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ABSTRACT The maximum likelihood principle has wide applications in system identification. This paper
studies the maximum likelihood identification problems of the multivariate equation-error systems with
colored noise. The system is broken down into several subsystems based on the number of the outputs.
The key is to transform the subsystem into a controlled autoregressive moving average model and a noise
model. Based on the maximum likelihood principle and the data filtering technique, a filtering-based
maximum likelihood recursive generalized extended least squares algorithm is presented for estimating the
parameters of these twomodels. For comparison, a maximum likelihood recursive generalized extended least
squares algorithm is presented. Finally, the simulation example results confirm the effectiveness of the two
algorithms.

INDEX TERMS Parameter estimation, maximum likelihood, data filtering, multivariate system.

I. INTRODUCTION
For the actual control systems, system modeling and model
identification are the basis of all control problems. Param-
eter estimation methods can be applied to many areas
[1]–[4]. Parameter estimation is the eternal theme of the
identification field and has wide applications in one-
dimensional and multidimensional signal processing and fil-
tering. The research on model uncertainty has become a
hot topic. Recently, a family of robust filtering approaches
under model uncertainty have been introduced [5] and the
robust estimation problem of a signal given noisy obser-
vations is dealt with [6]. Multivariable systems are widely
used in practical control processes because of their com-
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plex structures and uncertain interference. Consequently,
the parameter estimation problem of different systems has
attracted a lot of attention [7]–[10]. Some examples of appli-
cations include fermentation processes [11] and distillation
columns [12]. Wu [13] presented a model predictive control
based proportional-integral-derivative controller for the mul-
tivariable process in the distillation column. Li et al. [14]
provided an adaptive control method to deal with the tracking
control problems for the nonlinear MIMO time-varying delay
systems.

The maximum likelihood principle is widely used in the
field of system identification because of good statistical
properties [15]. In recent years, many maximum likelihood
identification algorithms have been proposed [16], [17]. For
instance, Wang et al. [18] focused on the robust Chinese
remainder theorem problem for real numbers and derived
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a maximum likelihood estimation based robust remainder
theorem algorithm. Chen and Ding [19] considered the
parameter estimation problems of the multiple-input single-
output systems and delivered a filtering based maximum
likelihood recursive least squares algorithm by using the
data filtering. Söderström and Soverini [20] dealt with the
identification problems of the errors-in-variables models and
developed a frequency domain maximum likelihood estima-
tor. Chang and Chang [21] extended the maximum likelihood
principle to the multiple-input multiple-output systems and
presented a novel maximum likelihood detection algorithm
which does not need QR decomposition and matrix inversion.

The data filtering technique is an effective way to solve
the parameter estimation problem of systems with colored
noise [22]–[24]. Themain idea is to transform the system into
a filtered system and a filtered noise system. The data filtering
method in system identification only changes the structure of
the system and does not change the relationship between the
inputs and outputs [25]–[27]. In this field, Li and Liu [28]
extended the filtering technique to the bilinear systems with
colored noises and proposed a maximum likelihood least
squares based iterative algorithm . Ding et al. [29] derived
a filtering and auxiliary model based recursive least squares
algorithm for the dual-rate state space systems with time-
delay based on the data filtering and the auxiliary identi-
fication idea. In order to improve the estimation accuracy,
Pan et al. [30] presented a filtering based multi-innovation
extended stochastic gradient algorithm for multivariate mov-
ing average systems by using the filtering technique and the
multi-innovation identification theory.

For the multivariate equation-error systems with autore-
gressive noise, Liu et al. [31] proposed the maximum like-
lihood recursive extended least squares algorithm to obtain
the parameter estimates . On the basis of the work in [31],
this paper considers the parameter estimation problem for
the multivariate equation-error systems with autoregressive
moving average noise. The main contributions of this paper
are as follows.
• Afiltering basedmaximum likelihood recursive general-
ized extended least squares algorithm is derived for the
multivariate equation-error system with autoregressive
moving average noise by using the data filtering tech-
nique and the maximum likelihood principle.

• The system is broken down into several subsystems.
The identification model of the subsystem is obtained
by defining the parameter vectors and the information
vectors of the subsystem.

• The simulation example proved the effectiveness of the
filtering based maximum likelihood recursive general-
ized extended least squares algorithm.

Briefly, the rest of this paper is organized as follows.
The multivariate equation-error autoregressive moving aver-
age system is broken down into several subsystems and the
identification model of the subsystem is given in Section II.
In Sections III and IV, amaximum likelihood recursive gener-
alized extended least squares algorithm and a filtering based

maximum likelihood recursive generalized extended least
squares algorithm are presented for the multivariate equation-
error autoregressive moving average systems. In addition,
Section V offers the numerical simulation. Some concluding
remarks are given in Section VI.

II. SYSTEM DESCRIPTION
Let us introduce some notation. The symbol Im is an m × m
identity matrix; 1n is an n-dimensional column vector whose
elements are 1; the superscript T denotes the matrix trans-
pose; z represents unit forward shift operator: zx(r) = x(r+1)
and z−1x(r) = x(r − 1).

FIGURE 1. The multivariate equation-error autoregressive moving
average system.

The multivariate equation-error autoregressive moving
average system in Figure 1 can be expressed as follows,

H(z)y(r) = Φs(r)θ +
K (z)
E(z)

v(r), (1)

where Φs(r) ∈ Rm×n is the measured information matrix
which contains the input-output data, y(r) := [y1(r), y2(r),
· · · , ym(r)]T ∈ Rm is the output vector of the system, v(r) :=
[v1(r), v2(r), · · · , vm(r)]T ∈ Rm is a white noise vector with
zero mean and variance σ 2

j for vj(r), j = 1, 2, · · · ,m, θ ∈ Rn

is the parameter vector to be identified, and H(z), E(z) and
K (z) are polynomials (matrix) in the unit backward shift
operator z−1 (z−1y(r) = y(r − 1)):

H(z) := Im +H1z−1 +H2z−2 + · · · +Hnhz
−nh ,

E(z) := 1+ e1z−1 + e2z−2 + · · · + enez
−ne , ei ∈ R,

K (z) := 1+ k1z−1 + k2z−2 + · · · + knk z
−nk , ki ∈ R.

Let w(r) := K (z)
E(z) v(r) ∈ Rm be the intermediate vector.

Let Φs(r) := [φ1(r),φ2(r), · · · ,φm(r)]
T
∈ Rm×n, where

φj(r) ∈ Rn. Let H i := [hT
i1,h

T
i2, · · · ,h

T
im]

T
∈ Rm×m, where

hij ∈ R1×m is the jth row values of H i. From (1), we have
y1(r)
y2(r)
...

ym(r)

+

h11
h12
...

h1m

 z−1y(r)+

h21
h22
...

h2m

 z−2y(r)+ · · ·

+


hnh1
hnh2
...

hnhm

 z−nhy(r) =

φT
1(r)
φT
2(r)
...

φT
m(r)

 θ + K (z)
E(z)


v1(r)
v2(r)
...

vm(r)

.
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Afterwards, System (1) can be broken down into m subsys-
tems. Subsystem j can be expressed as

H j(z)y(r) = φT
j (r)θ +

K (z)
E(z)

vj(r), j = 1, 2, · · · ,m, (2)

where H j(z) := h0j + h1jz−1 + · · · + hnhjz
−nh ∈ R1×m is the

jth row of H(z).
Then we have

vj(r) =
E(z)
K (z)

[H j(z)y(r)− φT
j (r)θ ], j = 1, 2, · · · ,m.

Define the subsystem parameter vectors hj ∈ Rmnh , e ∈ Rne

and k ∈ Rnk as

hj :=


h1j
h2j
...

hnhj

, e :=


e1
e2
...

ene

, k :=


k1
k2
...

knk

.
Define the subsystem parameter vectors and the information
vectors as

ηj := [θ T,hT
j ]

T
∈ Rn+mnh ,

ϑ j := [ηT
j , e

T, kT]T ∈ Rn0 , n0 := n+ mnh + ne + nk ,

ψ j(r) := [φT
j (r),−y

T(r − 1),−yT(r − 2), · · · ,

− yT(r − nh)]T ∈ Rn+mnh ,

ϕj(r) := [ψT
j (r),−wj(r − 1),−wj(r − 2), · · · ,−wj(r − ne),

vj(r − 1), vj(r − 2), · · · , vj(r − nk )]T ∈ Rn0 .

From (2), we can get

yj(r) = ϕT
j (r)ϑ j + vj(r), (3)

wj(r) = yj(r)− ψT
j (r)ηj, j = 1, 2, · · · ,m. (4)

Remark 1: The system is broken down into m subsystems
based on the number of the system outputs. The identification
model of Subsystem j is shown in Equations (3) and (4).
Remark 2: The objective of this paper is to present max-

imum likelihood recursive identification algorithms to esti-
mate the unknown parameter vectors θ , e and k and the
unknown parameter matrix H i.

III. THE MAXIMUM LIKELIHOOD RECURSIVE
GENERALIZED EXTENDED LEAST
SQUARES ALGORITHM
According to the maximum likelihood principle, the maxi-
mum likelihood criterion function is obtained as follows [32],

Jj(ϑ j)
∣∣∣
ϑ̂ jML
=

1
2

N∑
r=1

v2j (r)
∣∣∣
ϑ̂ jML
= min, (5)

subject to

vj(r) =
E(z)
K (z)

[H j(z)y(r)− φT
j (r)θ ].

The research [31] derived the maximum likelihood recur-
sive extended least squares algorithm for the multivariate

equation-error systems with autoregressive noise. Referring
to the method in [31], minimizing the cost function Jj(ϑ j),
we can obtain the maximum likelihood recursive generalized
extended least squares (ML-RGELS) algorithm:

ϑ̂ j(r) = ϑ̂ j(r − 1)+ Lj(r)[yj(r)− ϕ̂
T

j (r)ϑ̂ j(r − 1)], (6)

Lj(r) = P j(r − 1)ϕ̂jf (r)[1+ ϕ̂
T

jf (r)P j(r − 1)ϕ̂jf (r)]
−1,

(7)

P j(r) = [I − Lj(r)ϕ̂
T

jf (r)]P j(r − 1), (8)

ϕ̂jf (r) = [φ̂
T

jf (r),−ŷ
T

f (r − 1),−ŷTf (r − 2), · · · ,

− ŷTf (r − nh),−ŵjf (r − 1),

− ŵjf (r − 2), · · · ,−ŵjf (r − ne),

v̂jf (r − 1), v̂jf (r − 2), · · · , v̂jf (r − nk )]T, (9)

ψ j(r) = [φT
j (r),−y

T(r − 1),−yT(r − 2), · · · ,

− yT(r − nh)]T, (10)

ϕ̂j(r) = [ψT
j (r),−ŵj(r − 1),−ŵj(r − 2), · · · ,

− ŵj(r − ne), v̂j(r − 1),

v̂j(r − 2), · · · , v̂j(r − nk )]T, (11)

φ̂jf (r) = φj(r)+
ne∑
i=1

êi(r − 1)φj(r − i)

−

nk∑
i=1

k̂i(r − 1)φ̂jf (r − i), (12)

ŷf (r) = y(r)+
ne∑
i=1

êi(r)y(r − i)−
nk∑
i=1

k̂i(r)ŷf (r − i),

(13)

ŵjf (r) = yj(r)+
nh∑
i=1

ĥij(r)y(r − i)− φT
j (r)θ̂ (r)

−

nk∑
i=1

k̂i(r)ŵjf (r − i), (14)

v̂jf (r) = vj(r)−
nk∑
i=1

k̂i(r)v̂jf (r − i), (15)

ϑ̂ j(r) = [η̂T

j (r), ê
T

j (r), k̂
T

j (r)]
T, (16)

ŵj(r) = yj(r)− ψT
j (r)η̂j(r), (17)

v̂j(r) = yj(r)− ϕ̂
T

j (r)ϑ̂ j(r), (18)

θ̂ (r) =
θ̂1(r)+ θ̂2(r)+ · · · + θ̂m(r)

m
, (19)

ê(r) =
ê1(r)+ ê2(r)+ · · · + êm(r)

m
, (20)

k̂(r) =
k̂1(r)+ k̂2(r)+ · · · + k̂m(r)

m
, (21)

ϑ̂(r) = [θ̂
T
(r), ĥ

T

1(r), ĥ
T

2(r), · · ·, ĥ
T

m(r), ê
T(r), k̂

T
(r)]T. (22)

The flowchart of the ML-RGELS algorithm for computing
ϑ̂(r) is shown in Figure 2.
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FIGURE 2. The flowchart of the ML-RGELS algorithm for computing ϑ̂(r ).

IV. THE FILTERING BASED MAXIMUM LIKELIHOOD
RECURSIVE GENERALIZED EXTENDED LEAST
SQUARES ALGORITHM
The data filtering technology is an effective method to solve
the parameter estimation problems of the colored noise sys-
tems. A filtering based maximum likelihood recursive gen-
eralized extended least squares algorithm is derived in this
section. Through the data filtering, the subsystem can be
transformed into a controlled autoregressive moving average
model and a noise model.

Define

φ1j(r) := E(z)φT
j (r) ∈ Rn,

y1(r) := E(z)y(r) ∈ Rm.

Multiplying both sides of Equation (2) by E(z) yields

H j(z)E(z)y(r) = E(z)φT
j (r)θ + K (z)vj(r). (23)

Then Equation (23) can be written as

H j(z)y1(r) = φ1j(r)θ + K (z)vj(r). (24)

This is the controlled autoregressive moving average model.
Define the parameter vector ϑ1j and the information
vector ϕ1j(r):

ϑ1j := [θ T,h1j,h2j, · · · ,hnhj, k1, k2, · · · , knk ]
T
∈ Rn1 ,

n1 := n+ mnh + nk ,

ϕ1j(r) := [φT
1j(r),−y

T
1(r − 1),−yT1(r − 2), · · · ,

− yT1(r − nh), vj(r − 1),

vj(r − 2), · · · , vj(r − nk )]T ∈ Rn1 .

Then we can get the identification model of this model:

y1j(r) = ϕT
1j(r)ϑ1j + vj(r). (25)

Define the intermediate variable

wj(r) :=
K (z)
E(z)

vj(r). (26)

Define the information vectors ϕej(r) and ϕkj(r):

ϕej(r) := [−wj(r − 1),−wj(r − 2), · · · ,

−wj(r − ne)]T ∈ Rne ,

ϕkj(r) := [vj(r − 1), vj(r − 2), · · · , vj(r − nk )]T ∈ Rnk .

Then Equation (26) can be written as

wj(r) = [1− E(z)]wj(r)+ K (z)vj(r)

= ϕT
ej(r)e+ ϕ

T
kj(r)k+ vj(r). (27)

Define and minimize the criterion function

J1(ϑ1j) :=
1
2

N∑
r=1

v2j (r)
∣∣∣
ϑ̂1jML

= min,

subject to

vj(r) =
1

K (z)
[H j(z)y1(r)− φ1j(r)θ ]. (28)

Let ĥj(r), ê(r), k̂(r) and ϑ̂1j(r) be the estimates of hj, e, k
and ϑ1j at time r , respectively,

ĥj(r) := [ĥ1j(r), ĥ2j(r), · · · , ĥnhj(r)]
T,

ê(r) := [ê1(r), ê2(r), · · · , êne (r)]
T,

k̂(r) := [k̂1(r), k̂2(r), · · · , k̂nk (r)]
T,

ϑ̂1j(r) := [θ̂
T
(r), ĥ

T

j (r), k̂
T
(r)]T.

Then the estimates of E(z) and F(z) at time r can be written as

Ê(r, z) := 1+ ê1(r)z−1 + ê2(r)z−2 + · · · + êne (r)z
−ne ,

K̂ (r, z) := 1+ k̂1(r)z−1 + k̂2(r)z−2 + · · · + k̂nk (r)z
−nk .
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Furthermore, the estimates φ̂1j(r) and ŷ1(r) of φ1j(r) and
y1(r) can be obtained by

φ̂1j(r) = Ê(r − 1, z)φT
j (r)

= φT
j (r)+ ê1(r − 1)φT

j (r − 1)+ · · ·

+ êne (r − 1)φT
j (r − ne),

ŷ1(r) = Ê(r − 1, z)y(r)

= y(r)+ ê1(r − 1)y(r − 1)+ · · ·

+ êne (r − 1)y(r − ne).

Define the filtered information vector

ϕ̂1jf (r) := −
∂vj(r)
∂ϑ1j

∣∣∣∣
ϑ̂1j(r−1)

= −

[∂vj(r)
∂θ

,
∂vj(r)
∂h1j

,
∂vj(r)
∂h2j

, · · · ,
∂vj(r)
∂hnhj

,

∂vj(r)
∂k1

,
∂vj(r)
∂k2

, · · · ,
∂vj(r)
∂knk

]T
ϑ̂1j(r−1)

. (29)

From (28), the filtering values are calculated as follows:

∂vj(r)
∂θ

∣∣∣∣
ϑ̂ j(r−1)

= −[K̂ (r − 1, z)]−1φ̂1j(r) = −φ̂jf (r),

∂vj(r)
∂hij

∣∣∣∣
ϑ̂ j(r−1)

= [K̂ (r − 1, z)]−1ŷ1(r − i) = z−iŷf (r),

∂vj(r)
∂ki

∣∣∣∣
ϑ̂ j(r−1)

= −[K̂ (r − 1, z)]−1v̂j(r − i) = −z−iv̂jf (r),

where φ̂jf (r), ŷf (r) and v̂jf (r) can be computed by

φ̂jf (r) := [K̂ (r − 1, z)]−1φ̂1j(r)

= φ̂1j(r)−
nk∑
i=1

k̂i(r − 1)φ̂jf (r − i),

ŷf (r) := [K̂ (r − 1, z)]−1ŷ1(r)

= ŷ1(r)−
nk∑
i=1

k̂i(r − 1)ŷf (r − i),

v̂jf (r) := [K̂ (r − 1, z)]−1v̂j(r)

= v̂j(r)−
nk∑
i=1

k̂i(r − 1)v̂jf (r − i).

Then the filtered information vector ϕ̂jf (r) can be rewritten as

ϕ̂jf (r) = [φ̂
T

jf (r),−ŷ
T

f (r−1),−ŷ
T

f (r − 2), · · · ,−ŷTf (r − nh),

v̂jf (r − 1), v̂jf (r − 2), · · · , v̂jf (r − nk )]T.

From (25), we have vj(r) = y1j(r) − ϕT
1j(r)ϑ1j. Replacing

y1j(r), ϕ1j(r) and ϑ1j with ŷ1j(r), ϕ̂1j(r) and ϑ̂1j(r), the
estimate v̂j(r) of vj(r) can be calculated as follows:

v̂j(r) = ŷ1j(r)− ϕ̂
T

1j(r)ϑ̂1j(r),

ϕ̂1j(r) = [φ̂
T

1j(r),−ŷ
T

1(r−1),−ŷ
T

1(r − 2), · · · ,−ŷT1(r − nh),

v̂j(r − 1), v̂j(r − 2), · · · , v̂j(r − nk )]T.

Minimizing the cost function J1(ϑ1j), then the filtering based
maximum likelihood recursive generalized extended least
squares algorithm for estimating ϑ1j can be summarized as
follows:

ϑ̂1j(r) = ϑ̂1j(r − 1)+ L1j(r)[ŷ1j(r)− ϕ̂
T

1j(r)ϑ̂1j(r − 1)],

(30)

L1j(r) =
P1j(r − 1)ϕ̂1jf (r)

1+ ϕ̂T

1jf (r)P1j(r − 1)ϕ̂1jf (r)
, (31)

P1j(r) = [I − L1j(r)ϕ̂
T

1jf (r)]P1j(r − 1), (32)

θ̂ (r) =
1
m
[θ̂1(r)+ θ̂2(r)+ · · · + θ̂m(r)], (33)

k̂(r) =
1
m
[k̂1(r)+ k̂2(r)+ · · · + k̂m(r)], (34)

ϕ̂1jf (r) = [φ̂
T

jf (r),−ŷ
T

f (r − 1),−ŷTf (r − 2), · · · ,

− ŷTf (r − nh), v̂jf (r − 1),

v̂jf (r − 2), · · · , v̂jf (r − nk )]T, (35)

ϕ̂1j(r) = [φ̂
T

1j(r),−ŷ
T

1(r − 1),−ŷT1(r − 2), · · · ,

− ŷT1(r − nh), v̂j(r − 1),

v̂j(r − 2), · · · , v̂j(r − nk )], (36)

φ̂jf (r) = φ̂1j(r)−
nk∑
i=1

k̂i(r − 1)φ̂jf (r − i), (37)

ŷf (r) = ŷ1(r)−
nk∑
i=1

k̂i(r − 1)ŷf (r − i), (38)

v̂jf (r) = v̂j(r)−
nk∑
i=1

k̂i(r − 1)v̂jf (r − i), (39)

φ̂1j(r) = φ
T
j (r)+

ne∑
i=1

êi(r − 1)φT
j (r − i), (40)

ŷ1(r) = y(r)+
ne∑
i=1

êi(r − 1)y(r − i), (41)

v̂j(r) = ŷ1j(r)− ϕ̂
T

1j(r)ϑ̂1j(r), (42)

ϑ̂1j(r) = [η̂j(r), k̂
T
(r)]T. (43)

For the identification model in (27), minimizing the cost
function

J1(e) :=
N∑
r=1

[wj(r)− ϕT
ej(r)e− ϕ

T
kj(r)k]

2,

we can obtain the following recursive least squares relation
to estimate the parameter vector e:

êj(r) = êj(r − 1)

+Lej(r)[ŵj(r)− ϕT
ej(r)ê(r − 1)− ϕ̂T

kj(r)k̂(r)],

Lej(r) = Pej(r − 1)ϕej(r)[1+ ϕ
T
ej(r)Pej(r − 1)ϕej(r)]

−1,

Pej(r) = [I − Lej(r)ϕT
ej(r)]Pej(r − 1), Pej(0) = p0Ine .
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Let the estimate of ϕej(r) be:

ϕ̂ej(r) := [−ŵj(r−1),−ŵj(r − 2), · · · ,−ŵj(r−ne)]T∈Rne .

From (4), we have wj(r) = yj(r)−ψT
j (r)ηj, replacing ηj with

its estimate η̂j(r), the estimate ŵj(r) ofwj(r) can be calculated
as follows:

ŵj(r) = yj(r)− ψT
j (r)η̂j(r). (44)

Therefore, the recursive generalized extended least squares
algorithm for estimating the parameter vector e is summa-
rized as follows:

êj(r) = êj(r − 1)+ Lej(r)

× [ŵj(r)− ϕ̂
T

ej(r)ê(r − 1)− ϕ̂T

kj(r)k̂(r)], (45)

Lej(r) = Pej(r − 1)ϕ̂ej(r)[1+ ϕ̂
T

ej(r)Pej(r − 1)ϕ̂ej(r)]
−1,

(46)

Pej(r) = [I − Lej(r)ϕ̂
T

ej(r)]Pej(r − 1), (47)

ê(r) =
1
m
[ê1(r)+ ê2(r)+ · · · + êm(r)], (48)

ϕ̂ej(r) = [−ŵj(r − 1),−ŵj(r − 2), · · · ,−ŵj(r − ne)]T,

(49)

ϕ̂kj(r) = [v̂j(r − 1), v̂j(r − 2), · · · , v̂j(r − nk )]T, (50)

ŵj(r) = yj(r)− ψT
j (r)η̂j(r), (51)

ψ j(r) = [φT
j (r),−y

T(r − 1),−yT(r − 2), · · · ,

− yT(r − nh)]T, (52)

ϑ̂(r) = [θ̂
T
(r), ĥ

T

1(r), ĥ
T

2(r), · · ·, ĥ
T

m(r), ê
T(r), k̂

T
(r)]T.

(53)

Equations (30)–(43) and (45)–(53) make up the filtering
based maximum likelihood recursive generalized extended
least squares (F-ML-RGELS) algorithm. The computation
process of the F-ML-RGELS algorithm is summarized as
follows.

1) To initialize. Let r = 1, and give the initial values
ϑ̂1j(0) = 1n1/p0, êj(0) = 1ne/p0, φ̂jf (r) = 1n/p0,
ŷf (r − i) = 1m/p0, v̂jf (r − i) = 1/p0, v̂j(r − i) = 1/p0,
ŵj(r − i) = 1/p0, P1j(0) = p0In1 , Pej(0) = p0Ine , i =
1, 2, · · · ,max[nh, ne, nk ], p0 = 106, j = 1, 2, · · · ,m.
Set the data length L.

2) Gather the observation data y(r) and Φs(r), compute
the filtered information vector φ̂1j(r) and the filtered
output vector ŷ1(r) by (40) and (41), and construct the
information vectors ϕ̂1j(r) and ψ j(r) by (36) and (52).

3) Calculate the filtered vector φ̂jf (r) using (37) and con-
struct the filtered information vector ϕ̂1jf (r) using(35).

4) Calculate the gain vector L1j(r) and the covariance
matrix P1j(r) using (31) and (32).

5) Calculate the parameter estimate ϑ̂1j(r) using (30),
(j = 1, 2, · · · ,m).

6) Read η̂j(r) from ϑ̂ j(r) in (43) and calculate ŵj(r) and
v̂j(r) using (51) and (42).

7) Compute the information vectors ϕ̂ej(r) and ϕ̂kj(r) by
(49) and (50).

8) Compute the gain vector Lej(r) by (46) and the covari-
ance matrix Pej(r) by (47).

9) Update the parameter estimate êj(r) by (45).
10) Compute the filtered output vector ŷf (r) and v̂jf (r) by

(38) and (39).
11) Compute the parameter estimates θ̂ (r), k̂(r) and ê(r) by

(33), (34) and (48).
12) Update the parameter estimate ϑ̂(r) by (53).
13) Increase r by 1 and go to Step 2.
Remark 1: The system is broken down into several subsys-

tems based on the number of the system outputs. In this way,
the maximum likelihood principle can be used more easily in
parameter identification.
Remark 2: The data filtering method in system identifica-

tion only changes the structure of the system and does not
change the relationship between the inputs and outputs. The
subsystem to be identified is transformed into a controlled
autoregressive moving average model and a noise model.
Remark 3: Compared with the ML-RGELS algorithm,

the introduction of the data filtering technique improves
the parameter estimation accuracy of the F-ML-RGELS
algorithm.

V. EXAMPLE
Consider the following multivariate equation-error autore-
gressive moving average model:

H(z)y(r) = Φs(r)θ +
K (z)
E(z)

v(r),

θ = [θ1, θ2]T = [−0.85, 0.61]T,

E(z) = 1+ e1z−1 = 1+ 0.01z−1,

K (z) = 1+ k1z−1 = 1− 0.26z−1,

H(z) = I +H1z−1

=

[
1 0
0 1

]
+

[
h11 h12
h21 h22

]
z−1

=

[
1 0
0 1

]
+

[
0.23 0.50
−0.70 0.53

]
z−1,

ϑ1 = [θ1, θ2, h11, h12, e1, k1]T

= [−0.85, 0.61, 0.23, 0.50, 0.01,−0.26]T,

ϑ2 = [θ1, θ2, h21, h22, e1, k1]T

= [−0.85, 0.61,−0.70, 0.53, 0.01,−0.26]T,

ϑ = [θ1, θ2, h11, h12, h21, h22, e1, k1]T

= [−0.85, 0.61, 0.23, 0.50,−0.70, 0.53,

0.01,−0.26]T.

In simulation, the data length L = 3000. Φs(r) is a
2 × 2 matrix sequence which contains the input-output
data, y(r) ∈ R2 is the output vector of this model, and
v(r) ∈ R2 as the white noise vector with zero mean and the
noise variances σ 2

1 = σ 2
2 = σ 2

= 0.402. Applying the
ML-RGELS algorithm and the F-ML-RGELS algorithm to
estimate the parameters of this model, the estimation errors
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FIGURE 3. The F-ML-RGELS and ML-RGELS estimation errors
versus r (σ2 = 0.402).

δ := ‖ϑ̂(r)− ϑ‖/‖ϑ‖ versus r are shown in Figure 3. The
F-ML-RGELS parameter estimates are plotted in Figures 5.

Applying the F-ML-RGELS algorithm to estimate the
parameters of this model with different variances σ 2

= 0.402

and σ 2
= 1.002, the parameter estimates and their errors are

shown in Table 1.
To show the effectiveness of the estimated model obtained

by the F-ML-RGELS algorithm, we choose the parameter
estimates of the seventh row in Table 1 as the final estimated
model, that is[
1+ 0.22024z−1 0.49714z−1

−0.70579z−1 1+ 0.51896z−1

]
y(r)

= Φs(r)
[
−0.85481
0.61899

]
+

1− 0.26985z−1

1− 0.00524z−1
v(r).

Then, the model predicted outputs can be represented as

ŷ1(r) = y1(r)− ŷ1f (r)− ĥ11z−1ŷ1f (r)− ĥ12z−1ŷ2f (r)

+ 8̂1f θ1 + 8̂2f θ2

= y1(r)− ŷ1f (r)− 0.22024ŷ1f (r − 1)

− 0.49714ŷ2f (r−1)−0.854818̂1f +0.618998̂2f ,

ŷ2(r) = y2(r)− ŷ2f (r)− ĥ21z−1ŷ2f (r)− ĥ22z−1ŷ2f (r)

+ 8̂3f θ1 + 8̂4f θ2

= y2(r)− ŷ2f (r)+ 0.70579ŷ1f (r − 1)

− 0.51896ŷ2f (r−1)−0.854818̂3f +0.618998̂4f ,

ŷ1f (r) = Ê(z)y1(r)+ [1− K̂ (z)]y1f (r)

= y1(r)− 0.00524y1(r − 1)+ 0.26985ŷ1f (r − 1),

FIGURE 4. The F-ML-RGELS estimation errors versus r with different σ2.

ŷ2f (r) = Ê(z)y2(r)+ [1− K̂ (z)]y2f (r)

= y2(r)− 0.00524y2(r − 1)+ 0.26985ŷ2f (r − 1),

8̂1f (r) = Ê(z)8s1(r)+ [1− K̂ (z)]8̂1f (r)

= 8s1(r)− 0.005248s1(r−1)+0.269858̂1f (r−1),

8̂2f (r) = Ê(z)8s2(r)+ [1− K̂ (z)]8̂2f (r)

= 8s2(r)− 0.005248s2(r−1)+0.269858̂2f (r−1),

8̂3f (r) = Ê(z)8s3(r)+[1− K̂ (z)]8̂3f (r)

= 8s3(r)− 0.005248s3(r−1)+0.269858̂3f (r−1),

8̂4f (r) = Ê(z)8s4(r)+[1− K̂ (z)]8̂4f (r)

= 8s4(r)− 0.005248s4(r−1)+0.269858̂4f (r−1).

The root mean square error is used to describe the error
between the true outputs and the predicted outputs, which is
defined as

Error1 =
[ 1
200

3200∑
r=3001

[ŷ1(r)− y1(r)]2
]1/2
= 0.36164,

Error2 =
[ 1
200

3200∑
r=3001

[ŷ2(r)− y2(r)]2
]1/2
= 0.41900.

The outputs y1(r) and y2(r), the predicted outputs ŷ1(r)
and ŷ2(r), and the prediction errors ŷ1(r)− y1(r) and ŷ2(r)−
y2(r) of the estimated model versus r are shown in Figure 6.
From Table 1 and Figures 3–6, we can draw the following

conclusions.

TABLE 1. The F-ML-RGELS estimates and errors (σ2 = 0.402, σ2 = 1.002).
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FIGURE 5. The F-ML-RGELS estimates versus r (σ2 = 0.402).

FIGURE 6. The system outputs, the predicted outputs and the prediction
errors versus r for the F-ML-RGELS (σ2 = 0.402).

• The F-ML-RGELS and ML-RGELS estimation errors
are becoming small as the data length r increases.
This shows that the two algorithms are effective – see
Figure 3.

• The estimation errors are becoming smaller as the noise
variance decreases under the same data length in the
F-ML-RGELS algorithm – see Table 1 and Figure 4.

• The F-ML-RGELS estimates are very close to their true
values – see Figures 5.

• The predicted outputs of the F-ML-RGELS algorithm
are very close to the true outputs – see Figures 6.

• The F-ML-RGELS algorithm has smaller parameter
estimation errors than the ML-RGELS algorithm – see
Figure 3.

VI. CONCLUSIONS
This paper considers the parameter identification problems
for the multivariate equation-error autoregressive moving
average systems. An F-ML-RGELS algorithm is proposed
for the multivariate equation-error systems by using the
data filtering technique and the maximum likelihood prin-
ciple. In addition, an ML-RGELS algorithm is presented
as a comparison. The numerical example shows that the
F-ML-RGELS algorithm is effective and has smaller param-
eter estimation errors than the ML-RGELS algorithm. The
proposed algorithm can be extended to other multivariate
systems [33], [34] and other fields [35]–[38]. The proposed
algorithms in this paper can combine other identification
methods [39]–[47], statistical strategies [48]–[55] and other
methods [56]–[62] to study parameter identification of differ-
ent systems and can be applied to other fields [63]–[71].
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