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ABSTRACT The growing demand for lithium-ion (Li-ion) battery in electric vehicles has expedited the need
for new optimal charging approaches to improve the speed and reliability of the charging process without
deteriorating battery performances. Many efforts have been deployed to develop optimal charging strategies
for commercial Li-ion batteries over the last decade. The active optimal charging strategies have great
potential to meet the requirement. This paper is a review of the studies on constructing the optimal charging
algorithms for Li-ion batteries. The battery models on which these protocols rest are stated, the generalized
structures are examined, the advantages and the drawbacks of the mathematical controller algorithms are
discussed, and their applications are presented. Suggestions for overcoming the shortcomings of the proposed
strategies are proposed. Challenges and future directions in the development of optimal charging strategies
for commercial Li-ion batteries are also discussed.

INDEX TERMS Fast charging, optimal charging strategies, lithium-ion battery.

I. INTRODUCTION
Lithium-ion (Li-ion) batteries have been commercialized
for plug-in hybrid (PHEVs) and electrical vehicles (EVs)
as a result of their higher energy density, longer lifes-
pan compared to their lead-acid and nickle-metal hydride
alternatives [1]– [3]. Different from fuel-driven internal
combustion engine, battery charging process is much more
complicated, due to its slow charging speed and unclear
effects of charging strategies on battery performances [4]–
[6]. Lithium-ion battery charging speed becomes a bottle-
neck of EVs popularization [7], [8]. The US Department of
Energy (DOE) has set a charge goal of 10 miles of range
per minute for fast charge [9]. For an EV with 100 mile
range (24 kWh battery pack), the DOE goal is to charge
full in 10 min (6C rate). However, simply increasing the
charging rates may cause striking temperature rise and accel-
erate side reactions [10]– [12]. The trade-off between fast
charge and battery health should be taken into account at the
same time [13], [14]. Therefore, the battery optimal charg-
ing scheme has gained much attention in the research field
of EVs/PHEVs [15]– [17]. An appropriate optimal charging
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protocol is desirable to improve the charging efficiency,
minimize any performances attenuation, and sustain a safe
operation of a LIB system. Over these years, many studies
have been done in order to figure out the most suitable
charging strategy.

In general, the available Li-ion battery charging strategy
can be divided into three classes based on the internal
mathematical models. The first category is a model-free
methodology, including constant-current (CC), CC constant-
voltage (CCCV), multi-stage CCCV and pulse charging
techniques [5], [18], [19]. These approaches can be char-
acterized by their predefined charging profiles with fixed
current, voltage, and/or power constraints but ignoring the
responses of battery dynamics. Considering the operability of
model-free methods, the corresponding programs are viewed
as heuristic. Hence, this motivates the necessity to explore
advanced charging strategies in order to meet fast charging
requirements and alleviate the impact on battery state-of-
health (SOH) meanwhile.

The second category of charging strategies utilizes empir-
ical models such as equivalent circuit-based models and
neural network models [20]. These models predict bat-
tery states and calculate electrical elements using past
experimental data. By means of different circuit models,
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Kalman-type filters [21], recursive least squares [3], sliding
mode observers [22] and moving horizon estimations [23]
were adopted to estimate battery states. Meanwhile, fre-
quency optimization [24], multi-objective optimization [25],
fuzzy control [26], linear quadratic control [27] and model
predictive control [28] were formulated to improve charging
performances. The empirical models are computationally fast
and simple, but unable to reflect physics-based parameters
and battery aging [28]. Therefore, an empirical model ori-
ented charging control protocol may fail to work properly
after certain cycles [29], [30].

The charging algorithms based on electrochemical mod-
els governed by kinetics and transport equations are more
sophisticated [31]. The closed-loop optimization problems
can be formulated to minimize charging time and compen-
sate for model uncertainties and disturbances [32]. In addi-
tion, temperature variation can also be predicted with
thermal-related relations. Thus, the electrochemistry-based
control algorithm is close to actual battery mechanism when
used as a state observer. However, the intractable computa-
tion complexity associated with full-order nonlinear partial-
differential equations (PDEs) limits the further application to
a real-time charging controller [33].

As a result, proposing an appropriate optimal charging
scheme of commercial Li-ion battery is a challenging task.
This target means that the battery should be charged as soon
as possible while the temperature rise and aging effects are
kept within the acceptable range. Recently, the diversity and
multitude of existing studies dealing with optimal charging
strategies provide a large amount of information.

In this review, we intend to summarize the recent results on
various battery optimal charging algorithms. The first aspect
presented here is the passive charging strategies includ-
ing constant-current (CC), CC constant-voltage (CCCV),
multi-stage CCCV and pulse charging technique. Their char-
acteristics are summarized and compared. Then we move
on to the generalized structure of active optimal charging
protocol. Moreover, the reviewed optimal charging proto-
cols in the text including their data, results, the investigated
battery type and charging methods are summarized. Based
on the information, their pros and cons were compared and
discussed. Furthermore, two tables for passive charging pro-
tocols and active charging protocols, respectively were pre-
sented. The suggestions and challenges for battery optimal
charging strategies are proposed in the end.

II. PASSIVE CHARGING PROFILES
The passive charging strategies are characterized by charg-
ing the battery under pre-set instructions as shown in Fig.1.
The charging protocol is stopped when the battery reaches
the terminal condition. Although the passive charging algo-
rithm is easy to operate, feedbacks of battery states and
health-related optimization constraints are not considered
during the charging process, which may shorten the lifespan
of battery [34]– [36].

FIGURE 1. Passive charging structure.

A. CONSTANT-CURRENT CONSTANT VOLTAGE RELATED
CHARGING METHODS
The constant current constant voltage (CC/CV) charging
algorithm is widely adopted in charging Li-ion batteries
because of its simplicity and easy implementation [37]– [39].
Under the CC/CV algorithm, the battery is initially charged
with constant current until the battery voltage reaches a pre-
set maximum charging voltage, then the charging voltage is
held constant until the current is reduced to a preset mini-
mum value [40]. The charging curve of the CC/CV is shown
in Fig.2.

FIGURE 2. Constant current-Constant voltage curve.

Many variants of the CC/CV charging strategy were devel-
oped. A proposed multistage fast charging profile is split
into three different stages, referred as CC-I, CC-II and CV-I
depicted in Fig.3. The algorithm is based on the evolution
of internal resistance during charging [18], [41]. Due to the
cell’s smaller resistance in lower SOC range, the highest
current is applied. The last two stages are used as the cell’s
internal resistance increases rapidly. Experimental results
verify that the procedure is useful for avoiding a considerable
temperature rise and extending the cycle life.
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FIGURE 3. Current, state of charge, resistance profiles of the fast charging
technique.

Another form of the multistage CC/CV method is intro-
duced in Fig.4, where a Vmax voltage is utilized to charge
the battery in the initial CV-mode during a very short period
t0, subsequently followed by a standard CCCV process [36].
This boost-charging technique ensures that the fully dis-
charged battery can be recharged to one-third of its rated
capacity without inducing any extra degradation effects.

FIGURE 4. Voltage and current characteristics of boost-charging
technique.

Taguchi-based approaches are also applied to determine
the optimal charging pattern [6], [42], [43]. A five-step con-
stant current charging method was proposed in Fig.5 [42].
Compared to the conventional CC-CV method, this pattern
can provide 57% more cycles and reduce 11% charging time.

B. PULSE CHARGE BASED CHARGING CURVE
The pulse charge have been claimed to be a fast and efficient
charging algorithm for lithium-ion batteries [44]– [46].

Purushothaman et al. concluded that by proper selec-
tion of the current waveform parameters, the side reactions
caused by lithium saturation at the particle interface can
be prevented [47]. A nonlinearly decreasing current density
which conforms to the mass transfer coefficient variation
could provide complete charging in less than 3

4 hour [48].
However, this technique was based on simulation analysis,
no corresponding experiments were carried out. In addition,

FIGURE 5. Five-step constant current charging algorithm.

FIGURE 6. Nonlinearly decreasing pulse charge technique.

tracking the diffusion coefficient variation in real-time was
computationally complex.

Similarity, a state of charge(SOC) governed fast charging
method was used to charge the battery, which attempted
to minimize the parasitic reactions as well [49]. The first
charging stage consists of gradually increasing current pulses
concerning its higher impedance at lower SOC levels. At the
final stage of charging, the charging amplitude gradually
decreases to make up for the lower charge acceptance by the
battery at higher SOC levels. The drawback of this strategy is
insufficient theory support and the value of pulse amplitude
and width is arbitrary chosen.

In 2016, Lu et al. demonstrated the design of charg-
ing strategies for lithium ion batteries considering the bal-
ance between diffusion induced stress and total charge time
based on the pulsed currents charging method [50]. For the
two-stage charge methods, the galvanostatic operation is
first used and then followed by a potentiostatic operation.
Moreover, two connective galvanostatic stages with different
currents followed by a potentiostatic stage were introduced in
the three-stage charge methods.

C. SUMMARY OF THE REVIEWED PASSIVE OPTIMAL
CHARGING
The data and results of the passive optimal charging pro-
tocols reviewed in this paper are summarized in Table 1,
including the investigated battery type, charging methods,
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TABLE 1. Comparison of the reviewed passive charging strategies.

and parameters needed to be optimized. Their strengths and
limits were also presented.

As can be seen from Table 1, most studies chose the
commercial cylindrical batteries as the investigated battery

type for passive optimal charging strategies ranging from
LMO to LFP. This cell type has a low energy but high power
density. In Ref [35], the prismatic LP battery was also used
for validation.
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The resistance evolution based, diffusion stress based,
Taguchi based, SOC governed and boost charging strategies
are the variances of standard CC-CV method. The difference
between them is the charging switching terms.

For the resistance based protocol, the charging process
changes with cell internal resistance. For the diffusion stress
based protocol, the ion concentration at surface is viewed
as a trigger to activate the next charging stage. The Taguchi
Orthogonal Arrays based charging method divides the charg-
ing process into five CC stages. At each stage, the current was
optimized. The SOC governed multi-stage charging method
tried to decide the charging current based on the SOC change
while charging. In boost charging, a short period of high
current was applied to the battery to reach the identified
voltage threshold. The number of stages, currentmagnitude in
each stage, and stage duration were three critical parameters
needed to be optimized for the multi-stage charging algo-
rithm. Due to the model-free characteristic, these methods
could be implemented easily and were proved to have a better
performance in charging speed, cycle life or power capabil-
ity compared to CC-CV charging. However, battery health
related indexes such as battery degradation and temperature
were not considered and well controlled.

In nonlinear decreasing pulse charging profile, the charg-
ing current waveform is varying regarding pulse frequency,
duty ratio and current magnitude. From Table 1, the pulse-
based charging method requires 5 parameters to be optimized
online to achieve the ideal performance. As a result, the com-
putation stress on the controller is the highest among the
reviewed passive optimal charging strategies. Therefore,
the implementation of pulse-based charging algorithm could
be complicated in the real applications.

To the best of our knowledge, the existing passive charging
techniques are unable to fulfill the overall optimal charging
objective in terms of implementation, charging duration and
health-conscious requirements, which urge the development
of the active charging algorithm.

III. GENERALIZED ACTIVE OPTIMAL CHARGING
STRUCTURE
The commonly-used active battery charging management
structure is often composed of three important elements.
They are the battery model, state estimator, and model
based controller. Taken the process noise into consideration,
a closed-loop control structure for the battery optimal charg-
ing strategy is formed as depicted in Fig.7.

Generally speaking, the batterymodel is carefully designed
to be lower-order and easy implementable for an outstanding
controllability [14], [50], [51]. The aim of constituting such
a battery model is to simulate the real battery system dynam-
ics under the specified loading current profile. The output
variables of the model integrated with the noise vector are
used as input for observer. Given that the battery contains a
lot of state variables, many of which are unmeasurable, such
as concentration and overpotential. Thus, a robust and effec-
tive model-based estimator is required to observe internal

FIGURE 7. Active optimal charging structure.

states of the battery system [51]. Based on the reduced-
order battery model and state estimator, an active charging
strategy is formulated with optimal control algorithm. Mean-
while, for better charging performances, constraints of battery
health-related variables (temperature rise, side reaction rate
and so on) need to be considered as outputs references.

A. COMMONLY-USED BATTERY MODEL
For controlling and estimating battery states online, it is
imperative to rely on a fast and accurate real-time simulation
on BMS [52]– [54]. Fig.8 shows the general classification of
control-oriented Li-ion battery models.

FIGURE 8. Classification of commonly-used battery models.

Recently, the equivalent circuit models have been
widely used in BMSs due to its advantage of fast
computation [55]– [57].

Hu et al. presented a dual-objective optimal charging strat-
egy for LiNMC and LiFePO4 batteries based on the first-
order RC model [58]. The influences of the charging voltage
threshold, temperature, and health status on the charging
results were analyzed for the two types of batteries.

dz(t)
dt
=

ηI (t)
3600Cn

(1)

dU (t)
dt
= −

U (t)
τ1
+
R1
τ1
I (t) (2)

dh(t)
dt
= − |κI (t)| h(t)+ |κI (t)|H (3)

V (t) = Voc(z(t))+ R0I (t)+ U (t)+ h(t) (4)
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FIGURE 9. Equivalent circuit model.

FIGURE 10. Single particle model.

where I, U, Cn, z and h are the current, output voltage,
nominal capacity, SOC and hysteresis voltage for LiFePO4
cell, respectively.

In 2017 [33], an equivalent circuit composed of an ideal
voltage source,an internal resistor, and two resistor-capacitor
(RC) pairs was put forward for model-based charging man-
agement as illustrated in Fig.9. For battery thermal modeling,
the average cell temperature is approximately equal to the
radial average temperature:

Ta =
1
2
(Ts + Tc) (5)

where Ts is the surface temperature, Tc is the core temperature
and Ta is the average temperature. The governing equations
for Ts and Ta are expressed as:

dTs (t)
dt

=
Tf − Ts (t)
RuCs

−
2 (Ts (t)− Ta (t))

RsCs
(6)

dTa (t)
dt

=
Tf − Ts (t)
2RuCs

+
Ts (Cs − Cc)− Ta (Cs − Cc)

RsCcCs
+
Q (t)
2Cc

(7)

where Tf is the ambient temperature, RC and Ru are sepa-
rately the heat conduction resistance and convection resis-
tance. Cs and CC are the surface heat capacity and core heat
capacity, respectively. However, its model parameters need to
be firstly determined according to experimental results and
battery aging factors are not considered.

These electrochemical-based models have significant
advantages over those equivalent circuit models because of
their physical based equations [51], [59], [60]. The Partial-
Two-Dimensional (P2D) model is unquestionably rigorous
and accurate [37], [61]. The Single-Particle-Model (SPM) is
useful in realizing quick responses but it is unsuitable for

simulating high (dis)charge rates [20], [62], [63]. The draw-
backs of the SPM and P2D have motivated the development
of simplified versions of the P2D model to be used in battery
charging control.

Perez et al. developed an optimal fast charging protocol
via a coupled single particle model with electrolyte and
thermal dynamics [64]. In the coupled model, the anode
and cathode solid concentration dynamics were described
with two PDE single particle subsystems. The electrolyte
concentration in three different domains (anode, separator
cathode) was captured with a three-PDE electrolyte sub-
system. The temperature was fed back into the voltage
output and solid/electrolyte dynamics. Due to the coupled
electrochemical-thermal dynamics, the optimization problem
is highly nonlinear.

Zou et al. have done considerable work on proposing
physics-based low-order battery models to simulate charging
strategies [33]. In 2018, a PDE-based SPM with electrolyte
states was formulated to simulate the battery dynamics as
expressed in Eq.8-11. The model order was reduced based
on three assumptions [52].

˙̄C−s (t) = −
3

FR−p a
−
s L−

I (t) (8)

C̄+s (t) = [ns − L−ε−s C̄
−
s (t)]/(L

+ε+s ) (9)

C±ss (t) = C̄±s (t)+ λ1ω
±

1 (t)+ λ2ω
±

2 (t) (10)
dC±

e
(0, t)

dt
=

D±e µ
±

L±,2ε±e

[
C±e (0, t)− C

±

e0

]
∓

1− t0c
FL±ε±e

I (t)

(11)

In particular, the electrolyte concentration Ce and the anode
over-potential of side reactions η−s were included in the out-
put vector considering aging effects. The state-space function
of battery model is listed as:

u (t) : = I (t) (12)

x (t) : = [C̄−s (t) , ω
−

1 (t) , ω
−

2 (t) , ω
+

1 (t) , ω
+

2 (t) ,

×C−e (0, t)− C
−

e0,C
+
e (0, t)− C

+

e0,T ]
T (13)

y (t) : = [SOC (t) ,T (t) ,C−e (0, t) , η
−
s (t)]

T (14)

z (t) : = [V (t) ,T (t)]T (15)

system input vector is u(t), x(t) is state vector, z(t) is mea-
surable system output vector and controllable output vector
is y(t).

B. CLASSIFICATION OF OPTIMAL CHARGING STRATEGIES
The optimal charging targets are often related to the battery
health-aware performances in two aspects, which are the tem-
perature rise and aging rate. Therefore, the optimal charging
strategy is formulated considering battery performances and
charging speed at the same time.

The battery aging associated properties are selected from
part of battery internal states. The overpotential of side reac-
tions occurring at cathode electrode or anode electrode and
the solid electrolyte interface (SEI) growth δSEI are con-
sidered as side effects results [4], [65], [66]. The electrolyte
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concentration Ce is also viewed as an incentive to side
effects [31], [67], [68]. Considering the particle mechanical
stress induced by diffusion, the lithium concentration at the
surface of particles Cs is limited no less than zero [50], [64].
Based on empirical equations between capacity loss and total
discharge Ah throughout, the state of health (SOH) is selected
as degradation representatives [64]. The sharp temperature
rise may lead to battery thermal runaway. Hence, battery
temperature control is taken into account along with aging
prevention in most cases [33], [51].

In order to solve the optimal charging problem, it is neces-
sary to formulate an effective charging strategy based on the
battery model.

Zou et al. employed a linear time-varying (LTV)
model predictive controller (MPC) to optimize charging
profiles [51]. By using a fast moving horizon estima-
tion (MHE) to observe battery internal states in the presence
of model mismatch, noise, and disturbances, the fast charging
process was formulated as a constrained LTV-MPC problem.
Meanwhile, health-related constrains were also included in
solving the problem. The cost function for tracking a refer-
ence trajectory SOCr with input current u(k) and correspond-
ing overall optimization current were organized as below:

u∗(k) = arg min
u(k),s

N∑
i=0

∥∥y1(k + i)− yr1(k + i)∥∥2Q
+ ‖1u(k + i)‖2R + ‖s‖

2
P (16)

J (x(k),u(k)) =
N∑
i=0

∥∥y1(k + i)− yr1(k + i)∥∥2Q
+‖1u(k + i)‖2R (17)

s.t. ∀i ∈ {0, . . . ,N } ,

x̂(k + i+ 1) = Ak x̂(k + i)

+ Bku(k + i)+ ϕ̂(k)

ŷ1(k + i) = C x̂(k + i)+ d

x̂(k) = x̂k|k
Hu(k + i) ≤ L

εk x̂(k + i)+ Fku(k + i) ≤ Sk + s

s ≥ 0 (18)

Both the computational efficiency and charging rate of
the MPC-based charging strategies are higher than tradi-
tional CCCV counterparts. However, the proposed charg-
ing strategy applied a maximum current of 15 C to charge
the battery in the beginning, and the cell voltage exceeded
the upper bound of 4.2V during charging. In Ref [33], the
possibly fastest charging mode of the MPC-based algorithm
is investigated by setting the weight factor to zero. It is
found that the time required to charge the investigated battery
from 10% SOC to the specified capacity level is no less
than 788 s.

Liu et al. implemented the generalized predictive control
(GPC) assisted with a proper battery model to control the
battery internal within certain range during the charging

process [69]. A controlled auto-regressive integrated moving
average (CARIMA) model was used as an online self-tuning
predictive model for a GPC controller. The predictive control
sequence was obtained by minimizing a multistage cost func-
tion which combined both battery charging time and energy
loss:

J = (1− a1) ∗ tf + a1 ∗

t=tf∫
t=0

i(t) ∗ (V (t)− UOCV (t))

+ i(t) ∗ Tin(t) ∗ dUOCV (t)/dTin(t)dt (19)

tf denotes the time when the battery reaches its final SOC
level. 0 ≤ a1 ≤ 1 is the weighting factor to balance the
two objectives (charging time and energy loss). The main
drawback of the GPC-based control strategy is that many
tuning parameters should be chosen carefully in advance and
the polynomial matrices are high-dimension, which adds up
difficulties to real-time application.

Lin et al. developed the optimal charging strategies using
the dynamic programming (DP) technique [70]. Both charg-
ing time and battery degradation were traded off and opti-
mized. The charging time tf , SEI growth δSEI and lithium
plating δplating were considered in the cost function in SOC
domain:

min
I (SOC)

∫ SOChi

SOClo
(α · tchar + β · δSEI + γ · δplating) (20)

By fixing different weight factors (α, β, γ ) at specified val-
ues, the minimum time strategy and health-conscious fast
charging strategy were investigated. For the minimum time
strategy, it took 19 min 18 s to achieve a target SOC of 61%
from 1.7% SOC and the charging duration increased to
29 min 7 s for the health-conscious strategy. Unfortunately,
the weight factors for the recyclable lithium consumed in
SEI growth and lithium plating were treated as equal at
random.

In [64], the Legendre-Gauss-Radau (LGR) pseudo-
spectral method with adaptive multi-mesh-interval colloca-
tion was employed to solve the resulting nonlinear multi-state
optimal charging problem. The objective function J is given
by:

min
I (t),x(t),tf

∫ tf

t0
1 · dt (21)

where (tf−t0) is the charge time to reach a desired target SOC.
The optimization variables are the input current I (t) and final
time tf , with state variables:

x(t) = [c+s (r, t), c
−
s (r, t), c

+
e (x, t),

× csepe (x, t), c−e (x, t),Tc(t),Ts(t)]
T (22)

Two charging strategies were proposed using the linear
quadratic control theory by Fang et al. in 2017 [27]. One
of them is based on linear quadratic control with fixed ter-
minal charging rate. The other one is formed with tracking
a reference charging path. A linear quadratic state-feedback
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formulation for tracking a reference trajectory rN can be
expressed as:

min
u0,u1,...,uN−1

1
2
(xN − rN )TSN (xN − rN )

+
1
2

N−1∑
k=0

[
(xk − rk )TQ(xk − rk )+ uTkRuk

]
s.t. xk+1 = Axk + Buk , x0 (23)

Another form of the quadratic constraint program was
presented by Trippe et al. [71] in 2014, whichminimized total
charging cost, charging electricity cost and battery aging cost.
Eq.18 describes the linear objective function of the optimiza-
tion problem, where charging power P and battery aging cost
caging are the variables to be optimized. The electricity price is
reflected by pr and1t is the time step. npark and t are indices
for the number of the parking events of a car and the charging
time respectively. The main drawback of Annette’s strategy
is that the tremendous information on vehicle usage history
is needed [71].

argmin
P,caging

∑
npark

∑
t

(
P
(
npark , t

)
· pr (t) ·1t+caging

(
npark , t

))
(24)

In 2016, Pramanik and Anwar introduced an optimal strat-
egy for charging under Pontryagins principle with both state
and input constrains [72]. The proposed charging algorithm
is capable of shortening the charging time while satisfying
the temperature constraint compared with standard CCCV
charging. The performance index was defined as:

P.I . =

Tf∫
0

[
α(Imax − I (t))2 + β(Tmax − T (t))2 + δI2(t)

]
dt

(25)

The performance index was chosen as such to minimize the
effort and to keep the current and bulk cell temperature close
to the maximum thresholds. Combined with battery model,
the Hamiltonian function was constructed:

H (Cs,T , λ1, λ2, t)

= α(Imax − I (t))2 + β(Tmax − T (t))2 + δI2

+ λ1

(
−
6i0
RF

sinh(
αF
RT

η(t))
)

+ λ2

(
1

ρavgcp
[hcell (Tmax − T (t))+ I (t)V (t)

−

n∑
i=1

 0+∫
0−

3ε
R
FJ (t)(Ui(t)−T (t)

∂U
∂T

)dx



 (26)

λ∗
•

1 =
∂H (•)
∂Cs

= 0 (27)

λ∗
•

2 =
∂H (•)
∂T

= 2β(Tmax − T )+ λ∗2
h

ρavgcp
− λ∗2

h
ρavgcp

×

 n∑
i=0

 0+∫
0−

3ε
R
FJ (t)

(
Ui(t)− T (t)

∂U
∂T

)
dx




+ λ∗1
αF
RT 2 η

[
6i0
RF

cosh
(
αF
RT

η

)]
(28)

where α, β are tunable parameters which gives the flexibility
to tune the charging performance based on charging current
and maximum rated limit. By solving the equation, the opti-
mal current trajectory at each time step was obtained:

I (t) = Imax − λ2
V (t)
ρavgcp

×
1
2α

(29)

C. SUMMARY AND COMPASIRON
The characteristics of the reviewed active charging strate-
gies are summarized in Table 2. Their pros and cons are
highlighted. In order to demonstrate the connections and
differences among the reviewed optimal charging strategies
more clearly, we intend to analyze them from two crucial
aspects, which are internal battery model and optimal control
algorithms.

1) ASSESSMENT OF THE REVIEWED BATTERY MODELS
As can be seen in Table 2, the commonly-used battery type are
LiFePO4, LiCoO2, andNMC.Many different kinds of battery
models are utilized to estimate the battery internal states. The
first-order RC [69] model and second-order RC model [27]
have been used in control and optimal applications due to
its simple circuitry representation and easy to configure and
identify the parameters compared to other mechanism mod-
els. The SPM is the most frequently used electrochemical
model in battery optimal charging. Both of them are often
coupled with thermal and aging dynamics, which are of great
importance to control and optimize charging curve.

Generally, thermal effect is incorporated into the controller
via a two-stage approximation of the radially distributed
thermal model for equivalent circuit models [57]. However,
the energy dissipated by electrode is assumed to represent
the Li ion contribution and have an impact on the total heat
generation [73]– [75].

An empirical equation between input current and capacity
fade is adopted to indicate the aging effects for equivalent
second-order RC model [57]. In SPM, the Li ion concentra-
tion in both solid and electrolyte phase and the overpotential
of side reactions are constrained within a narrow range to pre-
vent the battery from degradation. As for the SOC estimation
method, the equivalent circuit model calculates the SOC by
coulomb counting, while the SPM predicts it based on the Li
ion concentration distribution and integration [64].

Methods like electrochemical models and equivalent mod-
els perform well but cannot be directly extended to other
batteries (technology, design, materials) [76]– [78]. More-
over, these two approaches are not performant to model
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TABLE 2. Comparison of the reviewed active optimal charging strategies.
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all degradation mechanisms occurring during the battery
life [79]– [81].

2) OPTIMAL CONTROL ALGORITHMS SUMMARY
Every presented method tries to solve the optimal charg-
ing problem by different manners but each one has its own
disadvantages. Most studies choose the maximum current
(up to 6C) [70] to charge the battery in the beginning, this
might bring high stress on power electronics [82]– [84]. In
addition, many studies validate the effectiveness of optimal
chargingwith accelerated life tests [71], but thismethodology
has one main drawback. An accelerated life test is usually
donewith a test bench. Hence, the impact of all environmental
variables occurring in real life conditions is not taken into
account, which produces some errors.

Each of the presented algorithm can perform well in find-
ing out a balanced solution for the two competing objectives:
charging time and battery state-of-health. As is illustrated
in Table 2. It is seen that theMPC-based control strategy is the
most popular method to be employed [33], [51], [85], [86].
There are two reasons for the popularity of MPC techniques.
First, its performance in constraint and nonlinearity handling
and model-based optimal or suboptimal control makes it
applicable to a wide range of industrial problems [87]. Sec-
ond, it has a good robustness and stability over many kinds
of noises [88], [89]. However, it has two limits:1) Hardware-
in-the-loop experiment was not conducted to validate the
strategy.2) The sensitivity of the proposed MPC framework
to parameter uncertainties including the weighting matrices
and initial values were not studied. Due to the high non-
linearity of this problem, the electrolyte dynamics approxi-
mation, SEI and plating static map were developed to make
the Dynamic Programming (DP) based charging optimization
possible [70]. The inconvenience here is the complexity to
handle massive data in controller induced by DP process.
The Legendre-Gauss-Radau (LGR) pseudo-spectral based
method transcribed this infinite-dimensional optimal con-
trol problem into a finite-dimensional optimization prob-
lem with algebraic constraints at the discretized nodes [57],
but the convexity and convergence was not guaranteed. For
Pontryagins minimum principle based strategy [72], the algo-
rithm calculates the states and co-state values to produce the
corrected input current at each iteration. Therefore, the ini-
tial value for state variables were required to be precise.
Regarding the linear optimization based methods [27], they
have more computational appeal in terms of time and space
complexity because of their exceptional simplicity. Whereas
the choice of the gain matrix is a multifaced issue, because
it needs to account for both battery health protection and
charging speed and more broadly, the economic cost and user
satisfaction.

IV. SUGGESTIONS AND CHALLENGES
Based on the above review of the open literatures concern-
ing the optimal strategies of battery charging, it seems that
the most promising candidate for the health-aware optimal

charging would be closed-loop and model-based. Two ele-
ments are essential for this: 1. A simplified and controllable
battery model. 2. An optimization approach which is com-
putationally efficient and well-fitted with the battery model.
In light of this, here is a list of issues regarding the two aspects
that should be addressed in the future investigations:

A. SUGGESTIONS FOR THE CONTROL-ORIENTED
BATTERY MODLES
1. The electrochemistry-based battery model can have a
high fidelity in reproducing battery dynamics which plays
an important role in health-conscious charging protocol. For
battery aging prevention, most studies chose side reaction
related parameters as a part of cost function [51], [90]. For
instance, the overpotential of side reactions is constrained
below zero to alleviate degradation [51]. However, to the
authors knowledge, the aging mechanism of battery charging
has not been investigated thoroughly. What are the conse-
quences on selecting higher or lower bonds? Apart from SEI
growth, which parameter should be calculated and taken into
consideration for a better optimal curve?

2. The battery properties change as battery ages [91]– [94].
Therefore, the real-time controller should update battery
parameters based on the input history data such as current,
voltage and temperature. Finally, the on-line observation and
the battery control and optimization performances will be
improved.

B. SUGGESTIONS FOR THE CHARGING OPTIMIZATION
ALGORITHMS
1.Most of the optimal control strategies reviewed in this paper
are implemented by solving the optimal problem with series
of new performance indexes and constrained linear matrix
inequalities. However, the implementation cost in hardware
is not paid much attention to. In fact, to achieve better charg-
ing performances, the computation burden also increases
significantly [95]– [97]. Hence, it is imperative to develop a
simple and fast optimal algorithm that can be simulated in
BMSs effectively.

2. As a result of thewide diversification in battery types and
sizes due to the wide range of applications, the reviewed opti-
mal charging method might not be directly extended to other
batteries (technology, design, materials) [98]– [100]. Thus,
it is meaningful to develop universal optimal charging strate-
gies. This feature may be realized by the controller to auto-
detect the battery chemistry responses when they are biased
to some external signal or by big data-driven approach [101].

C. CHARGING STRATEGIES AT LOW TEMPERATURES
1. Fast charging at subzero temperatures is an challenging
task due to the poor low-temperature performance of Li-ion
batteries [104]. The Li plating is assumed to be the major
unwanted side reactions at low temperatures [105]. Though
some efforts have been deployed to overcome these prob-
lems. A two-phase charging protocol composed of constant
current (CC) and constant voltage (CV) phase is presented
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to prevent battery degradation from Li plating [106]. By
adding a rapid internal heating step before charging,
the cell is charged above a temperature that can prevent Li
plating [107]. The related studies are still insufficient. It is
important to systematically investigate the battery electro-
chemical model characteristics and aging mechanisms under
low temperatures, which finally lead to optimized charging
strategies.

V. CONCLUSION
Battery optimal charging strategies have been intensively
researched and developed in recent years. This paper has
presented a thorough review of recent optimal charging
methodologies for commercial lithium-ion batteries. They
are commonly grouped based on their mathematical model
and embedded structure: passive and active controllers. Every
of them is described in detail along with their advantages,
disadvantages and examples. While passive charging strate-
gies are simple to implement, it is clear that they do not
provide an optimal solution to maximize charging speed
and minimize deterioration. They lack the ability to main-
tain a good robustness when noises occur. Active charging
algorithm will improve the performance of the battery and
efficiency of the charger. Multiple battery state variables
are integrated to the cost function which is important to
formulate a battery model based charging protocol. Active
charging controllers are implemented using different optimal
methodologies which have been summarized. The study has
shown that MPC-based techniques are the most popular and
potential methods to figure out the optimal charging prob-
lem. The main drawback is that the present MPC algorithm
can only applied into linear system which means that the
full-order battery model should be properly simplified before
being simulated. As a result, the accuracy of the control might
be affected. The following aspects of the optimal charging
strategies should be addressed in the future investigations:
1) To include an overall aging effects caused by charging
process; 2) To evaluate the precision of embedded battery
model under proposed charging current; 3) To update battery
parameters in real-time; 4) To investigate the implementation
cost of proposed charging algorithm in BMSs hardware; 5) To
propose universal optimal charging strategies; 6) To shed
lights on battery optimal charging at low temperatures.
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