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ABSTRACT Manifold alignment is very prevalent in machine learning for extracting common latent
space from multiple datasets. These algorithms generally aim to achieve higher alignment accuracies by
preserving the original structure while ensuring closeness between manifolds. This paper proposes a novel
semi-supervised manifold alignment method that combines, in each manifold, both global and local linear
reconstructions. We preserve a local structure through multiple manifold embedding methods. Moreover,
we view manifold embedding methods as special forms of principal component analysis (PCA) and, thus,
present a new penalty weight PCA approach to preserving a noise-free global structure. Finally, a closed-
form solution is presented in the manifold alignment. This method can concurrently match the pair-wise
correspondence and preserve both the global and local structures of each dataset to obtain a latent low-
dimensional space. The extensive experiments on manifold alignment prove that the proposed method
achieves significantly better alignment results than the comparative methods.

INDEX TERMS Correspondence information, global structure, local structure, manifold alignment, mani-
fold learning, PCA, semi supervise.

I. INTRODUCTION
There is prevalence of high dimensional multiple datasets
with a common latent space in most fields of computer
vision, data mining, and pattern recognition. For example,
texts in different languages of the same document, images
from different angles of the same object, images and texts
from the same document, etc. But aligning these multiple
datasets of different features [1] in high dimensionality is very
challenging. Therefore, transforming these datasets to a latent
low-dimensional space has become urgent [2], [3].

Manifold alignment techniques capable of obtaining a
latent low-dimensional space from multiple datasets [4]–[6]
have been presented. A general objective of these techniques
is to discover manifold structures, build connections and map
all input datasets towards a common latent low-dimension
space. Representative methods include; manifold alignment
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using procrustes analysis (PAMA) [4], semi-supervised man-
ifold alignment (SSMA) [5], local non-linear alignment
(LNA) [7], unsupervised manifold alignment (UNMA) [6],
low rank alignment (LRA) [2], semi-supervised manifold
alignment based on local structure preservation (SLLR) [8],
and manifold alignment preserving global geometry
(PGGMA) [9]. These techniques are usually performed at the
level of features or instances. At the feature-level [9], map-
ping functions are normally computed from the input datasets
to obtain the latent space. While embedding coordinates of
the input data points are computed at instance-level [4].

In pursuit of most manifold alignment methods to pre-
serve the original structure of each dataset, manifold embed-
ding methods [10]–[12] are used. These manifold embedding
methods have shown successes in obtaining low-dimensional
spaces [13], [14] in various fields where data points lie on
single manifolds. Methods such as Sparse PCA [15] and
Linear Discriminant Analysis (LDA) [16] preserve global
structures. Whereas Joint Graph Sparse Coding (JGSC) [17],
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Neighborhood Preserving Embedding (NPE) [18], Lapla-
cian Eigenmaps (LE) [19], and Locality Preserving Projec-
tions (LPP) [20] are local structure preserving techniques.
In contrast, Zhu et al. [21] presented a method to preserve
local and global structures for feature selection. Despite the
contributions of the existing manifold alignment methods,
structural preservation receive little attention. But in those
few instances, only local structure is preserved using single
manifold embedding methods [22]. This makes generaliza-
tion across different input datasets or application areas very
challenging.

This paper proposes a semi-supervised framework called
manifold alignment via global and local structures pre-
serving PCA framework (MAPGL). It describes manifold
structure using correspondences between the datasets and the
geodesic distances of the data points. A close-form solution
is presented that optimally maps to a common latent low-
dimensional space with sufficient information of the input
multiple datasets. Specifically, we employ multiple manifold
embedding methods to preserve more refined local structure,
and noise-free global structure preserve through a penalty
weight PCA approach. To present it more clearly, different
from the related algorithms such as SSMA and SSMA-FC,
the contributions of this paper are in fourfold.
(1) We present an optimal evaluation of multiple manifold

embeddingmethods to preserve local structures of each
dataset. This provides more relevant and diverse infor-
mation than the existing approach of using a single
manifold embedding method.

(2) In addition, a new penalty weight PCA is incorpo-
rated to guarantee re-discovery and retention of vital
data points in preserving global structures of each
dataset. This addresses the problem (example, in cross-
language retrieval) where global geometry of data is
very necessary.

(3) We prove that manifold embedding methods are spe-
cial forms of PCA, and thereby formulate both into a
unified PCA framework. Thus a balance of global and
local structures in MAPGL gives more refined, gener-
alized and stable manifold structure robust to noise.

(4) Finally, through a close-form solution, the connection
between manifolds together with their global and local
manifold structures, are simultaneously optimized to
obtain a common latent low-dimension space with suf-
ficient information of multiple datasets.

Extensive experiments onmanifold alignment demonstrate
the effectiveness of our proposed framework over the compar-
ative PAMA, UNMA, SSMA, and SSMA-FCmethods. In the
rest of this paper, related works are reviewed in Section II.
The proposed methodology is discussed in Section III.
In Section IV we present experimental results and finally
conclude in Section V.

II. RELATED WORK
This section presents a review and recent progress on mani-
fold alignment. Methods of manifold alignment existed over

a decade with the very early approaches being semi super-
vised [5], [23]. These approaches generally achieve latent
spaces through prior knowledge of correspondence informa-
tion between the different datasets. Following, an approach
termed semisupervised alignment of manifolds (SSMA) [5]
was presented. And it considers the preservation of local
geometry together with a match of close embedded coor-
dinates of the points in correspondence. From a different
perspective, an algorithm for preserving global geometry [9]
was presented. This approach achieves better performance
than those preserving local geometry, in areas where global
geometry is a necessity. An algorithm was presented based
on hypergraph [24] to map users across networks. By using
hypergraphs and prior information of correspondence, dif-
ferent network users are mapped to a common latent space.
Also based on hypergraph, a framework termed unified man-
ifold alignment on hypergraph (UMAH) [25] was recently
proposed to map common users across social networks.
Zhou et al. [26] proposed a semi-supervised manifold align-
ment for indoor localization base on graph construction
termed GrassMA, to obtain a radio map with few labeled
fingerprints in a cost-efficient way. The GrassMA approach
shows enhance robustness to environmental changes in
indoor wireless local area network (WLAN).

Zhang et al. [27] presented a comparison of local methods
for face alignment. Based on a given general framework of
local face alignment, they studied and compared three meth-
ods to inform interested readers about new cues. A method
of shared manifold from a probability theory perspective has
been presented by Verbeek [28]. The method has a limitation
of modeling multi-modal conditions, due to its one-to-one
mappings nature. Yang and Crawford [29] presented a mani-
fold alignment method termed, a joint manifold with global-
local preservation (GLMA) for classification of multi tempo-
ral hyper spectral images. GLMA aligns global temporal data
manifolds at the same time incorporates local point relations
to take care of local scale. To handle the problem of aligning
remote sensing images in different modalities, Tuia et al. [30]
presented a semisupervised manifold alignment (SS-MA)
method. SS-MA gathers together samples of the same and
disperses those of unlike class, thus a latent space with like
images is achieved. Stitching of multiview images require
the transfer of color to avoid inconsistencies among views,
lightening conditions, etc for a seamless stitching. Thus,
Qian et al. [31] presented a manifold alignment method.
This method projects both source and target images to a
shared embedding space, preserving both local geometries
and corresponding pixels of the overlapped area.

To handle situations where it is impossible to iden-
tify corresponding pairs, a semi-definite [32] approach
was proposed. This approach formulates a semi-definite
programming problem by considering relative comparison
information between datasets. A Distribution Adaptation
and Manifold Alignment (DAMA) [33] was presented for
the detection of fault in cross-domain. This method obtains
a low-dimensional subspace where shifts in structure and
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distribution are simultaneously reduced by mapping moni-
toring data of source and target domains. Procrustes analysis
was used for alignment of manifold (PAMA) [4]. PAMA is
a typical two-steps approach: it first maps the instances to
lower dimensions using LE [19] or LPP [20], and then the
two embedding spaces are aligned using Procrustes anal-
ysis. A one-step algorithm similar to SSMA but consid-
ers few correspondences (SSMA-FC) [22] was presented,
which builds connections betweenmanifolds differently from
SSMA. SSMA-FC builds connections of all points into the
cost function, rather than only the predetermined correspon-
dences as in SSMA. Also presented is a method of manifold
alignment based on preserving local structure (SLLR) [8].
SLLR obtains a common intrinsic structure through
matching instances of correspondence and preserving local
structure of each manifold. Zhao et al. [34] presented a
framework of multi-view manifold learning with locality
alignment (MVML-LA). This framework can obtain low-
dimensional latent space in supervised and unsupervised
multi-view scenarios. This method enhances discrimina-
tion of the latent space with locality alignment. To deal
with non-linear dimension reduction, Niu and Ma [7] pro-
posed a local non-linear alignment (LNA) from local pull-
back concept and a manifold mathematical characteristic.
LNA presented a mathematical derivation of the relation
between global and local coordinates, which is flexible and
non-linear. To predict software proneness to defects, a multi-
source selection based manifold discriminant alignment [35]
technique was presented. Further, Jing et al. [36] presented
a method to solve the problem of within-project and cross-
project class-imbalance in software defect prediction. Also,
a semi-supervised dictionary learning method [37] has been
presented for both cross-project and within-project semi-
supervised defect predictions.

From the preceding discussion, it is evident that mostmani-
fold alignment approaches rely on graph embedding methods
to enhance their alignment accuracies. The fundamental idea
of graph embedding methods [38], [39] is to construct an
approximate affinity graph to a data manifold and through
preserving the graph structure, learn a low-dimension space
of the data. Representative methods include locality preserv-
ing projections [20], laplacian eigenmap [19] and neighbor-
hood preserving embedding [18].

The proposed MAPGL is a one-step alignment method,
which solves an optimization problem similar to SSMA and
SSMA-FC to obtain a low embedding. On the contrary, this
paper is very different in preserving structures of each dataset:
While the existing methods preserve local structures using a
single graph, MAPGL uses multiple local graphs. In addition,
global structures are preserved using a PCA-like approach
which enhances the robustness in a wide range of application
domains.

III. THE PROPOSED MAPGL METHOD
Consider two available datasets X = [x1, x2, · · · , xm] ∈
<
Nx×m and Y = [y1, y2, · · · , yn] ∈ <Ny×n. Where xi ∈ <Nx

and yj ∈ <Ny are sample column vectors from the original
d-dimensional manifolds x and y. Nx and Ny represent the
numbers of features in the manifolds, while m and n are
the numbers of data points. For problems of semi-supervised
manifold alignment, we consider some sample points as
pairwise correspondences. Without distorting the original
structure, assume m ≤ n or n ≤ m, a pair of correspondence
xi ↔ yj, i = 1, · · · , c exists such that xi and yj possess identi-
cal latent features. The aim of our algorithm is to respectively
map X and Y to embedding coordinates k = [k1, · · · , km] ∈
<
d×m and t = [t1, · · · , tn] ∈ <d×n, or the linear projection

function p ∈ <Nx×d and q ∈ <Ny×d such that the locations of
xi and yj in ki and tj are close together as possible if xi ↔ yj.
And that the resulting embedding pTX and qTY preserve
both global and local geometries of each manifold and the
connections between them.

A. GLOBAL AND LOCAL STRUCTURES PRESERVING
PCA FRAMEWORK
Principal Component Analysis (PCA) [40] is widely utilized
to obtain low dimensional linear representations. We extend
this idea to a penalty weight PCA to preserve noise-free
global geometries. However, in many non-linear instances
local information is very necessary. Thus, we preserve local
geometries using multiple manifold embedding methods, dif-
ferent from the existing methods such as SSMA-FC that use
single methods. We complement the varied representations
(from these methods) to guarantee better local geometries are
preserved in each manifold.

Also, having been inspired partly from the Graph-
Laplacian PCA [41] method, where a Laplacian graph is
combined with the traditional PCA, and from our recent
works [42], [43] on dimension reduction. We thus take for
instance the objective function of LPP as in eqn. (1):

min
w
wTXLXTw s.t. wTXDXTw = 1 (1)

and by adding the Lagrange multiplier to eqn. (1) with further
derivatives, the following eigenvalue solution is obtained:

XLXTw = λ(XDXTw). (2)

We reformulate by multiplying both sides of eqn. (2) by
(D

1
2XT )(XDXT )−1, together with algebraic transformations

to obtain the following:

(D
1
2XT )(XDXT )−1(XLXT )(XDXT )−1(XD

1
2 )

(D
1
2XT )w = λ(D

1
2XT )w. (3)

where (D
1
2XT )(XDXT )−1(XLXT )(XDXT )−1(XD

1
2 ), is a

covariance matrix construction similar to that of PCA. From
this we can see that manifold embedding methods such as
LPP, NPE, and SPP are special forms of PCA that can
preserve local structures.

Therefore, with this unified PCA and manifold embedding
methods, we propose to construct a low-dimensional repre-
sentation of a dataset X with intrinsic local and global struc-
tures, through the following function (4) with a generalized
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eigen-value solution as eqn. (5):

min
uT δu=1

∥∥∥X − Xδ 1
2 uuT δ

1
2

∥∥∥2
F

+α

L∑
g=1

γg

m∑
i,j=1

∥∥ui − uj∥∥22Wg,i,j. (4)α L∑
g=1

γgLg − δ
1
2XXT δ

1
2

 u = λδu. (5)

where, u = XTw ∈ <n refers to a generalization of the
orthogonal vector w ∈ <m that considers data distribution
in orthogonal projection to reconsider missing data points.
α is a tradeoff parameter. δ = diag(δ1, δ2, · · · , δn) is a diag-
onal matrix which injects a penalty weight in each data point
(X1,X2, · · · ,Xn)T to avoid outliers. γg is a regularization
weight coefficient of the gthmanifold. The gth graph laplacian
matrix Lg = Dg − Wg. Dg and Wg are respectively the
gth diagonal and similarity weight matrices obtain from each
of the manifold embedding methods such as LPP, NPE, LE,
LSDA, and SPP.

B. OPTIMIZING MAPGL
Given prior l correspondence information, the similarity
matrixCxy

∈ <
m×n between the twomanifolds is constructed

as:

Cxy
ij =

{
1 If xi is in correspondence with xj(i, j ∈ [1, l])
0 otherwise.

Then applying our idea in eqn. (4), we propose to align
manifolds through a novel PCA framework that preserves
both global and local structures by minimizing the following
cost function:

C(k, t) = µAs + Ax + Ay,

As =
m∑
i=1

n∑
j=1

∥∥ki − tj∥∥22 Cxy
i,j ,

Ax =
∥∥∥X − Xδ 1

2 kkT δ
1
2

∥∥∥2
F

+α

L∑
g=1

γg

m∑
i,j=1

∥∥ki − kj∥∥22W x
g,i,j,

Ay =
∥∥∥Y − Y δ 1

2 ttT δ
1
2

∥∥∥2
F

+φ

L∑
g=1

βg

n∑
i,j=1

∥∥ti − tj∥∥22W y
g,i,j. (6)

The first term As penalizes the difference between the embed-
ding coordinates of X and Y . The last two terms, Ax and
Ay, guarantee that both global and local geometries of each
dataset are preserved in the embedding space. The µ, α, and
φ are tradeoff parameters.

With further deductions and representing eqn. (6) in
matrix form, the correspondence preserving term As can be

rewritten as:

As = tr
(
kDxykT − 2kCxytT + tDyx tT

)
. (7)

where the diagonal matrices Dxy and Dyx , have Dxyii =∑m
j C

xy
ij and Dyxjj =

∑n
j C

yx
ij respectively. Also, the Ax and

Ay can be represented as:

Ax = tr

α L∑
g=1

γg

(
k
(
Dxg −W

x
g

)
kT
)

− tr
(
kδ

1
2XXT δ

1
2 kT

)
Ax = tr

k
α L∑

g=1

γgLxg − δ
1
2XXT δ

1
2

 kT


Ax = tr

(
kGxkT

)
. (8)

and similarly,

Ay = tr
(
tGytT

)
(9)

where Gx =
(
α
∑L

g=1 γgL
x
g − δ

1
2XXT δ

1
2

)
and

Gy =
(
φ
∑L

g=1 βgL
y
g − δ

1
2 YY T δ

1
2

)
Thus the cost function in eqn. (6) can be rewritten as:

C(k, t) = µ.tr
(
kDxykT − 2kCxytT + tDyx tT

)
+ tr

(
kGxkT

)
+ tr

(
tGytT

)
= tr

[
[k t]

[
µDxy + Gx −µCxy

−µCyx µDyx + Gy

] [
kT

tT

]]
= tr

(
FGFT

)
. (10)

where

F = [k t] , G =
[
µDxy + Gx −µCxy

−µCyx µDyx + Gy

]
,

D =

[
µDxy +

∑L
g=1 γgD

x
g 0

0 µDyx +
∑L

g=1 βgD
y
g

]
.

We further impose a constraint to remove arbitrary scaling
factor in the embedding as follows:

argmin
F

C(F)=argmin
F

tr
(
FGFT

)
s.t. FDFT = I . (11)

Then by applying the Lagrange multiplier and taking partial
derivatives, we get the following generalized eigenvalue solu-
tion:

GFT = λDFT . (12)

clearly, by computing the d eigenvectors [F1, · · · ,Fd ] corre-
sponding to the top m and the next n rows of the d smallest
eigenvalues, the embedding coordinates k and t can be gotten.

It can be realized from cost function (10) that, the embed-
ding results k and t are directly computed based on instances
and not their respective mapping functions p and q. But this
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poses a great difficulty in handling new data points. To over-
come this challenge, we impose the constraints k = pTX and
t = qTY on function (10) resulting to the following:

C(p, q) = tr
(
[pTX qTY ] (G)

(
XT p
Y T q

))
. (13)

Let M =
(
X 0
0 Y

)
and v =

(
p
q

)
, we can similarly obtain a

generalized eigenvalue solution as

MGMT v = λMDMT v. (14)

where the linear mapping functions p and q are the topNx and
the next Ny rows of the d smallest eigenvectors v1, · · · , vd .

C. OBTAINING PARAMETERS γ AND β IN MAPGL
This paper proposed a special PCA framework that also pre-
serves local structure through multiple manifold embedding
methods. We discuss how to optimally obtain parameters γ
and β, which represent the weight coefficient vectors for the
multiple manifolds of datasets X and Y , respectively.
For instance-level, given that L manifolds: Lx1 ,L

x
2 , · · · ,L

x
L ,

are used as in eqn. (6). We desire the value of γg which
controls the influence of the gth manifold in the proposed
method. Thus, subject to

∑L
g=1 γg = 1, we add the Lagrange

multiplier with respect to γg as follows:k L∑
g=1

γgLxgk
T

+ λ
1−

L∑
g=1

γg

 . (15)

Additionally, we extend γg to γ rg , where r is a parameter to
control the weights of the multiple manifolds. Due to linear
programming attain optimal solutions at extreme ends i.e.
either γg = 0 or γg = 1, implying only one manifold will
be selected different from our objective of complementing
rich features from multiple manifolds. Thus, we set r > 1
to obtain a balance among multiple manifolds [44]. Taking
partial derivatives of eqn. (15) while set to zero, we obtain
the following:

γg =

 1

tr
(
kLxgkT

)
 1

r−1

∑L
g=1

 1

tr
(
kLxgkT

)
 1

r−1

. (16)

and in the same way for dataset Y we can deduce to:

βg =

(
1

tr
(
tLygtT

)) 1
r−1

∑L
g=1

(
1

tr
(
tLygtT

)) 1
r−1

. (17)

For feature-level, we recall k = pTX and t = qTY .
Similarly we can learn linear mapping functions p and

Algorithm 1 The Proposed MAPGL Method
1: Input: X , Y , and L
2: Output: F or v
3: Parameters: µ, α, φ and r
4: Initialize:

- normalize X and apply PCA to reduce the dimensions
-set γ = (1/L, 1/L, · · · , 1/L)T ,

β = (1/L, 1/L, · · · , 1/L)T

-construct diagonal matrices {Dxg}
L
g=1, {D

y
g}
L
g=1, D

xy

-construct similarity matrices {W x
g }

L
g=1, {W

y
g }
L
g=1, C

xy

-construct {Lxg }
L
g=1, {L

y
g}
L
g=1, and δ.

for Instance-level (I)
5: while loss not converged do
6: construct matrices G, D and M
7: obtain F by eqn. (12)
8: update γ and β according to eqns. (16) and (17)
9: compute loss from eqn. (11)
10: end while

for Feature-level (F)
11: while loss not converged do
12: construct matrices G, D and M
13: obtain v by eqn. (14)
14: update γ and β according to eqns. (18) and (19)
15: compute loss from eqn. (13)
16: end while

q from eqns. (16) and (17) to respectively obtain γg and βg
as follows:

γg =

 1

tr
(
pTXLxgXT p

)
 1

r−1

∑L
g=1

 1

tr
(
pTXLxgXT p

)
 1

r−1

. (18)

βg =

(
1

tr
(
qTYLygY T q

)) 1
r−1

∑L
g=1

(
1

tr
(
qTYLygY T q

)) 1
r−1

. (19)

Algorithm 1 is a summary of the proposed method.

IV. EXPERIMENTS
In this section, we undertake several experiments on mani-
fold alignment to evaluate the performance of our MAPGL
method in comparison with SSMA-FC [22], SSMA [5],
PAMA [4], and UNMA [6] methods. A total of four (4)
real world datasets are used such as, Glutaredoxin protein
PDB-1G7O, COIL-100, UMIST, and WIKI Text-Image.
In our experiments, MAPGL method is performed at feature-
level and instance-level where applicable which we represent
as MAPGL(F) and MAPGL(I) respectively.
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FIGURE 1. Sample images of objects 10, 30, 90 of COIL-100 dataset.

A. DATASETS AND EXPERIMENTAL SETTINGS
The 3D structure of Glutaredoxin protein PDB-1G7O [45]
consists of 21 models of which each model is made up of
215 amino acids. We formed two datasets, X and Y of sizes
3 × 215 using the 1st and the 21st models respectively. The
3D structures of these datasets are illustrated in Fig.2.

The COIL-1001 dataset [46] is maintained by the image
library of Columbia University, consisting 100 color images
of different objects. Each object has 72 images taken from dif-
ferent angles at intervals of 5 degrees over a dark background.
We resize each image to 32 × 32 pixels of 256 grayscale.
We present some images from this dataset in Fig.1.

The UMIST2 face dataset has a total of 564 images con-
tributed by 20 people. Each individual contributed from
19 to 36 images that span from profile to frontal views of
poses. The subjects include race, sex, and appearance. For
our experiments we crop and reshape the images to 112× 92
(i.e., 10304) dimensions. We illustrate part of these images
in Fig. 7.

The Wiki Text-Image3 dataset [47] is a collection of
articles in Wikipedia. This collection is over 29 categories
of 2669 articles continually reviewed. A category label is
assigned to each featured article image and text. Consider-
ing only the top 10 populated articles having at least 150
instances in each class, a corpus is made consisting 2866
multimedia documents: art, biology, geography, history, lit-
erature, media, music, royalty, sport and warfare. There are
two multiple features; the 10-D Latent Dirichlet allocation
base text features and 128-D SIFT Histogram image feature.

The propose MAPGL method has parameters k , µ, α, φ
and r which are set as follows: the size of the
k-nearest-neighbors [48] parameter k is set as 3. The
regularization parameters µ, α, φ are chosen from the
set (0.1, 0.2, · · · , 0.9). The parameter r which controls
the weights of the multiple manifolds is chosen from
(2, 4, · · · , 14). The number of manifold embedding methods
in this paper is 4, i.e. L = 4. For any parameter in the com-
parative algorithms different from above is set as provided by
the authors. The experiments are repeated for each manifold
alignment algorithm through the above ranges and the best
results in each case reported.

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
2http://web.mit.edu/emeyers/www/face_databases.html
3http://www.svcl.ucsd.edu/projects/crossmodal/

B. PROTEIN MANIFOLDS ALIGNMENT
In this subsection, the performance of the proposed MAPGL
algorithm on aligning the 3D structures of model 1 and
model 21 of the Glutaredoxin PDB-1G7O [45] is demon-
strated. In our experiments we further rescaled the datamatrix
of model 1(X ) as X = X/4 to obtain a different scale for test-
ing. We illustrate these models using 3D structures (Fig.2(a)
model 1, Fig.2(b) model 21, Fig.2(c) rescaled model 1 and
model 21.

The proposed MAPGL method together with the compar-
ative manifold alignment methods, PAMA, UNMA, SSMA,
SSMA-FC are use to align the protein datasets, while main-
taining a fix correspondence of 5 amino acids. The alignment
performances of all the methods are plotted in 3D in Fig. 3.
It can be noticed that the proposed MAPGL method demon-
strates much improvement over the rest of the comparative
methods. Semi-supervised PAMA and SSMA perform not
quite well due to their requirements of larger correspondence
sizes. UNMA which does not require prior correspondence,
but due to the preservation of local geometries consider
neighborhood relationships, it is able to outperform PAMA
and SSMA. The SSMA-FCmethod which underperforms the
proposed MAPGL even with the few correspondences is due
to the following: (1) the proposed MAPGL has advantages of
preserving more refined local structures with multiple mani-
folds embedding methods than the SSMA-FC that makes use
of only one manifold embedding method. (2) MAPGL also
preserves global structure in a balance with the local structure
to achieve the final structure, this is absent in SSMA-FC.

C. ROTATED OBJECTS ALIGNMENT
Using the COIL-100 dataset, we test the performance of
the proposed MAPGL on image matching task. We test for
sensitivity of the algorithm with different correspondence
information as well as reduced dimensions. These exper-
iments are done on four selected objects such as 10, 30,
60 and 90, represented in this paper as obj10, etc. Each of
the manifold alignment algorithms including the proposed
and comparative methods are made to align each object
against the rest. Thus we had six (6) sets such as obj10&30,
obj10&60, obj10&90, obj30&60, obj30&90, and obj60&90.
In each of the sets we had three (3) different experiments with
correspondences of c = 2, c = 6, and c = 12. The various
methods MAPGL, PAMA, SSMA, UNMA and SSMA-FC
are separately used to obtain a common embedding space by
projecting both the source (X ) and the target (Y ) datasets.
To match instance xi to yj, we take the absolute difference
of their degrees of rotation such as |θxi − θyj |. And then we
compute the average of the absolute difference over all the
source instances xi, to obtain the matching error of alignment.
Table 1 contains the matching errors of aligning the dif-

ferent objects with correspondences of 2, 6, and 12 by the
six (6) manifold alignment algorithms. From Table 1, it can
be seen that in the overall average, UNMA performed poorly,
but led SSMAand PAMA in obj10&30 and obj10&60 respec-
tively. SSMA, PAMA and SSMA-FC are averagely a little
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FIGURE 2. Structures of Glutaredoxin PDB-1G7O dataset (a) model 1, (b) model 21, and (c) rescaled model 1 and model 21.

FIGURE 3. Structure alignment of models 1 and 21 of Glutaredoxin PDB-1G7O dataset by (a) MAPGL, (b) PAMA, (c) SSMA,
(d) SSMA-FC(F), and (e) UNMA methods.

better in the experiments and saw much improvements in
higher correspondence, c = 12. The proposed MAPGL(F)
and MAPGL(I) obtain the best alignment results in turns
throughout. It can be seen that MAPGL can align obj10&30
best than the rest of the objects with an error of less than 4◦

when c = 12. Also, aside UNMA which does not require
prior correspondence, the rest of the comparative methods are
very sensitive to increase in correspondence, but the proposed
MAPGL is slightly sensitive.

Also, in Fig. 4 we illustrate the trend of performance of
the algorithms in aligning obj30&60 in different dimensions
and correspondences. From Fig. 4, it can be observed that
the comparative UNMA, SSMA, PAMA, and SSMA-FC are
very unstable in different dimensions and correspondences.
The proposed MAPGL(F) and MAPGL(I) outperform all the
comparative methods and are very stable in different dimen-
sions and correspondences. This means the computation time

of our method will be enhanced since any dimension can be
selected instead of it being searched.

D. HEAD POSE IMAGES ALIGNMENT
Experiments in this section were performed on aligning head
pose images using UMIST dataset. For the purpose of this
experiment, we selected the first and the second persons
considering pose angles from 3◦ to 90◦ with 3◦ increments
to form two datasets. Each dataset (one as the source and the
other as the target) contains 30 samples of dimensions 10304.

We apply the manifold alignment methods MAPGL,
PAMA, SSMA, UNMA and SSMA-FC to project the
source (X ) and target (Y ) datasets to a common embed-
ding space. Then match an instance xi to yj, by computing
the absolute difference of their degrees of variation such as
|θxi − θyj |. And finally the average of the absolute differ-
ence over all the source instances xi, to obtain the alignment
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FIGURE 4. The trend of matching alignment errors in different dimensions for the various algorithms on obj30 & obj60 of COIL-100 dataset in
correspondences of (a) c=2, (b) c=6, (c) c=12.

TABLE 1. The matching errors (◦) of alignment for the various algorithms on compared objects 10,30,60,90 of COIL-100 dataset.

TABLE 2. The alignment matching errors (◦) for the various algorithms on
UMIST dataset.

matching errors. We report the performance of the various
methods in aligning images of persons 1 and 2 in varying
correspondences in Table 2. From Table 2, it can be seen that
UNMA which does not require correspondence, performs
poorly among all methods especially in higher correspon-
dence. SSMA, PAMA, and SSMA-FC(I) perform better in the

higher correspondence of 7 than in the lower. The proposed
MAPGL(F) and MAPGL(I) can be seen to outperform all the
comparative methods in all correspondences. Also, MAPGL
can be seen as less sensitive to increase in correspondence:
since from c = 2 to c = 7, MAPGL(I) marginally improved
by 3.37 as opposed to SSMA by 14.75, PAMA by 16.5, and
SSMA-FC(I) by 9.5. To show sensitivity of the methods to
dimensionality size, we illustrate their performance in differ-
ent reduced dimensions varying from 4 to 20 in Fig. 5. From
this figure the proposed methods clearly outperform the com-
parativemanifold alignmentmethods in all dimensions across
the different correspondences. In addition the proposed meth-
ods are most stable, specifically, MAPGL(I) is more stable
than MAPGL(F). This indicates that the proposed method
can preserve both global and local structures at instance-level
better than at feature-level.
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FIGURE 5. The trend of matching alignment errors in different dimensions for the various algorithms on UMIST dataset in correspondences of (a)c=2
(b)c=4 (c)c=7.

FIGURE 6. The trend of matching alignment errors(%) in different dimensions for the various algorithms on warfare of Wiki Image-Text dataset in
correspondences of (a)c=15% (b)c=25% (c)c=35%.

FIGURE 7. The pair-wise alignment matching results on UMIST dataset (a) source images, (b) MAPGL(F), (c) MAPGL(I), (d) UNMA, (e) SSMA,
(f) PAMA, and (g) SSMA-FC(I).

Furthermore, we show the source images with pose angles
from 3◦ to 90◦ in increments of 6◦ in Fig. 7(a). In Fig. 7 we
compare the source images in (a) with the matching target

images results of MAPGL(F), MAPGL(I), UNMA, SSMA,
PAMA, and SSMA-FC(I) labeled as (b) to (g) respectively.
A correspondence of c = 4 is used and a mismatched
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TABLE 3. The alignment matching errors (%) for the various algorithms
on Wiki Image-Text dataset.

image (with angle error more than 5◦) is marked red. From
Fig. 7, it can be seen that the proposed methods can find
most matches than the rest of the comparative methods while
UNMA which does not need correspondence obtains the
fewest matches.

E. IMAGE AND TEXT ALIGNMENT
In this section, we conduct experiments to align image and
text by the manifold alignment methods using the Wiki
Image-Text dataset. We use the Latent Dirichlet Alloca-
tion base text features and SIFT Histogram image features
extracted from this dataset as the source and target. We select
three (3) of the populated articles such as warfare, media, and
sport for the experiments with correspondences of 15%, 25%,
and 35%.

Each manifold alignment method is used to project the
source and target datasets to a common embedding space.
For a selected sample of the embedding space, a Euclidean
distance between xi of the source and that of yj of the target is
computed. Then the matching error of alignment is obtained
by the average of the Euclidean distances over all xi. The
instance level of our method and the others fail to implement
successfully, due to the complexity of this dataset. We report
the results of the matching errors of alignment by the various
algorithms in Table 3. From this table, UNMA once again
averagely underperform all the methods. PAMA followed
with the worst performance especially under warfare and
sport. SSMA and SSMA-FC(F) are seen with good results
with the latter leading marginally in most instances. The pro-
posed MAPGL(F) outperforms all the comparative methods,
especially in lower correspondence of c = 15%, where a
significant margin of more than 3% is obtained.

We further show the performance of the algorithms in
different dimensions of the embedding space with few

FIGURE 8. The matching errors (◦) of alignment in different values of r on
UMIST dataset.

correspondences of 15%, 25%, and 35% in Fig. 6. From
this figure, UNMA is the most stable even though with the
worst performance, because it does not depend on correspon-
dence information. PAMA, SSMA, and SSMA-FC(F) are
very unstable, while the proposed MAPGL(F) is more stable
followed by UNMA. This means the proposed MAPGL(F) is
robust and less sensitive to correspondence information.

F. EFFECT OF PARAMETERS IN MAPGL
In our experiments, the optimal values of the parameters
were determined through cross validation. And from this
we realized that, when the regularization parameters µ, α, φ
are set ≤ 0.9, did not have any significant effect on the
alignment result. But the control parameter r (which deter-
mines the weight of multiple manifolds) had an influence
on the alignment result. Therefore, we discuss the influence
of parameter r , by testing with varied values from 2 to 20
(in steps of 2) on the UMIST dataset. The correspondence
was set as c = 2, and the regularization parameters µ = 0.2,
α = 0.5, and φ = 0.6. The matching errors of alignment in
varying values of r are presented in Fig. 8. It can be seen that
the errors in alignment are low in the range of 6 to 14 of r ,
while attaining stable and minimum errors at 6, and 8. Thus,
for high performance of the proposed MAPGL in general,
the control parameter r should be set to 6 or 8.

V. CONCLUSIONS
In this paper, a novel semi-supervised manifold alignment
algorithm is proposed that can preserve global and local
structures of multiple datasets. A close-form solution to an
optimization problem is presented. This achieves a latent low-
dimensional space by matching pair-wise correspondence
and preserving both global and local structures through a
novel PCA framework. This PCA framework is a unified
penalty weight PCA and multiple manifold embedding meth-
ods with the capability of suppressing noise leading to better
structural stability. This paper reveals that, manifold embed-
ding methods are special forms of PCA. And optimally com-
plementing multiple local structures and global structures can
improve the alignment results of multiple datasets.
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Extensive manifold alignment experiments in four (4)
datasets reveal the significant improvements of the pro-
posed MAPGL over the manifold alignment methods such
as, PAMA, UNMA, SSMA, and SSMA-FC. In the future
we shall explore to eliminate the reliance on few pair-wise
correspondences.
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