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ABSTRACT The arrival of 5G is accompanied by massive data transmission between mobile devices (MDs)
and huge transmission energy consumption in the wireless networks. Therefore, how message applications
select the appropriate relay MDs to complete the efficient data transmission process in the opportunistic
mobile social networks (OMSNs)? At present, designing an efficient routing–forwarding algorithm is
extremely challenging. Some routing–forwarding algorithms choose appropriate nodes as relay nodes based
on the similarity between nodes, but most existing routing–forwarding algorithms only consider a few
similar factors and even completely ignore the importance of movement similarity in data transmission of
the node. In particular, existing routing–forwarding algorithms will bring extra energy consumption to the
nodes in the wireless networks, and excessive energy consumption will further affect the delay and data
transmission efficiency. In order to solve the problems in the existing strategies, we apply the mobile edge
computing (MEC) to OMSNs, and we propose the fuzzy reasoning routing–forwarding (FRRF) algorithm
that integrates the movement and social similarity in the MEC-based OMSNs. In detail, the fuzzy evaluation
of themovement and social similarity is integrated to determine the transmission priority value betweenMDs,
and finally, the transmission priority between MDs is compared to make transmission decision. Through
simulation experiment and comparison with other algorithms, the correctness of the theoretical analysis and
the efficiency of the FRRF algorithm in energy consumption, delay, and transmission efficiency are verified.

INDEX TERMS Opportunistic mobile social networks, mobile edge computing, routing-forwarding
algorithm, mobile device similarity, fuzzy reasoning system.

I. INTRODUCTION
With the advent of 5G, in order to satisfy the massive data
demand, the energy consumption of wireless communication
network has also increased sharply when paying attention
to the improvement on data transmission rate [1]. By 2020,
there will be 50 billion connected devices in the world [2].
In addition, FIGURE 1 shows cisco’s average growth forecast
for mobile data traffic around the world. As we can see from
FIGURE 1, mobile data traffic will increase sevenfold from
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2016 to 2021, reaching 48270 PB per month [3]. However,
the explosive growth of data demand forced the increase in
data service rate, and making energy consumption one of
the most concerned points in the wireless communication
network in the near future. It is conceivable that high energy
consumption will leave the entire network in a low energy
state, which in turn increase delay and decrease transmission
efficiency. So energy efficiency has become one of the most
important performance markers in the next generation 5G
heterogeneous network [4], [5].

Fortunately, MDs carried by users have different similarity
factors, such as residence, work place and interest. We can
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FIGURE 1. Mobile data traffic from 2016 to 2021.

use the similarity factor between MD to complete effective
data transmission to improve energy efficiency. However,
the physical size ofMDs tends to be small in order to meet the
compactness and portability of MDs, so the battery capacity
and processor performance of MDs in wireless communica-
tion networks are limited [6]. However, with the rapid growth
of mobile data traffic in wireless communication networks,
the number of data transmission and the data volume per
transmission in a network are also greatly improved, but
MDs do not have enough capacity to transmit a large amount
of data due to limited battery capacity and processor per-
formance. Also, MDs need not only to transmit data, but
also to calculate some tasks, so MDs use more energy. And
at present, many compute-intensive mobile applications are
deployed on MDs, so the time for MDs to enter the sleep
state is faster because of low energy [7]. As a result, the issue
of energy efficiency becomes more serious and challenging
in wireless communication networks. Fortunately, Gartner
predicts that more than 250 million smart cars will be con-
nected to high-tech networks by 2020. At the same time,
a Nvidia px2 self-driving car has the same computing power
as 150MacBook pro’s. If vehicles can be utilized, not only the
idle vehicle resources can be used reasonably, but also the cost
of physical infrastructure can be greatly reduced [8], [9]. In a
word, to improve energy efficiency, we start from reducing
energy consumption of MDs. Especially, in order to reduce
the energy consumption of MDs in wireless communication
networks, we mainly study from the following two aspects.

On the one hand, we propose the MEC-based OMSNs.
OMSNs derive from the end-to-end communication of
mobile devices carried by people based on the encounter
opportunity [10], [11]. When the transmission domain
between users cannot be reached, OMSN usually adopt
the store-and-forward method to complete the data trans-
mission process [12], [13], and the message carrying MD
forwards the message to a certain relay MD or the desti-
nation MD by means of the encounter opportunity caused
by movement to forward. In wireless networks, MDs in
an unpredictable geographical location need to communi-
cate with each other at unpredictable geographical inter-
vals. Therefore, as a multi-hop wireless technology, OMSN

proposes that end-to-end data transmission can be achieved
through ‘‘opportunistic communication’’. Such communi-
cation relies on the movement of MDs and the effec-
tive routing-forwarding algorithm, so as to give a MD the
opportunity to act as a relay MD in some end-to-end data
transmission. In addition, an effective routing-forwarding
algorithm is to select reliable relay MDs for efficient
data transmission [14]. Compare to other routing-forwarding
algorithms, an effective routing-forwarding algorithm have
the fewer number of hops in all successful message for-
warding processes, and then the less energy and delay that
MDs spend in the forwarding processes. Therefore, how to
select reliable relay MDs is a pretty important problem in a
routing-forwarding algorithm?

On the other hand, besides the effective routing-forwarding
algorithm, we innovatively apply MEC to 5G OMSNs. MEC
is a promising technology that allows users to access the
computing services of small servers distributed close to users,
which are defined as edge clouds in MEC [6], [18]. More-
over, MEC differs from cloud computing in that its com-
puting resources are distributed around the network and are
close to the end users. As a result, the energy consump-
tion and delay during communication are reduced when
MDs carried by users use the computing resources of edge
cloud [19]. Generally, edge cloud provides computing and
caching services for MDs in the network. Hence, MDs with
limited performance offload some computationally intensive
tasks to edge cloud and use the strong computing power
of edge cloud relative to MDs to process tasks. Alterna-
tively, MDs directly cache tasks that need to be processed in
MDs frequently into edge cloud [20]. In wireless communi-
cation networks, the forwarding of messages betweenMDs is
extremely frequent. Therefore, it is the best choice to cache
the routing-forwarding algorithm directly on the edge cloud
compared with offloading a task before each next hop optimal
relay MD is selected.

To sum up, in order to solve the problem of delay, espe-
cially high energy consumption in 5G network, and improve
transmission efficiency and energy efficiency of the whole
network, this paper proposes the FRRF algorithm based on
MDs similarity in a MEC-based OMSN. The FRRF algo-
rithm uses the historical movement information and social
attributes of MDs to determine the similarity between MDs.
Based on fuzzy reasoning system and information entropy,
the transmission priority value is calculated to comprehen-
sively evaluate the movement and social similarity between
MDs and destination MDs. By comparing the transmission
priority value obtained, the message carrying MD can for-
ward themessage to theMDwith higher transmission priority
value, that is, the message carrying MD provides the oppor-
tunity for a MD with higher transmission priority value to act
as a relay MD. The main contributions of this paper are as
follows:
• We innovatively apply MEC to the OMSNs in 5G to
relieve the computing pressure of MDs in the pro-
cess of routing and forwarding [18], [21]. Moreover,
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we proposed the FRRF algorithm in the MEC-based
OMSN. For the FRRF algorithm, based on fuzzy reason-
ing system and information entropy, the car takes both
the MD movement and social similarity into account
to determines the transmission priority value between
MDs, and compares the transmission priority value
between MDs in the network to select the next hop
optimal relay MD.

• In order to accurately determine the transmission rela-
tionship between MDs in the MEC-based system,
the following operations within the system will be per-
formed. First, MDs collect and update their respective
status information by means of the encounter between
two MDs, and then offload their respective status infor-
mation to the corresponding nearest car, so that the car
can use the FRRF algorithm to accurately calculate the
comprehensive similarity betweenMDs to determine the
special transmission relationship between MDs.

• Simulation experiments simulate the MEC-based
OMSN. The simulation results show the effectiveness
of the proposed FRRF algorithm. More specifically,
the simulation results show that the FRRF algorithm
improves the delivery ratio of the entire wireless net-
work, and reduces overhead on average, average end-to-
end delay and energy consumption of the entire wireless
network.

II. RELATED WORKS
In recent years, the academic has done a lot of
research around the routing-forwarding algorithm in
OMSNs [11], [16], [22]–[24], and proposed different effec-
tive methods under different application scenarios.
In OMSNs, routing-forwarding algorithms are usually
divided into two types: context-aware routing-forwarding
algorithms and non-context-aware routing-forwarding algo-
rithms. Context-aware routing-forwarding algorithm based
on the similarity of nodes to select relay nodes through
the social relations between nodes and the contextual infor-
mation related to nodes [16], [22]. In addition, although
context-aware routing-forwarding algorithms can improve
the transmission environment and improve transmission effi-
ciency, these algorithms usually need to manage a large
amount of information and perform heavy computing tasks,
thus bringing additional delay and energy consumption to the
network. However, non-context-aware routing-forwarding
algorithms perform flooding transmission, which brings
many redundant message group copies to the network, and
eventually leads to extremely high forwarding delay and
energy consumption of the network [11], [23], [24]. It can
be seen that both the context-aware routing-forwarding algo-
rithm and the non-context-aware routing-forwarding algo-
rithm will bring some extra delay and energy consumption
to the entire wireless network, especially the non-context-
aware routing-forwarding algorithm. Therefore, edge cloud
is applied to OMSN to reduce the delay and energy consump-
tion of nodes in the network. In this paper, we mainly studies

the context-aware routing-forwarding algorithm based on
node similarity in the MEC-based OMSN. Next, we will
discuss some of the newer context-aware routing-forwarding
algorithms, some of the context-aware routing-forwarding
algorithms that involve mathematical methods, and the latest
research in MEC.

In context-aware routing-forwarding algorithms, many
studies calculate the similar level between nodes to define the
relationship between nodes, such as the possibility of a future
encounter between nodes, themoving trajectory of nodes, and
community partitioning of nodes. Wang et al. [25] innova-
tively extracted social identity from messages generated by
mobile nodes, and proposed the SlaOR algorithm that takes
into account themultiple social identities of mobile nodes and
their corresponding social influences. By the final simulation
results, the performance of data transmission can be improved
by taking social identity into account. However, the SlaOR
algorithm does not consider a variety of social attributes.
Wu et al. [26] proposed the SRBRA algorithm, which is
based on social relations. Firstly, real-time data generated
by nodes are analyzed and summarized, and then specific
factors affecting social relations between nodes are extracted
to calculate the value of social relations between nodes.
Finally, according to the social relation value between nodes,
the social relation value between the neighbor node and the
destination node is sorted to select the optimal next-hop relay
node to complete the transmission of messages. However,
the SRBRA algorithm does not take the mobility of nodes
into consideration. Besides,Mayer et al. [27] studied a frame-
work that takes individual context, society and relationships
as matching opportunity predictors. The proposed algorithm
based on a series of studies can predict the cooperation oppor-
tunities of data transmission between nodes, and then deter-
mine the end-to-end communication between nodes in the
network according to the cooperation opportunities between
nodes.

Some mathematical methods and models are usually used
in context-aware routing-forwarding algorithms, such as
markov decision model, set theory and graph theory. Two of
the next three papers use game theory and one uses graph
theory. Nguyen and Nahrstedt [28] proposed a new context
routing protocol (GT-ACR) based on game theory to select
the most appropriate relay node to forward packets. Through
the non-zero cooperation times of two nodes, the GT-ACR
protocol builds the game depends on the context information,
the distance between the corresponding node and the target
node, and the encounter index. In [29], in order to determine
the cost to achieve efficient data transmission, Talipov et al.
designed a model based on user context replication and the
graph theory, which is an online backpack problem. The
scheme learns and predicts the context information of each
node in order to calculate the data delivery probability of
each node, and the number of copied messages is adjusted
based on the given delivery threshold. However, the scheme
only considers the data information in the process of node
transmission, which means the decision accuracy of message
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transmission needs to be improved in the process of transmis-
sion. Besides, in [30], in order to find the vertex cover suitable
for the perceptive tasks in the group, Phuong Nguyen and
Klara Nahrstedt designed a new context-aware approxima-
tion algorithm. At the same time, in order to assign the sensor
task to a more ‘‘socialized’’ device for better sensor coverage,
a human-centered guidance strategy for initial assignment of
the sensor device based on participants’ meta information
was also designed. And the node of this algorithm com-
pletes the individual coverage of a social vertex with the
human-centered information.

MEC has many research points, such as resource manage-
ment on MEC, security and privacy issues in MEC, caching
issues on MEC server, mobility management, deployment
of MEC server, and green energy MEC. Some of the exist-
ing work uses MEC computing resources to relieve their
own computing pressure [31]–[35]. In [31], in order to study
the video collaborative processing scheme, Long C et al.
proposed an edge computing framework for collaborative
processing of delay-sensitive video tasks onMDs. The frame-
work takes both video group matching and group informa-
tion into consideration to maximize the detection accuracy
of people in the video task deadline. In addition, both the
execution delay of tasks on the camera and the delay of
data offloaded to the edge server is reduced. In [32], under
the application scenarios of augmented reality and other
compute-intensive time-delay sensitive tasks, Chen M et al.
proposed the architecture of the software defined super-dense
network (SD-UDN). The devices under this architecture can
offload tasks to the edge cloud. The main purpose of the
paper is to solve the task offloading problem to minimize
delay. Especially, the task offloading problem is a NP hard
and mixed integer nonlinear programming problem, which
is composed of task assignment sub-problem and resource
allocation sub-problem. Li et al. [33] proposed new vehicle
network structure in the smart city scenario, and combined
optimization of cache, network and computing resources
to alleviate congestion in the network. In addition, this
structure introduces the programmable control principle of
software-defined network. And after modeling the service,
vehicle mobility and system state, the paper proposes the
joint resource management scheme to minimize the system
cost, namely the task execution time and network over-
head, in which this scheme is a partially observable Markov
decision-making process.

The rest of the paper is as follows: Section III shows the
modeling process of the FRRF algorithm. Section IV shows
the FRRF algorithm in detail and analyzes its performance.
Section V provides simulation experiments to verify the the-
oretical analysis of the FRRF algorithm and its effectiveness.
Finally, Section VI gives the conclusion of this paper. Some
key mathematical notations are explained in Table 1.

III. SYSTEM MODEL DESIGN
As shown in FIGURE 2, we consider a system ofMEC-based
OMSN, which consists of x MDs and s cars that have

strong computing power and cached the FRRF algorithm.
FIGURE 2 depicts the process of a message being forwarded
exactly from the start MD (MD 1) to the destination MD
(MD x). Since the MDs do not have strong computing power,
the cars with strong computing power are used to assist the
MDs in computing some tasks, which mainly refers to some
algorithms. To better understand a complete message forward
process, we clearly list the five steps involved in a specific
transmission process during message forwarding. A message
transmission process between two MDs involves three steps
of communication between the message carrying MD and
the car closest to the message carrying MD. In order to
leveraging the computing power of cars, all MDs except for
the destination MD in any message forwarding process have
to communicate with a car. The five stages in the process
of transfer a message to the next hop are shown below in
chronological order.
• In the first stage, MDs in the network share network
status information by encountering each other, so as to
achieve the purpose of collecting as much MD informa-
tion about the network as possible. The MD information
here mainly refers to the movement and social prefer-
ences information of the MD.

• In the second stage, message carryingMDoffloads some
information about the message (destination MD num-
ber) and MD information in the network collected by
the MD itself to its nearest car through the uplink.

• In the third stage, after receiving the information
offloaded by the message carrying MD in the two stage,
the car will take both the destination MD number of the
message and MD information in the network as input to
the FRRF algorithm. Then the car closest to the message
carrying MD executes the FRRF algorithm based on the
input data information. Finally, the optimal next hopMD
number is obtained.

• The fourth stage is that the car closest to the message
carrying MD returns the execution result (the optimal
next-hop MD number) of the FRRF algorithm to the
message carrying MD by downlink.

• In the fifth stage, the message carrying MD transfers the
message according to the optimal next hop MD number
received from the car.

Similarly, loop through these five steps until the message is
forwarded to the destination MD x, which means that the
forwarding process of the message is completed.

In this section, we consider some steps of the process
of message forwarding. The second, fourth and fifth stages
mentioned above is beyond the scope of our research, and
we mainly study the first stage and the FRRF algorithm
involved in the third stage. Next, we mainly discuss how
do MDs collect the network information and how do cars
select the optimal next hop delayMD by the FRRF algorithm,
that is car chooses a MD according to the FRRF algorithm
and gives the MD the opportunity to act as a relay MD in
the process of message forwarding. To avoid confusion and
ease of understanding, the whole process of the message
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FIGURE 2. A simple and successful message forwarding process in the mobile edge computing-based
opportunistic mobile social networks.

TABLE 1. Definition of key mathematical notations.

being transmitted from the start MD to the destination MD
is defined as forwarding, in which the message transmission
between MDs is briefly described as transmission.

A. COLLECT AND AFFLOAD NETWORK STATUS
INFORMATION
In order to get the network status information of MDs, there
exists a special preparatory period tprep where MDs collect
and update sufficient and accurate information about the
movement and social preferences ofMDs in the network. The
length of the preparatory period tprep usually set based on the
activity cycle of the MDs in the network [27]. After collect-
ing the network status information based on the encounter
between MDs , MDs offload the network status information
to the nearest car through the uplink.

Firstly, we quantify the process of collecting and updat-
ing MD movement and social habits during the preparatory
period. We define a triple to denote the state of MD n1
collected during a preparation period, as shown below

Staten1 = (Disn1, αn1,Listn1), (1)

where Disn1 and αn1 are the moving distribution of MD n1
and the eigenvector of MD n1 containing different social
attributes, respectively. Listn1 is the state sequence estab-
lished by MD n1 during a preparation period tprep, and Listn1
is defined as follows

Listn1 =< Statea, Stateb, . . . , Statem >, (2)

where Statea, Stateb, Statem are the states ofMD a, MD b and
MD m when they encounter MD n1 during the preparation
period tprep, respectively. It must be said that unlike the social
attributes of MDs, the moving distribution of MDs changes
with time, so updating the movement information of MDs in
time is beneficial to the timeliness of the collected data.

Meanwhile, during the preparation time tprep, once MDs
encounter, there will establish a five-tuple that contains all
the information of the two MD encounters, where the fifth
item of the five-tuple is the union of the two-MD state
sequence.Moreover, the exchange of information can be done
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through the cooperation of multiple MDs in the network.
So we use five-tuples EState1n1 to represent the encounter
information established when MD n1 encounters other MD
(such asMD n2) for the first time during the preparation time.
Also, in order to establish a data set about MD similarity,
the encounter information matrix will be established during
the preparation time. So we assume that MD n1 encounters
k MDs, and we establish matrix ESn1 that denote the k
encounter information of MD n1 during the preparation time.
EState1n1 and ESn1 are represented by equations (3) and (4) as
follows, respectively.

EState1n1 = Staten1
⋃

Staten2 (3)

= (Disn1, αn1,Disn2, αn2,Listn1,n2),

ESn1 = (EState1n1,EState
2
n1, . . . ,EState

k
n1). (4)

Secondly, we describe the process by which MD n1
offloads the encounter information matrix ESn1 to the nearest
car through the uplink. The wireless channels in the system
all follow the Small-scale Rayleigh fading, so the states of
wireless channels are independent. Moreover, the transmis-
sion rate between MD n1 and the nearest car to MD n1 is
given as follows:

rn1 = Bn1log2(1+
Pn1hn1
w0

), (5)

where Bn1 is the channel bandwidth of MD n1 in the offload-
ing process. Pn1 is the transmission power of MD n1. While
hn1 and w0 represent the channel gain and white noise power
level of MD n1 in the offloading process, respectively.

After the message carrying MD (MD n1) establishing the
encounter information matrix ESn1 through collecting the
information of theMDs in the network during the preparation
period and offloading the encounter information matrix ESn1
to the nearest car, the car determines the optimal message
transmission decision of MD n1 through fuzzy evaluation of
the movement and social similarity of theMDs in the network
and then return the optimal message transmission decision
to the message carrying MD (MD n1) by downlink. In this
paper, we do not consider the delay and energy consumption
in the downlink. This is because the amount of data returned
through the downlink is small, and the downlink transmission
rate is much higher than that of the uplink.

Next, we will model the FRRF algorithm in the following
two subsections.

B. PHASE 1 OF THE FRRF ALGORITHM: ASSESS MD
SIMILARITY
Based on the collected information, the car in theMEC-based
OMSN system will assess the movement and social similar-
ity between MDs. We first assess the movement similarity
between MDs.

In general, the more similar the moving trajectories
between MDs, the greater the likelihood that the message
will be forwarded successfully between MDs. Therefore,
we use the moving trajectories between MDs to describe the

movement similarity between MDs. Moreover, the moving
trajectory of a MD based on spatial and temporal information
of the MD, so the joint time point and communication area
in the FRRF algorithm are used to describe the moving
trajectories ofMDs in theMEC-basedOMSN system, such as
(t1n1, p

1
n1), (t

2
n1, p

2
n1), . . . , (t

i
n1, p

i
n1), . . . , (t

j
n1, p

j
n1), . . . , (t

Jn1
n1 , p

Jn1
n1 ),

where t jn1 and p
j
n1 indicate the time point and the communica-

tion area position ofMD n1 when j−thmessage transmission
between MD n1 and other MDs, respectively. And Jn1 is
the total number of message transmission that takes place
betweenMD n1 and otherMDs. Now, in the position set LS of
the all communication area in the network, we can calculate
the moving distribution Disn1 of MD n1 by the following
formula:

Disn1 =
Jn1∑
j=1

h(LS, pjn1)

Jn1
. (6)

In equation (6), if pjn1 ∈ LS, then h(LS, pjn1) = 1;
otherwise, h(LS, pjn1) = 0. This is because MD n1 can
communicate with other MDs in the same position set of
communication area LS, h(LS, pjn1) = 1.
In addition, we set different weights θ for different periods

based on the large difference in user’s geographic location
between working and non-working periods. In detail, every
day during work, each user repeats almost exactly the same
moving trajectory, such as from a user’s residence to the
user’s work place, so the weight value θ of the period will
be higher than non-working period. In contrast, users are
unrestricted in their activity during non-working period and
are therefore more likely to move randomly throughout the
entire communication area. In order to reduce the impact
of the non-working period, we give a smaller weight value
θ for the non-working period than for the working period.
Therefore, themoving similarityMSn1,n2 betweenMD n1 and
n2 is given in formula (7), which is show as follows:

MSn1,n2

=

∑Jn1
j=1

∑Jn2
i=1 θ (1t − |t

j
n1 − t

i
n2|)h(p

j
n1, p

i
n2)∑Jn1

j=1
∑Jn2

i=1 θ (1t − |t
j
n1 − t

i
n2|)

. (7)

|t jn1−t
i
n2| denotes the time interval between the j−thmessage

transmission of MD n1 and the i − th message transmission
of MD n2. And 1t is the time precision that denote the ratio
of all MDs in the same geographic location at the same time.
As for h(pjn1, p

i
n2), which is the position similarity between

the j − th message transmission of MD n1 and the i − th
message transmission of MD n2.
Secondly, the social similarity between MDs is evaluated

by studying the relationship between the social attributes of
MDs in the network. The social attribute eigenvector of MD
n1 is defined as follows:

αn1 = (An1,Bn1, . . . ,Yn1), (8)

where An1,Bn1, . . . ,Yn1 represent the different social
attribute sub-vectors of MD n1, and each MD in the system
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has y social attribute sub-vectors. For example, An1 =
(a1, a2, a3, a4) is the interest sub-vector, in which a1, a2,
a3 and a4 represent the different characteristic words of
the interest sub-vector, which are expressed as table ten-
nis, movies, music and climbing, respectively. If MD n1
only likes to play table tennis, then MD n1 only has one
characteristic word in the interest sub-vector An1, i.e., table
tennis, so An1 = (1, 0, 0, 0). Besides, we assume that MD
n1 encounters k MDs, and we establish matrix ESn1 that
denote the k encounter information ofMD n1. For the interest
sub-vectors of MD n1 and MD n2, the similarity of interest
sub-vector between the two MDs is given in formula (9).

simAn1,n2

=
An1An2 + ϕ

max(‖An1‖2, ‖An2‖2)+ ϕ

+
min(‖An1‖2, ‖An2‖2)− An1An2

‖Amax‖2
, (n1 6= n2), (9)

where ‖An1‖ and ‖An2‖ are interest sub-vector models of
eigenvectors of MD n1 and MD n2, respectively. Amax means
that all the characteristic words contained in the interest
sub-vector are 1, i.e., Amax = (1, 1, 1, 1), and ϕ represents
theminimum sub-vector. Consequently, we can easily tell that
0 ≤ simAn1,n2 ≤ 1.

In addition, by evaluating the similarity of all social
attributes sub-vectors between MD n1 and MD n2, we can
obtain the social similarity between MD n1 and MD n2,
as shown below

SSn1,n2
= w1simAn1,n2 + w2simBn1,n2+, . . . ,+wysim

Y
n1,n2,

(n1 6= n2), (10)

wherew1,w2, . . . ,wv, . . . ,wy are the weights of similarity of
different sub-vector between MD n1 and MD n2. We use an
improved entropy evaluation method to calculate the weights
of similarity of different sub-vector between MDs and give
the weight decision matrix M , which is shown below

M =



z11 · · · z1v · · · z1y
...

. . .
...

. . .
...

zu1 · · · zuv · · · zuy
...

. . .
...

. . .
...

zx1 · · · zxv · · · zxy

 (11)

where zuv is the v− th sub-vector of MD u, that is the v− th
social attribute value of MD u. Besides, the contribution level
of the v− th social attribute value of MD u is quantified as

Cuv =
zuv∑x
u=1 zuv

. (12)

And the contribution level of the v− th social attribute value
of all MD is as follows

TCv = −
1
lnx

x∑
u=1

Cuvln(Cuv). (13)

TCv ranges from 0 to 1. If the contribution level of v − th
social attribute value of eachMD approaches to be equal, then
TCv = 1.

Thus, the weight of a sub-vector can be determined accord-
ing to the corresponding contribution level. We now define
the contribution consistency level of eachMD on v− th social
attribute, i.e., gv = 1 − TCv. Then, the weight wv of v − th
sub-vector similarity is given in the equation (14). In particu-
lar, the adjusted weight w∗v is given in the equation (15) when
the message carry MD can also give the subjective assess
weight βv according to its historical experience.

wv =
gv∑y
v=1 gv

. (14)

w∗v =
βvgv∑y
v=1 βvgv

. (15)

In conclusion, based on the above research on the social
similarity ofMDs, theMDs in theMEC-based OMSN system
can be divided into different communication communities.
By taking advantage of the fact that MDs belonging to the
same communication community have more opportunities
to transmit data to each other, the success rate of message
forwarding between MDs can be greatly improved.

Next, according to the fuzzy reasoning system, we will
evaluate the transmission priority of MDs by combining the
movement similarity and social similarity of MDs.

C. PHASE 2 OF THE FRRF ALGORITHM: COMPUTE
TRANSMISSION PRIORITY BY THE FUZZY REASONING
SYSTEM
In the FRRF algorithm, we use the fuzzy reasoning system
to determine the movement similarity degree and social sim-
ilarity degree between MDs, and then calculate the transmis-
sion priority between MDs. In fact, the special relationship
between MDs can be determined by the similarity between
MDs. However, some unstable factors between MDs affect
the similarity between them. If the data transmission between
MDs is determined based on the affected similarity, it will
cause the MDs in the system to collect inaccurate network
state information. Therefore, we do not directly use similarity
between MDs to determine the data transmission between
MDs. We first use similarity between MDs to obtain a
transmission metric, which representing the fuzzy degree of
message forwarding between MDs and can effectively avoid
the disadvantages of the affected similarity between MDs.
Moreover, because of the extensive applicability of Mamdani
fuzzy system, we use Mamdani fuzzy system as the fuzzy
reasoning system in our paper. The fuzzy reasoning system
is composed of the fuzzifier, the fuzzy inference, and the
defuzzifier, respectively. Next, we will describe the three
components of the fuzzy reasoning system in detail.

Firstly, fuzzifier is used to compute the membership level
of fuzzy sets in fuzzy reasoning systems. For the fuzzifier in
our paper, movement similarity and social similarity are taken
as two input variables, and three fuzzy sets are defined for
both input variables, i.e., low, medium and high. Membership
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TABLE 2. Nine different situation for our proposed fuzzy reasoning
system.

level of each fuzzy set can be calculated by corresponding
membership function. Therefore, we define three different
membership functions for the three fuzzy sets. In general,
different membership functions are defined according to dif-
ferent scenarios, like triangular and trapezoidal. Since the
movement of MDs in the system follows a normal distribu-
tion, we define a normal distribution membership function to
evaluate the membership level of these two input variables in
our fuzzy reasoning system, as shown below

Fµ(b) =
1

√
2πσ

exp(−
(b− µ)2

2σ 2 ), (16)

where µ is the type of fuzzy set, and b is the specific value
of similarity between MDs. Besides, σ 2 is the variance of
the random variable. Therefore, we can get three normal
distribution membership functions and the three different
membership levels of fuzzy set according to the similarity
between MDs.

Secondly, we do fuzzy reasoning. In the Mamdani fuzzy
system, two input variables (movement similarity and social
similarity) correspond to three different fuzzy sets, so the
combination of the two input variables corresponds to nine
different fuzzy sets, which is shown in Table 2. Based on the
FRRF algorithm, we comprehensively consider the MSn1,n2
and SSn1,n2 between the MDs to evaluate the message trans-
mission priority, and then, according to the optimal next-hop
delayMDnumber returned by the corresponding car, themes-
sage carrying MD can forward the message to a delay MD.
Also, the nine message transmission priorities for these nine
different situations are given in Table 2, where level 1 has
the highest transmission priority, and the priority of level 1
to level 9 decreases step by step. It is easy to analyze from
Table 2 that the movement similarity between MDs has a
deeper impact on message forwarding than the social sim-
ilarity between MDs. On the one hand, the reason is that
the movement similarity reflects the similarity of the mov-
ing trajectories between MDs. Furthermore, the higher the
movement similarity betweenMDsmakes the twoMDsmore
likely to meet, the greater the possibility of message trans-
mission between MDs. On the other hand, social similarity
divides MDs into different communities according to their
social attributes. In detail, MDs with similar social attributes
will be divided into the same communities. And the higher the
possibility of transmitting messages between MDs belonging
to the same community.

Finally, we show the third part of the fuzzy reasoning
system after fuzzy reasoning, which is defuzzifier. Based on
the Mamdani fuzzy system, the FRRF algorithm uses OR
operation and AND operation to determine the transmission
priority between MDs. In detail, the OR operation is first
used to maximize the values of all fuzzy sets, followed by
the AND operation to compute the minimum combination of
the values of these fuzzy sets. In other words, the maximum
shadow region of the value of each fuzzy set is obtained
through the OR operation, and the minimum overlapping
shadow region of the six largest shadows of the two input
variables is obtained through the AND operation. Moreover,
the maximum shadow region of the value of each fuzzy set
represents the control result of each membership function.
And data transmission priority can be obtained through the
minimum overlapping shadow region of the six largest shad-
ows of the two input variables, which is the data transmission
recommendation results obtained by fuzzy reasoning based
on movement similarity and social similarity. As for the final
transmission priority value, the movement of the MDs in
the system follows the normal distribution, so we use equa-
tion (17) to calculate the centroid of the overlapping shadow
region and creatively use it as the transmission priority value.

TPVn1,n2 =

∑L
l=1 Fl · sl∑L
l=1 Fl

, (17)

where sl is the MD similarity between MD n1 and MD n2,
and Fl is the membership level of the MD similarity between
MD n1 andMD n2. Moreover, L is the number of coordinates
at the boundary of the minimum overlapping shadow region.

For the sake of understanding, we take an example and
assume that the start MD (MD n1) needs to forward a mes-
sage it carries to the destination MD (MD n6). After the
preparatory period, each MD in the network has collected
detailed information of the network state. First, the start MD
(MD n1) offloads the collected encounter information ESn1
and the destination MD number of the message to the nearest
car. Then the nearest car computes and compares the trans-
mission priority values according to the FRRF algorithm,
and returns the optimal next-hop delay MD number to the
start MD (MD n1). This is because the highest transmission
priority value is between the optimal next-hop delay MD
and the destination MD (MD n6). According to the received
optimal next-hop relay MD number, the start MD (MD n1)
will forward the carriedmessage to the optimal next-hop relay
MD.Moreover, FIGURE 3 shows the whole process. It can be
known from FIGURE 3 that MD n2, n3 and n4 are neighbors
of the start MD (MD n1), and MD n5 and n7 are neighbors
of MD n3. In order to make the message smoothly and
efficiently forwarded from MD n1 to MD n6, the nearest car
uses both the FRRF algorithm and the encounter information
to calculate and compare the transmission priority values
between the MDs and the destination MD. Since TPVn3,n6
and TPVn5,n6 are respectively the maximum transmission
priority values in the communication domain of n1 and n3,
the start MD n1 will first transmit the message to its neighbor
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FIGURE 3. The detailed process by which a message is forwarded from the start MD (MD n1) to the
destination MD (MD n6).

MD n3, and then MD n3 transmit the message to its neighbor
MD n5. Finally, MD n5 transmit the message to destination
MD (MD n6) to complete the whole message forwarding
process.

D. THE FRRF ALGORITHM
In a word, the FRRF algorithm is a routing-forwarding algo-
rithm based on fuzzy reasoning system to study the similarity
betweenMDs in theMEC-basedOMSNs system. The biggest
difference from other routing-forwarding algorithms is that
the FRRF algorithm is cached on cars with strong computing
power in advance and executed on the cars. So using the
computing power of the cars can save a lot of power for the
MDs in the system. In order to better understand the FRRF
algorithm, we have listed the detailed steps of the FRRF
algorithm.
• In the preparatory stage, each MD in the system collects
movement and social attribute information, and builds
its own state triple. In addition, each MD will share
its own state triple and at the same time establish and
improve its own encounter information matrix by the
encounters between MDs.

• The message carrying MD offloads the established
encounter information matrix and the destination MD
number of the carried message to the nearest car.
According to the offloaded information, the car find
the optimal next-hop delay MD, which has the highest
movement or social similarity with the destination MD
of the carried message. Because there is the highest

movement or social similarity between the optimal
next-hop relay MD and the destination MD, the optimal
next-hop relay MD is more likely to be the relatives or
friends of the destination MD, or have a highly similar
movement trajectory to the destinationMD. By selecting
the optimal next-hop relayMDs in this way, the message
can be successfully and efficiently forwarded from the
start MD to the destination MD.

• Based on the Mamdani reasoning system, the car com-
putes the membership level of similarity between MDs.
Also, the car determines the transmission priority level
of these MDs versus the destination MD, and finally
computes the transmission priority values between these
MDs and destination MD.

• The car determines the optimal transmission decision by
comparing the calculated transmission priority values.
And then themessage carryingMD can transfer themes-
sage to the MD with the highest transmission priority
value. By repeating the same four steps, the message
can eventually be transmitted from the start MD to the
destination MD.

In order to describe the FRRF algorithm more intuitively,
the detailed flow of the FRRF algorithm is given in
Algorithm 1.

More specifically, in the preparatory stage, the meeting
MDs in the network share state sequences with each other
to constantly update their encounter information matrix,
hence the time complexity of this stage is O(log2 n). And
then, the time complexity of this process of calculating the
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transmission priority values of MDs based on the fuzzy rea-
soning system is O(n). Finally, cars compares the calculated
transmission priority value and determines the optimal mes-
sage transmission decision, so the time complexity of this
process is O(log n). In conclusion, the overall time complex-
ity of the proposed FRRF algorithm can be expressed as
O(log2 n + n + log n) = O(n). Compared with Spray and
Wait algorithm with time complexity O(n log n), the FRRF
algorithm has advantages. Although the Epidemic algorithm
and the FRRF algorithm have the same time complexityO(n),
MDs in the network can save a lot of energy under the FRRF
algorithm, this is because a large part of the computation is
offloaded to the car under the FRRF algorithm.

Algorithm 1 The Proposed FRRF Algorithm
Input: MD n1, MD n2, MD n3 and destination MD n4
Output: TPVn1,n4, TPVn2,n4 and TPVn3,n4
1: /∗The computation of transmission priority∗/
2: MDs in the network collect information about all

encounter MDs;
3: if (n1.isMessageCarrier()) then
4: Give different weight for each sub-vector of the social

attribute eigenvector;
5: Compute MS and SS between each MD and the des-

tination MD of the message;
6: for each membership function of the fuzzifier com-

ponent do
7: Compute the membership degrees of movement

and social similarities;
8: end for
9: Determine the transmission priority degree of MDs;
10: TPV = fuzzy(MS, SS);
11: Output TPV ;
12: end if
13: /∗ Forwarding messages ∗/
14: if (n2.isNeighbor(n1) ∧ n3.isNeighbor(n1)) then
15: if (TPVn2,n4 > TPVn1,n4 ∧ TPVn3,n4 > TPVn2,n4)

then
16: MD n1 transfers the message to MD n3;
17: end if
18: end if

IV. SIMULATION
A. PARAMETERS SETTING IN SIMULATION
The simulation uses Matlab R2016a to simulate real scenario
and evaluate the performance of the FRRF algorithm. In order
to clearly show the advantages of the FRRF algorithm,
we compare the FRRF algorithm with Epidemic [36], Spray
and Wait [37], EIMST (Effective Information Transmission
Based on Socialization Nodes) [38] and ICMT (Information
Cache Management and Data Transmission Algorithm) [11],
in which EIMST and ICMT are two new routing-forwarding
algorithms, while Epidemic and Spray and Wait are two
typical traditional routing-forwarding algorithms. In the sim-
ulation experiment, we set the relevant parameters as follows:

TABLE 3. Detailed parameter settings in the simulation environment.

The communication domain is a quare with 4500m ∗ 4500m.
And the communication domain is divided into 25 equal
geographic regions, each with a square range of 900m∗900m.
The total number of MDs in the simulation are 550 and each
MD has an initial energy of 133200 J. The HCMM (Health
Capability Maturity Model) movement model [39] is applied
to the MDs in the communication domain in the MEC-based
OMSNs system, and the HCMM is based on community
division. Also, MDs in the same community communicate
more frequently, and the weight θ can be set as 0.8 [27], [40].
The total simulation time is 12 hours. Moreover, the prepara-
tion time tprep is set to 25, 30, 35, 40, 45, 50 and 55 min,
respectively, where 25 min is the initial value. In predicting
the user’s coincidence degree in time and geography, we set
the time accuracy 1t to 1 h. The storage capacity of the MD
is set to 10, 15, 20, 25, 30, 35 and 40 Mb, respectively, where
10 M is the initial value. Besides, the initial battery capacity
of each MD in the system is full and initial energy of battery
for each MD is 100 J. More specifically, each MD consumes
0.25 J for every 10 packets transmitted. The speed range of
the MDs is set to 1 to 9 m/s to match the normal movement
speed of humans, animals and vehicles. Interest, place of
work, occupation, residence, and physical characteristics are
all social attributes of eachMD. Besides, each social attribute
contains five different characteristic words. For example,
interest as a social attribute contains five characteristic words:
table tennis, movies, music, climbing and reading. Therefore,
each MD in the system has 5 different sub-vectors, and
the total of 25 characteristic words of the 5 sub-vectors are
randomly assigned to each MD. In order to make the setting
of simulation parameters clearer, the following Table 3 is
established to describe the simulation environment.

In addition to comparing the FRRF algorithm with the
other four algorithms, the simulation focuses on four aspects,
namely delivery ratio, overhead on average, average end-to-
end delay and average remaining energy.

Delivery ratio: The parameter denotes the probability of
choosing an optimal next-hop relay MD during the message
transport phase. We define R as the delivery ratio through-
out the network, which can be calculated by the following
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equation.

R =
N rec

N sen , (18)

where N rec and N sen represent the number of messages
received by the neighbors around MDs and the number of
messages transmitted by MDs, respectively.

Overhead on average: The parameter denotes the network
overhead of successfully transmitting a message between
MDs. We define O as the overhead on average, which can
be calculated by the following equation.

O =
T tot − T suc

T tot
, (19)

where T tot is the total time consumption of the all message
transmitting process, and T suc is the total time consumption
of successfully transmitting message between MDs.

Average end-to-end delay: The parameter consists of three
parts, that is the delay of select the optimal next-hop delay
MD, the delay of relay MD waiting for the message, and the
delay of message forwarding. We define Dave as the average
end-to-end delay, which can be calculated by the following
equation.

Dave =
Dsum

χ suc
, (20)

where Dsum is the sum of the total delay of each MD, and
χ suc is the total number of MDs that successfully received
the message.

Average remaining energy: The parameter denotes the
average remaining energy of all MDs in the network at the
end of the simulation experiment. Moreover, the energy con-
sumption of the MD is composed of parts, that is energy
consumption of basic operation when there is no computing
task (including collect network status information), energy
consumption of offloading encounter information and energy
consumption of transmitting message. We define Eave as the
average remaining energy, which can be calculated by the
following equation.

Eave =
Esum

χ
, (21)

where Esum is the total energy of each MD in the network
at the end of the simulation experiment, and χ is the total
number of MDs in the network.

B. SIMULATION CASE ANALYSIS
According to equation (16), for the low, medium and high
fuzzy sets defined in our paper, we have three normal mem-
bership functions, i.e., F1(b), F2(b) and F3(b), respectively.

F1(b) =
1

√
2πσ1

exp(−
(b− µ1)2

2σ 2
1

), (22)

F2(b) =
1

√
2πσ2

exp(−
(b− µ2)2

2σ 2
2

), (23)

F3(b) =
1

√
2πσ3

exp(−
(b− µ3)2

2σ 2
3

). (24)

FIGURE 4. In normal distribution, three membership functions
corresponding to three fuzzy sets, i.e., low, medium and high fuzzy set.

FIGURE 5. The maximum shadow region of low membership function
when MSn1,n2 = 0.51.

FIGURE 6. The maximum shadow region of medium membership
function when MSn1,n2 = 0.51.

By adjusting parameters through experiments, we finally get
µ1 = 0.28, σ 2

1 = 0.362, µ2 = 0.51, σ 2
2 = 0.362 and

µ3 = 0.87, σ 2
3 = 0.362. And the geometry of the final

transformation is shown in FIGURE 4.
For example, when MSn1,n2 = 0.51, F1(0.51) = 0.8154,

F2(0.51) = 1, F3(0.51) = 0.6065. After OR opera-
tion, FIGURE 5, 6 and 7 can respectively correspond to the
maximum shadow region of the low, medium and high
membership functions. Considering further, when combining
MSn1,n2 = 0.51 and SSn1,n2 = 0.51, the minimum overlap-
ping shadow region of the six largest shadows of the two input
variables is shown in FIGURE 8 after the AND operation.

C. RESULT ANALYSIS
Firstly, we show the performance of the FRRF algorithm
versus the preparatory period tprep through
FIGURE 9, 10, 11 and 12. Except that the MDs in the same
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FIGURE 7. The maximum shadow region of high membership function
when MSn1,n2 = 0.51.

FIGURE 8. The minimum overlapping shadow region of low, medium and
high membership functions when MSn1,n2 = 0.51 and SSn1,n2 = 0.51.

community can share the state sequence information with
each other, the MDs moving randomly in the communication
domain will share the state sequence information once they
meet in the preparation period. Therefore, the length of
the preparatory period will affect the comprehensiveness of
the MD to the network status collection, and further affect the
performance of the FRRF algorithm. Based on the simulation
results, it can be known that when the simulation time is 12 h
and the preparatory period tprep is 35 − 45 min, the FRRF
algorithm can show the best performance.

FIGURE 9 shows the delivery ratio R versus the prepara-
tory period tprep ranging from 25 to 55. It can be seen
from FIGURE 9, with the increase of the preparation period,
the value of delivery ratio increases rapidly first, followed
by the value of delivery ratio rapidly decline. In detail,
the delivery ratio achieved the maximum value 0.96 when the
preparation period is 40 min. The reason is that, on the one
hand, with the increase of the preparation period, MDs can
collect more network status information, and then cars can
calculate more accurate similarities between MDs and select
the optimal relay MD by comparing the similarities between
MDs. On the other hand, too long preparation period makes
the MDs in the network carry and share information too
frequently, and even deal with some irrelevant information
in the process of sharing. As a result, MDs consume a large
amount of energy, and then move slowly or stop due to the
low energy of MDs. In addition, the collection, offloading,
and transmitting of network status information all require the

FIGURE 9. The delivery ratio R versus the preparatory period tprep.

FIGURE 10. The overhead on average O versus the preparatory
period tprep.

storage space of the MDs and consume the energy of the
MDs. Therefore, if the preparation period is too long, MDs in
the network will consume a lot of resources, and the delivery
rate of the network will go down.

FIGURE 10 shows the overhead on average O versus the
preparatory period tprep ranging from 25 to 55. It can be
seen that the maximum overhead on average is no more than
278. With the increase of the preparatory period, the corre-
sponding overhead on average keeps decreasing. The longer
the preparatory period, the deeper the MD’s understanding
of the network. At the same time, more MDs are involved
in information collection and message forwarding. There-
fore, the data transmission between MDs is more efficient
and stable, and the number of hops during the successful
message forwarding is also significantly reduced. In a word,
the time and distance costs of successfully forwarding a
message between MDs are reduced, so that the cache space
and computing resources of MDs can be effectively utilized.
It is obvious from FIGURE 10 that the overhead on average in
the whole network is continuously reduced from 278 to 145.

FIGURE 11 shows the average end-to-end delay Dave

versus the preparatory period tprep ranging from 25 to 55.
It can be seen from FIGURE 11, with the increase of the
preparation period, the average end-to-end delay first drops
sharply and then rises. In detail, when the preparatory period
is 35 min, the FRRF algorithm can achieve the minimum
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FIGURE 11. The average end-to-end delay Dave versus the preparatory
period tprep.

average end-to-end delay, namely 78. Appropriately prolong-
ing the preparation period increases the frequency of infor-
mation exchange between MDs, and then sufficient statistics
of the social attributes between MDs. Furthermore, the car
computing the similarity between MDs and compare the
similarity to select the optimal next-hop relay MD, which
finally enabled the data to be successfully forwarded, thus
reducing the extra time spent in the process of data forwarding
due to the selection of bad relay MD. However, the too long
preparation time makes the MDs in the system carry some
additional information, which may lead to the lack of energy
and memory of the MDs, thus making it take more time for
the MDs to collect information and transmit messages, and
finally causing the average end-to-end delay to increase.

FIGURE 12 shows average remaining energy Eave versus
the preparatory period tprep ranging from 25 to 55. It can be
seen that the average remaining energy decreases slowly with
the increase of the length of preparation period. On the one
hand, the longer the preparation period, the more energy the
MDs need to spend to understand the whole network. In other
words, the MDs in the network can collect more MD data
information by encountering each other. In addition, the more
network information the MD collects, the more data the MD

FIGURE 12. The average remaining energy Eave versus the preparatory
period tprep.

FIGURE 13. The delivery ratio R of five algorithms versus the buffer space
size.

needs to offload to the nearest car. As a result, MDs consume
more energy and thus have less energy left over. On the other
hand, as the knowledge of the network ismore comprehensive
and deeper, the car can select a better next hop delay MD on
the basis of the network state. Then the number of hops dur-
ing the successfully message forwarding will be effectively
reduced, which means that the energy consumption of MDs
in the process of message forwarding will also be effectively
reduced. As a whole, the average remaining energy of MDs
decreases with the increase of the preparatory period.

Secondly, we compare and analyze the FRRF algorithm
with the other four algorithms. Since some algorithms in
the OMSN are based on contextual information, MDs in
the system need to carry, transmit and forward some text
information about the network state. However, the limited
cache space of MDs limits data transfer. Based on this,
we set the buffer space size of the MD as a variable in the
simulation experiment to study the transmission capacity of
these algorithms. The experimental results show that com-
pared with the other four algorithms, the FRRF algorithm
performs better in delivery ratio, average end-to-end delay,
network overhead and average remaining energy. Below,
we compare the performance of the five algorithms in terms
of delivery ratio, average end-to-end delay, network over-
head and average remaining energy in detail according to
FIGURE 13, 14, 15 and 16, respectively.

FIGURE 13 shows the delivery ratio R of five algorithms
versus the buffer space size from 10 Mb to 40 Mb. On the
whole, the delivery ratio of the five algorithms increases
with the increase of the size of cache space. The reason
is that the MDs in the system have enough cache space to
carry more information and handle more complex computing
tasks. Besides, the delivery ratio under the FRRF algorithm
is always higher than that under other four algorithms. In the
FRRF algorithm, because the successful forwarding of mes-
sages is achieved through context information and MD sim-
ilarity. By the FRRF algorithm, the MDs in the system are
divided into different communities according to their social
similarities. Moreover, the MDs with higher movement sim-
ilarity within the same community will communicate more
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FIGURE 14. The overhead on average O of five algorithms versus the
buffer space size.

FIGURE 15. The average end-to-end delay Dave of five algorithms versus
the buffer space size.

frequently because there are more opportunities to meet.
At the same time, car comprehensively considers MD move-
ment and social similarity to determine the optimal next-hop
relay MD, so the delivery ratio of the FRRF algorithm is
always the highest. For the Spray and Wait algorithm and the
Epidemic algorithm, because these two algorithms are typical
flooding algorithms, many message group copies will lead
to poor transmission efficiency in the network, and then the
delivery ratio of these two algorithms is also correspondingly
low. Besides, the ICMT algorithm and EIMST algorithm
realize message forwarding based on the mutual cooperation
of multiple MDs, but the disadvantage is that the limited
buffer space of MDs will affect the transmission efficiency.
Therefore, these two algorithms are not an effective transmis-
sion strategy.

FIGURE 14 shows the overhead on average O of five
algorithms versus the buffer space size from 10Mb to 40 Mb.
In general, as the buffer space of the MD increases, the MD
will have more space to store network state information and
perform computing tasks, so the average overhead of these
five algorithms is significantly reduced. In addition, because
the FRRF algorithm uses the similarity of MDs to determine
the optimal process of message forwarding, the average over-
head of the FRRF algorithm is always smaller than the other
four algorithms. Specifically, due to the FRRF algorithm
comprehensively takes movement and social similarity into
consideration to evaluate the social relations between MDs,

the probability of successful message forwarding of twoMDs
with close relation is higher. Therefore, based on the FRRF
algorithm,whenmessages are forwarded from the startMD to
the destination MD, there are relatively few relay MDs need
to rely on. Furthermore, the routing and forwarding process of
messages only costs less time and resources, and the overhead
on average of the entire data transfer process is significantly
reduced. For the Epidemic algorithm and the Spray and Wait
algorithm, the average overhead is naturally higher than other
algorithms because a large number of message group copies
will lead to a large delay and consume a large amount of
resources. For the ICMT algorithm and the EIMST algorithm,
they can effectively manage MD information and buffer
space, which can reasonably allocate resources and control
transmission time, so the overhead on average of these two
algorithms basically remains at the medium level of these
five algorithms. In a word, compared with the other four
algorithms, the FRRF algorithm is the best at the overhead
on average.

FIGURE 15 shows the average end-to-end delay Dave of
five algorithms versus the buffer space size from 10 Mb to
40Mb. On the whole, the average end-to-end delay of the five
algorithms increases as the buffer space of theMDs increases.
It is worth mentioning that the average end-to-end delay of
the FRRF algorithm is always lower than other algorithms,
and the average end-to-end delay of the FRRF algorithm
fluctuates less and remains relatively stable when the buffer
space grows from 10 Mb to 40 Mb. The reason is that the
FRRF algorithm determines the optimal next-hop relay MD
based on the calculation and comparison of MD similarity,
and the whole message forwarding process can be deter-
mined by the optimal next-hop relayMD each time. However,
the movement and social attribute information of the MD are
not greatly affected by the buffer space of the MD, so the
change of the buffer space size has little impact on the delay,
including the delay of selection of the optimal relay MD,
the delay of the relayMDwaiting for messages, and the delay
of message forwarding. Obviously, the average end-to-end
delay of the Epidemic algorithm is very high, because Epi-
demic algorithm produces many copies of message groups,
which increases the delay of selecting the optimal next-hop
delay MD and the delay of forwarding the message. How-
ever, the average end-to-end delay of the Spray and Wait
is lower than that of the Epidemic algorithm in the corre-
sponding cache space, due to the number of message copies
is effectively controlled. As for the EIMST algorithm and
the ICMT algorithm, the average end-to-end delay is much
lower than the two traditional algorithms. This is because
community partitioning and information management are
applied in the EIMST algorithm, while the ICMT algorithm
uses a cooperative mechanism for effective utilization of MD
buffer space. In conclusion, compared with the other four
algorithms, the FRRF algorithm performs best on average
end-to-end delay.

FIGURE 16 shows the average remaining energy Eave of
five algorithms versus the buffer space size from 10 Mb to
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FIGURE 16. The average remaining energy Eave of five algorithms versus
the buffer space size.

40 Mb. Overall, as the buffer space of the MDs increases,
the average remaining energy of MDs in the five algorithms
decreases and eventually levels off. This is because once the
buffer space increases, the MD will have more space to carry
more messages and collect more MD encounter information,
which will increase the number of times the MD transmits
data and eventually cause more energy consumption. It is
worth mentioning that the average remaining energy of the
MDs under the FRRF algorithm is always higher than the
other four algorithms. The main reason is that the FRRF
algorithm is cached in the car and executed by the car, while
the MD only needs to collect the network status information
and offload the network status information to the nearest
car. Compared to routing algorithm performed by the MD
itself, the MD will save a lot of energy. In addition, data
transmission between MDs is more efficient under the FRRF
algorithm, which means that the number of hops in successful
message forwarding is less, so MDs consume less energy
and has more energy left over. It is obvious that the average
remaining energy of the MDs under Epidemic algorithm and
Spray andWait algorithm is the lowest in the five algorithms.
Since both Epidemic algorithm and Spray andWait algorithm
produce many copies of message groups, the number of
information transmission increases, then resulting in more
energy consumption of MDs. The average remaining energy
of MDs under ICMT algorithm and EIMST algorithm is
higher than that of two traditional algorithms. The reason
is that ICMT algorithm effectively utilizes the buffer space
of the MDs through a cooperative mechanism, while EIMT
algorithm applies community segmentation and information
management in the routing algorithm.

V. CONCLUSION
In this paper, we applyMEC to OMSNs innovatively. In order
to effectively reduce the energy consumption and delay of
MDs in wireless network, we proposed the FRRF algorithm
in theMEC-basedOMSNs. The FRRF algorithm comprehen-
sively considers the movement and social similarity between
MDs to determine the transmission priority value between
MDs, and finally make the optimal transmission decision by
comparing the calculated transmission priority value between

MDs. More specifically, the calculation of similarity between
MDs is based on fuzzy reasoning system and information
entropy. Further, the complexity analysis in the FRRF algo-
rithm part shows the low complexity and high efficiency of
the FRRF algorithm. Finally, the correctness of the theoretical
analysis, the efficiency in reducing energy consumption and
delay, and advantages over other algorithms are verified by
the simulation results.
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