control laws can
be selected in a region to optimize the performances of the
system. Putting it in another way, different control laws can
be selected according to the requirements of the controller
and the application scenarios.

Many achievements in [30]–[32] on the parametric con-
troller design have been made, they both focus on 1D sys-
tems. However, to our best knowledge, no work considering

the design of parametric controller for 2D system has been
done up to now. In this paper, a parametric controller design
method is proposed for 2D linear discrete systems described
by the Fornasini-Marchesini second model. The form of the
parametric controller designed by the proposed method is
simple. The parameters of the controller law can be fully
solved and the controller does not change the position of the
equilibrium point of the system.

It should be noted that the existing methods based on LMI
are conservative. They are only sufficient and need external
parameters to complete the stability test. And the LMI meth-
ods that only give a control law, which does not satisfy the
actual demand of production process. Thus, for the problem
of stability analysis and controller design of 2D systems,
there is still room for further improvement. Motivated by the
previous aspects, we present an improved method such that
the proposed conservatism can be reduced. We change the
problem of the analysis stability into a new problem whether
some polynomials are positive definite which is easily to
test. And we expand the process proposed stability analysis
method to solve the stabilization problem. The conditions
in this note are necessary and sufficient. In stark contrast
with the existing results [18], [20], [22], [33], the condi-
tions of analysis stability and stabilization in this note are
non-conservative and have less computational burden. Com-
pared to the LMI methods that only give a control law, this
method has a further field of practical application and a better
result to solve the stability and stabilization problems of the
systems.

The main contributions of this paper are as follows.
Firstly, we propose necessary and sufficient conditions for
the asymptotic stability of 2D systems. And we give an
exact analysis method with simple and efficient algebraic
computations. We transform the problem of stability analysis
for 2D systems to a new problem of checking whether some
polynomials are Hurwitz stable employing linear fraction
transformation. And a concise algorithm to show the process
of examining the stability of the considered system is given.
Secondly, via the analysis of the stability problem, the stabi-
lization problem is tackled and the desired conditions and a
concise algorithm to show the processing of working out the
stability regions of the parametric control law are presented.
A parametric controller is derived. Finally, we compare the
main results in this note with the results stated in [18], [33]
to show the effectiveness of proposed approach in examples.
And the proposed stabilization criterion in this paper can
be applied to a practical example, the thermal processes in
chemical reactors, to demonstrate the effectiveness.

The organization of the rest of this paper is as follows.
Section II presents the main results of stability analysis,
state feedback parametric stabilization of 2D model system.
Besides, two algorithms are presented to show the processes
of analyzing stability and getting the stability parameter
regions of the control law respectively. In Section III, the cor-
responding obtained results are used to thermal processes in
chemical reactors and two numerical examples to show the
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validity of the proposed method. Conclusions are drawn in
Section IV.
Notations: R denotes the real number set. C denotes the

complex number set. C+ denotes the set of complex numbers
with non-negative real part. In denotes identity matrix of n×
n dimension. j denotes imaginary unit. And ’det’ stands for
determinant. P ≡ {z ∈ C | |z| = 1}, D ≡ {z ∈ C | |z| ≤ 1}.

II. MAIN RESULTS
A. STABILITY ANALYSIS
The aim of this section is to change condition (2) into new
condition that is necessary and sufficient by linear fraction
transformation and present an algorithm for analyzing stabil-
ity of the system under consideration.

It is known [17] that condition (2) is equivalent to the
following criteria.

M (z1, 0) 6= 0, z1 ∈ D, (3)

and

M (z1, z2) 6= 0, z1 ∈ P, z2 ∈ D, (4)

where M (z1, z2) = det(In − z1A1 − z2A2).
The above-mentioned stability criteria (Conditions (3)

and (4)) are not numerically tractable since they should
be checked at infinitely many points over the range of
(z1, z2) [18]. It is difficult to check the stability of the consid-
ered 2D system by directly analyzing criteria. In the following
section, conditions (3) and (4) are changed into some new
conditions.

Making the change of variable in M (z1, z2),

z1 =
1+ js
1− js

,

where s ∈ R. By the transformation, the variable z1, z1 ∈ P is
changed into s, s ∈ R.
And we denote F(s, z2) as follows:

F(s, z2) = (1− js)mM (
1+ js
1− js

, z2), (5)

where m and n are the degrees of F(s, z2) in s and z2,
respectively.
Remark 1: F(s, z2) can be regarded as a complex coeffi-

cient polynomial in z2 ∈ D with a real parameter s. Thus, it’s
convenient for further processing to consider a variable z2 of
F(s, z2) instead of studying two variables z1, z2 ofM (z1, z2).

From (5), it’s easy to know that condition (4) is equiva-
lent to

M (−1, z2) 6= 0, z2 ∈ D, (6)

and

F(s, z2) 6= 0, s ∈ R, z2 ∈ D. (7)

Remark 2: Under the linear fraction transformation z1 =
1+js
1−js , z1 = −1 map into s = ∞. Condition (6) is required for
the equivalence.

From the above discussion, condition (2) is equivalent to
the conditions (3), (6) and (7). If the polynomial M (z1, z2)
satisfies these conditions, then the system (1) is stable.

Now we only need to consider conditions (3), (6) and (7).
We continue to analyze and simplify them. By the fractional
linear transformations, conditions (3) and (6) can be turned
to a problem whether the real polynomial is Hurwitz stable,
which can be easily checked by the discriminant systems of
polynomial [29]. Some details are as follows.

Making the change of variables z1 in (3) and z2 in (6),

z1 =
1− x
1+ x

,

z2 =
1− y
1+ y

.

We can obtain, respectively

Y1(x, 0) = (1+ x)mM (
1− x
1+ x

, 0), (8)

and

Y2(−1, y) = (1+ y)mM (−1,
1− y
1+ y

). (9)

Let C+ ≡ {z ∈ C | Re(z) ≥ 0}.
By the transformation (8) and (9), the unit disk D in the z1

plane is mapped into C+ in the x plane, and the unit disk D
in the plane z2 is mapped into C+ in the y plane. Therefore,
condition (3) is equivalent to

M (−1, 0) 6= 0, Y1(x, 0) 6= 0, x ∈ C+, (10)

and condition (6) is equivalent to

M (−1,−1) 6= 0, Y2(−1, y) 6= 0, y ∈ C+. (11)

Remark 3: Under the linear fraction transformation z1 =
1−x
1+x and z2 =

1−y
1+y ,z1 = −1 and z2 = −1 map into x = ∞

and y = ∞, respectively. M (−1, 0) 6= 0 in condition (10)
and M (−1,−1) 6= 0 in condition (11) are required.
Y1(x, 0), Y2(−1, y) are real coefficient polynomial in x

and y, respectively. So Y1(x, 0) 6= 0, x ∈ C+ in condition (10)
and Y2(−1, y) 6= 0, y ∈ C+ in condition (11) can be
regard as the following Hurwitz criterion of real coefficient
polynomials.
Lemma 1 [34]: Let f (τ ) = anτn + an−1τn−1 + . . . +

a0(a0 > 0) be a real coefficient polynomial, where ai, i =
0, . . . , n are real. The n × n Hurwitz matrix is constructed
from f (τ ), as follow:

Hf =


an−1 an−3 an−5 · · · 0
an an−2 an−4 · · · 0
0 an−1 an−3 · · · 0
0 an an−2 · · · 0
. . . . . . . . . · · · . . .

0 0 0 · · · a0

,

we denote the order principal minor determinant of Hf by
4(f )k , k = 1, 2 . . . , n, respectively. The necessary and suffi-
cient condition for the roots’ real part of f (τ ) to be negative
is 4(f )k > 0, k = 1, 2 . . . , n.
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Similar to the process of condition (3) and (6), we process
condition (7).

Making the change of variable in (7),

z2 =
1− z
1+ z

,

we obtain

Y3 = (1+ z)nF(s,
1− z
1+ z

). (12)

By the transformation (12), the unit disk D in the z2 plane
is mapped into C+ in the z plane. Therefore, the condition (7)
is equivalent to

F(s,−1) 6= 0, s ∈ R,

Y3(s, z) 6= 0, s ∈ R, z ∈ C+. (13)

Remark 4: Under the linear fraction transformation z2 =
1−z
1+z , z2 = −1 maps into z = ∞. F(s,−1) 6= 0, s ∈ R in
condition (13) is also required.

If Y3(s, z) can be considered as a complex coefficient poly-
nomial in z with a real parameter s, that is as follow.

Y3(s, z) =
n∑
i=0

ai(s)zi, (14)

Then the condition (13) can be regard as the following
Hurwitz criterion of complex coefficient polynomials.
Lemma 2 [34]: Let f (τ ) be a complex coefficient polyno-

mial and satisfy f (jτ ) = bnτn+bn−1τn−1+. . .+b0+j(anτn+
an−1τn−1 + . . . + a0), an 6= 0, where ai and bi, i = 0, . . . n
are real. The 2n×2nHurwitz matrix is constructed from f (τ ),
as follow:

Hf =



an an−1 an−2 · · · 0
bn bn−1 bn−2 · · · 0
0 an an−1 · · · 0
0 bn bn−1 · · · 0
· · · · · · · · · · · · · · ·

0 0 0 · · · a0
0 0 0 · · · b0


,

we denote the 2kth order principal minor determinant of Hf
by 42k (f ), k = 1, 2 . . . , n, respectively. If 4(f )2k 6= 0,
the necessary and sufficient condition for the roots’ real part
of f (τ ) to be negative is 4(f )2k > 0, k = 1, 2 . . . , n.
From the above discussion, we change condition (2) to

new conditions (10), (11) and (13). Thus, we can obtain the
following theorem.
Theorem 1: The 2D system (1) is asymptotically stable if

and only if the following conditions are satisfied,
1) M (−1, 0) 6= 0, Y1(x, 0) 6= 0, x ∈ C+.
2) M (−1,−1) 6= 0, Y2(−1, y) 6= 0, y ∈ C+.
3) F(s,−1) 6= 0, Y3(s, z) 6= 0, s ∈ R, z ∈ C+.
Remark 5: It’s necessary to state briefly that the considered

2D system described by state space model doesn’t have any
nonessential singularity of the second kind in this paper.
So there are no the items as the use of bilinear applications
which disadvantages for 2D systems described by transfer
function arewell known in [35]. Thenwe can obtain the above
theorem.

Conditions 1) and 2) of Theorem 1 are the same as the prob-
lems whether the real polynomials are Hurwitz stable, and
condition 3) of Theorem 1 is the same as Hurwitz criterion of
complex coefficient polynomial. They can be easily checked
by the discriminant systems of polynomial [29]. Then we can
restate Theorem 1 as follows.
Theorem 2: System (1) is asymptotically stable if and only

if the following conditions are satisfied,
1) M (−1, 0) 6= 0, 4(Y1)k > 0, k = 1, 2 . . . , n.
2) M (−1,−1) 6= 0, 4(Y2)k > 0, k = 1, 2 . . . , n.
3) F(s,−1) 6= 0, 4(Y3)2k > 0, k = 1, 2 . . . , n, s ∈ R.
Proof: Conditions Y1(x, 0) 6= 0, x ∈ C+ and

Y2(−1, y) 6= 0, y ∈ C+ can be regarded as the real poly-
nomials Y1(x, 0),Y2(−1, y) are Hurwitz stable. According
to Lemma 1, the problems whether the real polynomials
Y1(x, 0),Y2(−1, y) are Hurwitz stable can be solved by con-
ditions 4(Y1)k > 0, k = 1, 2 . . . , n and 4(Y2)k > 0, k =
1, 2 . . . , n, respectively. Similarly, condition Y3(s, z) 6= 0, s ∈
R, z ∈ C+ is equivalent to that the complex polynomial
Y3(s, z) is Hurwitz stable. According to Lemma 2, Y3(s, z)
is Hurwitz stable means the condition 4(Y3)2k > 0, k =
1, 2 . . . , n, s ∈ R. Thus, we can restate Theorem 1 as The-
orem 2. This proof is completed.

Based on the above results, by the fractional linear transfor-
mation, the problem of testing the stability is changed into a
new problemwhether some polynomials are positive definite,
which can be easily checked by the discriminant systems of
polynomial.

Then we can get the following algorithm for testing stabil-
ity of 2D systems described by the Fornasini-Marchesini sec-
ond model:

Algorithm 1 2DStabilityTest
InputM (z1, z2) = det(In− z1A1− z2A2) of a 2D systems
described by the Fornasini-Marchesin second model.
Output True if system is stable. False otherwise.
Step 1. Calculate the polynomial Y1(x, 0), and use
Lemma 1 to check M (−1, 0) 6= 0,4(Y1)k > 0, k =
1, 2 . . . , n. If not satisfied, output False.
Step 2. Calculate the polynomial Y2(−1, y), and use
Lemma 1 to check M (−1,−1) 6= 0,4(Y2)k > 0, k =
1, 2 . . . , n. If not satisfied, output False.
Step 3. Calculate the complex polynomial Y3(s, z), and
mark it as Y3(z) = qnzn + qn−1zn−1 + . . .+ q0 + j(pnzn +
pn−1zn−1 + . . .+ p0) where qi and pi, i = 0, . . . n are real
coefficient polynomials in s. Check whether F(s,−1) 6=
0,4(Y3)2k > 0, k = 1, 2 . . . , n, s ∈ R is satisfied with
Lemma 2. If not satisfied, output False.
Step 4. Output True.

This section shows that the process of the stability anal-
ysis for 2D systems. More specifically, we first present a
transformation from the stability conditions (3) and (4) given
in [17] to new conditions of Theorem 1. The conditions
of Theorem 1 are equipment to the problems whether the
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polynomials are Hurwitz stable. Then Theorem 1 is rewritten
as Theorem 2. Finally, an efficient algorithm for analyzing
stability of 2D linear discrete system is given.

Because the designed controller is complex and difficult
to achieve in practical control systems. In order to better
apply controller to the practical engineering, next subsection
we provide the method to design a parametric controller.
This method of the controller designed in this paper gives
a complete range of parameters of control law. As long as
the controller law is selected in this range based on the
actual situation when the controller is performed in practical
engineering, the system would be stabilized.

B. PARAMETRIC CONTROLLER DESIGN
In this section, we shall deal with the problem of state
feedback stabilization problem for the systems by Hurwitz
theorem. More precisely, we are interested in finding a state
feedback such that the closed-loop system with the control
law is asymptotically stable. In this situation, the system is
said to be stabilize via state feedback for the system as follow.

x(k + 1, l + 1) = A1x(k, l + 1)+ A2x(k + 1, l)

+B1u(k, l + 1)+ B2u(k + 1, l) (15)

The aim of solving the stabilization problem is to design a
controller with form.

u(k, l) = Kx(k, l), (16)

where K is the controller gain containing uncertain parame-
ters with appropriate dimensions. Such that the corresponding
closed-loop system with control law is given by

x(i+ 1, j+ 1) = (A1 + B1K)x(i, j+ 1)

+(A2 + B2K)x(i+ 1, j) (17)

For the stabilization problem we follow steps similar to the
process of solving the stability and robust Stability problem.

Denote

M̃ (z1, z2) = det(In − z1(A1 + B1K))− z2(A2 + B2K)),

(z1, z2) ∈ U ,

F̃(s, z2) = (1− js)mM̃ (
1+ js
1− js

, z2), s ∈ R, z2 ∈ D,

Ỹ1(z, 0) = (1+ z)mM̃ (
1− z
1+ z

, 0), z ∈ C+,

Ỹ2(−1, z) = (1+ z)nM̃ (−1,
1− z
1+ z

), z ∈ C+,

Ỹ3(s, z) = (1+ z)nF̃(s,
1− z
1+ z

), s ∈ R, z ∈ C+.

where m and n are the degree of M̃ (z1, z2) in z1 and z2,
respectively.

The conditions of Theorem 2 can be established to test the
stability of the system (17) and it is reported as the following
Theorem.
Theorem 3: System (15) is stabilizable via state feedback if

and only if there exists K such that the following conditions
are satisfied,

1) M̃ (−1, 0) 6= 0, 1(Ỹ1)k > 0, k = 1, 2 . . . , n.
2) M̃ (−1,−1) 6= 0, 1(Ỹ2)k > 0, k = 1, 2 . . . , n.
3) F̃(s,−1) 6= 0, 1(Ỹ3)2k > 0, k = 1, 2 . . . , n.
Proof: By replacing A1 and A2 in the system (1) with

A1 + B1K and A2 + B2K in the system (17), respectively.
Therefore, it follows from Theorem 2 that the system (17) is
stable, which concludes the proof.

Then we can get the following algorithm for getting the
regions of the parametric control law to finish the con-
troller design of 2D systems described by the Fornasini-
Marchesini second model:

Algorithm 2 Parametric Controller Design for Finding the
Stability Parameter Regions in Parameter Space of the
Designed Controller

Input: M̃ (z1, z2) = det(In − z1(A1 + B1K)) − z2(A2 +
B2K)) of a 2D systems described by the Fornasini-
Marchesini second model
Output: The stability parameter regions of the parametric
control gain K.
Step 1. Firstly, calculate the polynomial Ỹ1(x, 0). Then
solve the conditions M̃ (−1, 0) 6= 0,4(Ỹ1)k > 0, k =
1, 2 . . . , n to get one of the controller parameter regions
of K.
Step 2. Firstly, calculate the polynomial Ỹ2(−1, y). Then
solve the conditions M̃ (−1,−1) 6= 0,4(Ỹ2)k > 0, k =
1, 2 . . . , n to get one of the controller parameter regions
of K.
Step 3. Firstly, calculate the complex polynomial Ỹ3(s, z),
then we can get Y3(jz) = qnzn + qn−1zn−1 + . . . + q0 +
j(pnzn + pn−1zn−1 + . . .+ p0)
where qi and pi, i = 0, . . . n are real coefficient poly-
nomials in s. Finally solve the conditions the conditions
F(s,−1) 6= 0, and4(Y3)2k > 0, k = 1, 2 . . . , n, s ∈ R to
get one of the controller parameter regions of K.
Step 4. For satisfying three conditions in step 2-3,
we obtain the final results of the stability parameter regions
of the control gain K.
Step 5. Output the parameters region of control gain K.
Finish the parametric controller design.

III. NUMERICAL EXAMPLES AND APPLICATION
In this section, we shall illustrate the results via the following
examples. All computations were performed with Maple.
Example 1: Let us consider the 2D system described by (1)
where

A1 =


0.5 0.5 0.4 1.1
0.1 −0.1 0.6 0.1
0 0 0 0
0 0 0 0

,

A2 =


0 0 0 0
0 0 0 0
−0.1 −0.1 −0.2 −0.5
−0.2 0.6 −0.1 −0.7

.
44074 VOLUME 7, 2019
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Now we follow the Algorithm 1 to analyze the stability of
this system.

Based on this system, we firstly get the polyno-
mial M (z1, z2) = det(In − z1A1 − z2A2) = 1 +
0.9z2 + 0.09z22 − 0.4z1 − 0.1z1z2 + 0.194z1z22 − 0.1z21−
0.086z2z21 − 0.688z21z

2
2.

Step 1: Calculate the polynomial Y1(x, 0), as follow

Y1 = (1+ x)2M (
1− x
1+ x

, 0) = 1.3x2 + 2.2x + 0.5.

And use Lemma 1 to check whether the conditions
M (−1, 0) 6= 0,4(Y1)k > 0, k = 1, 2 are satisfied,
as follow

M (−1, 0) = 1.3 6= 0,

HY1 =

2.2 0

1.3 0.5

 .
We can get the principal minor determinant 4(Y1)k >

0, k = 1, 2. From Hurwitz criterion, we know that the
polynomial Y1 is Hurwitz stable, hence condition 1) of The-
orem 2 is satisfied.
Step 2: Calculate the polynomial Y2(−1, y), as follow

Y2= (1+ y)2M (−1,
1− y
1+ y

)=0.2132y2+2.9456y+2.0412.

And use Lemma 1 to check whether the conditions
M (−1,−1) 6= 0,4(Y2)k > 0, k = 1, 2 are satisfied,
as follow

M (−1,−1) = 0.2131 6= 0,

HY2 =

2.9456 0

0.2132 2.0412

 .
We can get the principal minor determinant 4(Y2)k >

0, k = 1, 2. From Hurwitz criterion, we know that the
polynomial Y2 is Hurwitz stable, hence condition 2) of The-
orem 2 is satisfied.
Step 3: Calculate the complex polynomial Y3(s, z)

Y3(z) = (1− js)2(1+ z)2F(
1+ js
1− js

,
1− z
1+ z

)

= 1.4292− 2.0412s2 − 0.2132s2z2 − 2.9456s2z

+0.0012z2 + 0.5696z+ j(−4.4896s− 0.5456sz2

−3.7648sz)

Then, we can know

Y3(jz) = (0.2132s2 − 0.0012)z2 + 3.7648sz+ 1.4292

−2.0412s2 + j(0.5456sz2 + 0.5696)z− 4.4896s),

Check whether F(s,−1) 6= 0,4(Y3)2k > 0, k = 1, 2, s ∈
R, are satisfied, as follow

F(s,−1) = −0.2132s2 − 0.5456js+ 0.0012 6= 0, s ∈ R

According to Lemma 2, we can draw HY3 as follow:

HY3 =


0.5456s −2.9456s2 + 0.5696
0.2132s2 − 0.0012 3.7648s
0 0.5456s
0 0.2132s2 − 0.0012

4.4896s 0
1.4292− 2.0412s2 0
−2.9456s2 + 0.5696 4.4896
3.7648s 1.4292− 2.0412s2


According toHY3 , we obtain the 2kth order principal minor

determinant as follows:

1(Y3)2=(0.62800192s2+1.92887890043452)

(s2+0.000354361282009991),

1(Y3)4=(3.775898421s2+11.1139321489633)

(s2+1.99546879286784)(s2+0.435300446686488)

(s2+0.000576384669062484)

We can get4(Y3)2k > 0, k = 1, 2, s ∈ R. From Lemma 2,
the polynomial Y3 is Hurwitz stable. Condition 3) of Theo-
rem 2 is satisfied. Thus, it can be concluded that the system
is stable by Theorem 2.
Remark 6: The example given above has shown the

proposed approach for stability analysis for 2D sys-
tems described by the Fornasini-Marchesini second model.
We have shown all the steps to test stability of 2D system in
order to understand the testing process more clearly. All the
results in the process can be easily calculated by Maple. The
conditions in this note are necessary and sufficient. Because
they are equivalent to condition (2). Note that the proposed
method is different from the methods based on LMI that need
external parameters to complete the stability test and most
are only sufficient. We change the problem of the analysis
stability into a new problem whether some polynomials are
positive definite that is easily to test. For the same system in
example 1, the testing stability process of the method in [18]
is to find an exact value γ and check whether it satisfies con-
dition. It needs 32.66s to complete computation. In [20], [22],
the paper also show that it takes 2.26s get a conservative
result in term of the LMI condition stated in [18]. While
in this example it only takes 0.12s using the new necessary
and sufficient condition. Obviously, the method in this note
is computationally less demanding than the methods in [18],
[20], [22]. This method is more efficient than some existing
methods.
Remark 7: Note that example 1 is given to show the pro-

posed method is more efficient than the existing methods.
However, the matrixes A1 and A2 have no generality as the
zero rows in example 1. A general example is given to show
the proposed method has generality as follows.
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Example 2: Consider the 2D system with

A1 =

 47
100

3
25

−
1
5

9
20

, A2 =

 47
100

−
3
400

33
1000

477
1000

.
Wegive the same steps as example 1 to analyze the stability

of the general 2D system as follow:

M (z1, z2) = det(In − z1A1 − z2A2)

= 1−
23
25
z1 −

947
1000

z2 +
471
2000

z21 +
43023
100000

z1z2

+
3591
16000

z22

Step 1: Calculate the polynomial Y1(x, 0), as follow

Y1(x, 0) =
4311
2000

x2 +
1529
1000

x +
631
2000

6= 0, x ∈ C+,

And use Lemma 1 to check whether the conditions
M (−1, 0) 6= 0,4(Y1)k > 0, k = 1, 2 are satisfied, as follow

M (−1, 0) =
4311
2000

6= 0,

HY1 =

1529
1000

0
4311
2000

631
2000

 .
We can get the principal minor determinant 4(Y2)k >

0, k = 1, 2. From Hurwitz criterion, we know that the
polynomial Y2 is Hurwitz stable, hence condition 2) of The-
orem 2 is satisfied.
Step 2: Calculate the polynomial Y2(−1, y), as follow

Y2(−1, y)=
1502867
400000

y2+
30897
8000

y+
401083
400000

6=0, y ∈ C+,

Use Lemma 1 to check whether the conditions
M (−1,−1) 6= 0,4(Y2)k > 0, k = 1, 2 are satisfied,
as follow

M (−1,−1) =
1502867
400000

6= 0,

HY2 =

 30897
8000

0
1502867
400000

401083
400000

.
We can get the principal minor determinant 4(Y2)k >

0, k = 1, 2. From Hurwitz criterion, we know that the
polynomial Y2 is Hurwitz stable, hence condition 2) of The-
orem 2 is satisfied.
Step 3: Calculate the complex polynomial Y3(s, z)

Y3(s, z) = (−
1502867
400000

s2+
422683
400000

)z2+(
1457
8000
−
30897
8000

s2)z

+
9267
400000

−
401083
400000

s2

+j(
1239
320

sz2 −
8641
4000

sz−
671
8000

s)

6= 0, s ∈ R, z ∈ C+,

Then, we can get Y3(s, jz), For easier further processing,
we simplify it as follows:

Y3(s, jz)

= (1502867s2 − 422683)z2+864100sz−401083s2

+9267+ j(1548750sz2−1544850s2+72850z− 33550s)

Check whether F(s,−1) 6= 0,4(Y3)2k > 0, k =
1, 2, s ∈ R, are satisfied, as follow

F(s,−1) = − 1502867
400000 s

2
−

1239
320 js+

422683
400000 6= 0, s ∈ R,

According to Lemma 2, we can draw HY3 as follow:

HY3=


1548750s −1544850s2 + 72850
1502867s2 − 422683 864100s
1548750s
0 1502867s2 − 422683

−33550s 0
−401083s2 + 9267 0
−1544850s2 + 72850 −33550s
864100s −401083s2 + 9267


According toHY3 , we obtain the 2kth order principal minor

determinant as follows:

1(Y3)2
= 46434081699s4+11516183630s2 + 615849131

1(Y3)4
= 575423280651102285249s8−1100634564266144764s6

+4986976676201550214s4−23663941762124284s2

+8315206667895489.

We can get 4(Y3)2k > 0, k = 1, 2, s ∈ R. From
Lemma 2, the polynomial Y3 is Hurwitz stable. Condition 3)
of Theorem 2 is satisfied. Thus, it can be concluded that the
system is stable by Theorem 2. The obtained result is inline
with that in [33]. The proposed method are general to test the
2D system stability.
Example 3: Consider the thermal processes in chemical

reactors. Heat exchangers and pipe furnaces can be expressed
as the following partial differential equation [36], [37].

∂T (x, t)
∂x

= −
∂T (x, t)
∂t

− ∂T (x, t)+ U (t), (18)

where ∂T (x, t) is usually the temperature at x ∈ [0, xf ]
and t ∈ [0,∞], and U (t) is a given force function.
Denote xT (i, j) = [T T (i − 1, j),T T (i, j)], where T (i, j) =
T (i4x, j4t), then the system (18) can be converted into a
2D FMII model with

A1=

[
0 0
ξ1 ξ2

]
; A2=

[
0 1
0 0

]
; B1=

[
0
ρ

]
; B2=

[
0
1

]
. (19)

where ξ1 = 1− ξ2 − ρ, ξ2 =
4t
4x and ρ = 4t .

Let 4t = 1 and ξ2 = 1.
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FIGURE 1. The stability parameter region of the parametric control gain K.

Now we follow Theorem 3 to analyze the stabilization of
this system.

Let K = [k1 k2].
Based on the 2D model (19), we firstly get the polynomial

M̃ (z1, z2) = det(In − z1(A1 + B1K))− z2(A2 + B2K))

= k2z1z2 − k1z2 − k2z1 + z1z2 − z1 + 1.

Step 1: Calculate the polynomial Ỹ1(x, 0), as follow

Ỹ1(x, 0) = 2z+ k2z− k2 6= 0, z ∈ C+.

By considering the condition M̃ (−1, 0) = 2+ k2 6= 0 and
solving the condition4(Ỹ1)k > 0, k = 1 based on Lemma 1,
we can get

k2
2+ k2

< 0. (20)

Step 2: Calculate the polynomial Ỹ2(−1, y), as follow

Ỹ2(−1, y) = k1z+ 2k2z− k1 + 3z+ 1 6= 0, z ∈ C+.

Then, to consider the condition M̃ (−1,−1) = 3 + 2k2 +
k1 6= 0 and based on Lemma 1 to solve the condition
4(Ỹ2)k > 0, k = 1, we can get

k1 − 1
k1 + 2k2 + 3

< 0. (21)

Step 3: Calculate the complex polynomial Ỹ3(s, z),
as follow

Ỹ3(s, z) = −k1z+ 2k2 + 2k2z+ k1 + z− 1

+j(k1sz+ 2k2sz− k1s+ 3sz+ s 6= 0, z ∈ C+.

Then we can obtain

Ỹ3(s, jz) = −k1sz− 2k2sz− 3sz+ k1 − 1

+j(−k1s− k1z+ 2k2z+ s+ z).

FIGURE 2. This is state space response of the system x1(i, j ) before
stabilization.

FIGURE 3. This is state space response of the system x2(i, j ) before
stabilization.

Finally, solve the conditions
F̃(s,−1) = j(−k1 − 2k2 − 3)s+ k1 − 2k2 − 1 6= 0, s ∈ R,
and 4(Y3)2k > 0, k = 1, 2, s ∈ R.

From the above conditions, we can get{
−(k1 − 1)(k1 − 2k2 − 1) > 0,
−(k1 − 1)(k1 + 2k2 + 3) > 0

(22)

From (20)(21) and (22), we have the solutions of the all the
control laws satisfying the controller requirements as follows:

k1 < 1,
k1 − 2k2 − 1 > 0
k1 + 2k2 + 3 > 0

(23)

Thus, we finish the design of parametric controller. The
trajectories of the two state variables for the system (19) with
control input u(i, j) = 0 are shown in Figure 2 and Figure 3.
The system (18) isn’t stable before stabilization.

Next, let u(i, j) 6= 0 be imposed by controlledK as in (16),
by solving conditions of Theorem 3 for getting the regions
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FIGURE 4. This is state space response of the system x1(i, j ) after
stabilization, when K=[0 -1].

FIGURE 5. This is state space response of the system x2(i, j ) after
stabilization, when K=[0 -1].

FIGURE 6. This is state space response of the system x1(i, j ) after
stabilization, when K=[0.5 -1.5].

of control gain K, we get the region (23) of the parametric
control law shown in Figure 1.

According to the results shown in Figure 1, let
K=[0 -1], and the trajectories of the two state variables

FIGURE 7. This is state space response of the system x2(i, j ) after
stabilization, when K=[0.5 -1.5].

of the stabilization system (19) are shown in Figure 4 and
Figure 5. It’s obvious that the system (18) is stable after sta-
bilization whenK=[0 -1]. What’s more, letK=[0.5 -1.5]
of the regions, and the trajectories of the two state variables
of the stabilization system (19) are shown in Figure 6 and
Figure 7. It is shown that the system (18) is also stable after
stabilization when K=[0.5 -1.5] .
Remark 8: This example illustrates some facts. First,

before applying the controller to the system, it isn’t stable.
By designing a parametric controller, the system is stable.
We can get controller parameter space satisfying system
requests. Different control laws can be selected according to
the requirements of the controller and the practical applica-
tion scenarios.

IV. CONCLUSIONS
This paper has proposed a new stability analysis method
of 2D discrete linear systems described by the Fornasini-
Marchesini second model. By the fractional linear transfor-
mation, the problem of testing the stability is changed into a
new problem whether some polynomials are Hurwitz stable,
which can be easily checked by the discriminant systems
of polynomial. More specifically, the problem of testing the
stability is changed into a problem whether some polyno-
mials are positive definite. Then this paper considers state
feedback parametric controller design of 2D systems. To sum
up, a necessary and sufficient condition which can guarantee
the asymptotic stability of 2D systems, is derived in term
of discriminant system method, and formulas can be given
for the parametric controller design. Two concise algorithms
are presented to show the processes of analyzing stability
and getting the stability parameter regions of the control law
to solve the 2D system stability and stabilization problems
respectively. The effectiveness of the proposed stability has
been illustrated by numerical examples. The computational
burden is reduced. And we give a more practical example to
consider the stabilization problem and show the advantages
of parametric controller we derived. Finally, it should be
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point out that the results in this paper are also appropriate for
iterative learning control. These are subjects of our further
investigation in the future.
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