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ABSTRACT Silent data corruption (SDC) is the most insidious and harmful result type of soft error. Identify
program vulnerable instructions (PVIns) that are likely to cause SDCs is extremely significant on selective
software-based protection techniques. However, current identification techniques require tremendous fault
injections or have non-negligible differences in performance among different programs as well as different
program inputs. This paper proposes PVInsiden to reduce the cost of fault injection and improve the
adaptability for programs and program inputs. Machine learning is used to learn a classifier which predicts
whether an instruction is a PVIns. Partial fault injection is applied to generate a training dataset, reducing the
cost of fault injection. The feature engineering, including selecting features and transforming the selected
features into quantifiable representations is explored. Furthermore, the framework of learning the classifier
is given. The experimental results show that PVInsiden only uses 35% fault injections to identify 85% PVIns
with 80% precision, reducing the cost of fault injection efficiently. PVInsiden also shows high performance
of precision, recall, and f0.5-score for different programs as well as different program inputs.

INDEX TERMS Silent data corruption, SVM, soft error, single event upset, fault injection.

I. INTRODUCTION
A single event upset (SEU) is a change of state caused by
one single ionizing particle striking a sensitive node in a
micro-electronic device [1], [2]. Soft error is caused by a
SEU, growing with Moore‘s Law. It is classified into four
categories, i.e. benign, crash, hang and silent data corruption
(SDC). Benign means that errors are masked and programs
output right results. Crash and hang are two explicit errors,
making programs produce indications such as stop execution
or non-stop running. Different from the other three types,
SDC has no explicit error phenomena but incorrect pro-
gram outputs. It is the most serious and non-ignorable error
type [3], [4].

In recent years, various techniques have been pro-
posed to detect SDCs, for instance, duplication-based tech-
niques and assertion-based techniques. The basic idea of
duplication-based techniques is to duplicate original instruc-
tions with different registers or memories. If a mismatch
between the original instruction and the duplicated instruc-

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Tedesco.

tion occurs at a certain synchronization point, an error
is detected. Assertion-based detection techniques take an
invariant assertion as a detector. Once the assertion is not
satisfied, an error is detected [1]. Program variables or
instructions have different contributions to SDCs, facilitating
the study of selective detection and protection strategies [5].
In order to gain a high SDC detection rate with a lower
protection cost, instructions that are likely to cause SDCs
need to be identified and protected. In the rest of this
paper, the instructions whose SDC vulnerabilities exceed
SDC-vulnerability-threshold are called ‘‘Program Vulnera-
ble Instructions (PVIns)’’. Although several approaches have
been proposed to get the SDC vulnerability of the instruc-
tion and identify PVIns [6], [7], the following challenges still
remain to hinder these approaches into practice.

(i) The high cost of fault injection.
The basic approach of determining whether an instruction

is PVIns is full fault injection approach. Faults are injected
to every bit of an operand of every dynamic instruction. Due
to that programs may consist of a large number of dynamic
instructions, making full fault injection approach take too
much time to practice [8], [9]. For example, table 1 shows
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statistics of print_tokens.c and replace.c in Siemons suit
and WTransform.c (wavelet transform) of full fault injection
approach for an operand of 32 bits. Although the programs
only have several hundreds of code lines, the number of
injections may reach 200000 times larger than the size of
source code.

TABLE 1. Statistics of programs under full fault injection approach.

(ii) The complex process of generating relational data.
Machine-learning-based approaches are used to get the

vulnerability of the instruction or the program [7], [10].
Classification, regression and propagation analysis are
used by SDCTune to get the SDC vulnerability of the
instruction [7]. In order to get the relational data used by
classification and regression, a large number of fault injec-
tions have to be conducted on similar instructions of other
programs in advance. This makes SDCTune rather complex.
What’s more, SDCTune is launched when a new end instruc-
tion type is tackled.

(iii) The non-negligible difference in performance among
different programs as well as different program inputs.

Fault injection is not necessary for dynamic model-
ing to compute the SDC vulnerability of an instruction.
While dynamic modeling suffers from unstable performance
for programs. According to our experimental observations,
ePVF [6], which is a typical method of dynamic modeling,
behaves dramatically in precision and f0.5-score from 60% to
80% for different program inputs and also different programs.
The difference in performance is non-negligible.

In this paper, PVInsiden is proposed to identify PVIns
with lower cost of fault injection and better applicability for
programs. The process of PVInsiden is simple and light-
weighted. Our main contributions are summarized as follows:

(i) A novel way is put forward to determine the minimum
number of fault injections. A SVM classifier is trained and
applied. Partial fault injection is applied to generate a training
dataset. Experimental results show that given a program, 20%
fault injections is sufficient to learn a classifier if the SDC
vulnerability of registers and memories is accurate. In gen-
eral, PVInsiden uses 35% fault injections at most to identify
PVIns with 80% precision, 85% recall and 81% f0.5-score on
average.

(ii) Instruction features that impact the SDC vulnerability
of an instruction are selected and quantified. The dataset
used to learn a classifier is generated according to the target
program itself. Thus, the dataset is easy to build.

(iii) Experiments are conducted with various programs and
program inputs to evaluate PVInsiden. The result shows that

PVInsiden outperforms ePVF in program applicability.

II. RELATED WORK
There is a bunch of literature on identifying the SDC vulner-
ability of the instruction or the program by fault injection,
dynamic modeling or machine learning.

A fault injection approach simulates single event upsets by
altering bits in registers or memories at runtime. It makes a
program run in an error state till the program stops execut-
ing or generates anomalous symptoms. In order to reduce
the cost of fault injection, various efforts have been made
to refine the process. SDCInfer employs heuristics to infer
SDC-vulnerable instructions based on instruction traces [11].
More specifically, it adjusts fault injection plans dynamically
to reduce the cost of fault injection. SDCInfer can determine
whether an instruction has the probability to lead to SDCs,
but the probability is not quantified. CriticalFault eliminates
wasteful derated fault injections that result in masks [12].
It reduces the injection space by pruning, whereas only 29%
fault injections can be avoided.

PVF is a modeling approach that eliminates micro-
architectural dependency from architectural vulnerability to
get the vulnerability of the program [13]. It requires no
fault injection, whereas it is poor in predicting the SDC
vulnerability as it does not distinguish between SDCs and
crashes. ePVF is an enhancement of PVF that eliminates
crash-causing bits from ACE bits to get a tighter estimate of
the SDC vulnerability of the instruction [6]. It is still poor
as it only considers segment faults of crash faults. Further,
the performance results may vary regarding different pro-
grams as well as different inputs for a specific program.
This is because segment faults have different frequencies in
crashes.

Gokcen et al. employ machine learning to model scientific
application behaviors at a large scale based on experiments at
a small scale [8]. The research work of [8] aims to understand
the fault vulnerability of the program rather than that of
the instruction. SDCTune uses classification and regression
to predict the SDC vulnerability of store instructions and
comparison instructions [7]. The SDC vulnerability of other
instructions is obtained by propagation analysis, whereas it is
program-specific in some circumstances. Vishnu et al. [10]
use support vector machine to predict whether a multi-bit
permanent or transient main memory fault will result in an
error. Unfortunately, SDCs are not distinguished from other
error types.

III. PROBLEM DEFINITION
We assume that only single bit flip within register files or
memories is considered in this paper. We also adopt an
assumption that at most one fault occurs during a program‘s
execution, which is assumed in other research studies, such
as [6] and [7]. Faults in the opcode are not considered in this
paper as they always cause illegal opcode exceptions [11].
The SDC vulnerability is defined as the probability of a SDC
when a fault occurs.
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The problem of identifying PVIns of a program is a binary
classification problem. More specifically, for an instruction,
if its SDC vulnerability exceeds specified threshold, it is
considered as a PVIns. Otherwise it is not. Thus, the problem
is defined as a binary classification problem on a collection
of dataset. There are some classification models available in
machine learning, such as decision-tree classification, neural
networks classification [17] and support vector machine [18].
Among those models, support vector machine (SVM) is an
outstanding model in soft error field. The SVM is selected in
this paper.

Given a training dataset of n points of the form ( Ex1, y1),· · · ,
( Exn, yn), where Exi is a multidimensional real vector and yi
are either 1 or -1, each representing the class of the point
Exi. A hyperplane is defined as the set of points Ex satisfying
Ew.Ex − b = 0, where Ew denotes the normal vector to the
hyperplane, and b is the offset from the origin. The core of
SVM is finding the best hyperplane that separates the data
with the maximum margin.

In the case of linearly separable data, the SVM select
two parallel hyperplanes that separate the two classes of the
data, so that the distance between them is as large as possi-
ble. The best hyperplane is the hyperplane that lies halfway
between them. Geometrically, the distance between these two
hyperplanes is 2

‖Ew‖ [19]. As each data point must lie on the
correct side of the margin, the best hyperplane must satisfy
yi(Ew.Exi − b) − 1 ≥ 0. Formally, the best hyperplane is
defined by the primal optimization problem:min

Ew,b
‖Ew‖, subject

to yi(Ew.Exi − b) − 1 ≥ 0. This optimization problem is
solved by lagrange duality. In the case of linearly inseparable
data, the SVM map the input data into a high dimensional
feature space by a kernel function to make the data separable.
After that, a finest separating hyperplane is constructed in the
dimensional feature space. Besides, the SVM uses a penalty
term that determines the importance of a mismatch classifi-
cation to weak the impact of outliers.

In order to find a solution to the problem of identify-
ing PVIns by SVM, several important questions should be
answered first: (i) How to get a dataset? What size of the
dataset is proper? (ii) What are the important features that
should be selected to learn a classifier model? And how
to transform the selected features into quantifiable repre-
sentations? (iii) How to train a classification model? These
questions are addressed in the upcoming sections.

IV. PARTIAL FAULT INJECTION
A. OBSERVATIONS
Full fault injection is usually used to get instruction vul-
nerability in a program. The cost of full fault injection is
dramatic. Partial fault injection is a natural choice. In order
to make sure to what extent fault injection should conduct,
we explore the relationship between partial fault injection and
the performance of a classifier in this section. The metrics
we are interested in are precision, recall and f-score, which
are widely used to evaluate the performance of a classifier.

In particular, f0.5-score is used as f-score. A classifier plays
an important role in characterizing features of instruction
vulnerability.

A training dataset is collected from a target program,
whose PVIns is required to be identified. A classifier is used
to compute the SDC vulnerability of the remaining instruc-
tions of the target program and to identify PVIns.

Denote the ratio of the number of training samples to the
number of total instructions of a target program as θ . Fig. 1
presents the relationship between the performance of a classi-
fier and θ with print_tokens2.c in Siemens suite as a program
example. We observe that precision experiences a great rise
when θ goes from 5% to 20%. Then, it basically only has a
slight increase. f0.5-score shares a similar changing trend as
precision. Recall keeps the increase nearly all the time.

FIGURE 1. The relationship of the performance of the classifier and θ .

Fig. 1 tells us that the performance of a classifier does
not always go up along with the increasing number of
training samples. More than a certain number of training
samples will not improve the performance of a classifier
obviously.

This observation indicates that the contribution of different
number of training samples to the performance of a classifier
is different. Partial fault injection is feasible in order to satisfy
performance requirements with a lower cost of fault injection.
Fault injection is applied to partial instructions of a target
program to get their ground truth labels and a training dataset
is generated. Furthermore, we try to find the minimum θ ,
denoted as θm.

B. THE PROCESS OF GETTING θM
To get θm, a classifier based on SVM is trained iteratively on
programs. The processing includes three steps. The first step
is to build a sampling set. A small part of instructions are
selected as the training set. The remaining instructions are
considered as the testing set. We refer to it as the sampling
stage. The next step is to train a classifier. The training set is
fed into a SVMmodel to learn a classifier. This is the training
stage. In the following verifying step, the testing set is utilized
to assess the performance of the classifier. If the performance
of the classifier changes obviously, the process goes back to
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TABLE 2. Notations.

the sampling stage to launch the next iteration. Otherwise, θm
is found. This is the verifying stage.

Every stage of getting θm is described in detail and the
corresponding pseudo-code is presented in Algorithm 1.

1) SAMPLING STAGE
The instruction set is obtained by assembling and disassem-
bling. Full fault injection is conducted on instructions to get
their ground truth labels. Next, the samples are generated and
put to the dataset (Line2-11). To find θm, 10% instructions
are initially selected as the training samples. If more samples
are needed in the next iteration, an additional 5% samples are
selected into the training set (Line 12, Line 16-26).

2) TRAINING STAGE
Feature values are transformed to the range of 0 and 1 by
scaling (Line 28). Then, the training set is used to train a
classifier (Line 29).

3) VERIFYING STAGE
At this stage, the performance of the classifier learned in this
iteration is computed. It is compared with that of the classifier
learned in the last iteration. If the performance changes obvi-
ously, the process goes back to the sampling stage to improve
the performance of the classifier by adding additional training
samples (Line 30-34). Otherwise, the process ends and θm is
obtained.

Algorithm 1 Get θm
Input: p, t
Output: θm
1: Get ins(p)
2: for i = 0→ size(p) do
3: calculate sdcvul (insi) by full fault injection
4: if sdcvul (insi) > t then
5: label (insi) = 1
6: else
7: label (insi) = 0
8: end if
9: generate a sample s, denoting insi
10: add s to dataset
11: end for
12: a0 = 10%, d = 5%, θm = 0
13: trainflag = true, sample0 = true
14: trainset = ∅
15: while trainflag do
16: if sample0 then
17: ak = a0
18: sample0 = false
19: else
20: ak = d
21: end if
22: θm = θm + ak
23: for i = 0→ ak ∗ size(p) do
24: select s from {dataset}-{trainset}
25: add s to trainset
26: end for
27: testset={dataset}-{trainset}
28: transform trainset and testset by scaling
29: train a SVM classifier using trainset
30: if changed then
31: trainflag = true
32: else
33: trainflag = false
34: end if
35: end while

V. FEATURE ENGINEERING
Previous studies manifest that critical instructions in a pro-
gram are likely to lead to SDCs after their operands are
corrupted by single event upsets. In this section, how to define
and identify key instruction features is addressed.

A. INSTRUCTION FEATURES
The critical program points of data flow and control
flow propagations are connector instructions and branch
instructions [1]. Connector instructions characterize the oper-
ation process of interactive data, which includes returned
value, parameters and global variables [11]. Corrupted data
in connector instructions is likely to lead to SDCs. Thus, con-
nector instructions are key instructions this paper concerns.
If an instruction is a connector instruction, it is labeled as
connins.
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With regard to the quantifiable representation of connins,
if an instruction includes interactive data, the value of connins
of the instruction is set to 1. Otherwise, the value is set to 0.
For example, SET AL is a connector instruction which sets a
returned value before a function call. Therefore, its connins
value is set to 1.

Comparison instructions impact bits of flag registers,
which determine the consequent jump performed by a branch
instruction [1]. Altering bits of an operand of a compari-
son instruction may incur a control flow error and a SDC.
Thus, comparison instructions are key instructions this paper
concerns. If an instruction is a comparison instruction, it is
labeled as cmpins.

Regarding the quantifiable representation of cmpins, if an
instruction is a comparison instruction, the value of cmpins is
set to 1. Otherwise, the value is set to 0. For example, in Fig. 2,
TESTAL, BL (Line 1) is a comparison instruction that before
JNE ab (Line 2). Therefore, the compins value of TEST AL,
BL is set to 1.

FIGURE 2. An example of instruction codes.

In summary, two types of instructions, namely connec-
tor instructions and comparison instructions, are critical
instructions.

B. REGISTER-RELATED FEATURES
Registers have different SDC vulnerabilities. For example,
the probability that the result type is SDC after injecting a
fault to EAX is higher than that of ESP, indicating that EAX
has a higher SDC vulnerability than ESP. The research work
in [14] demonstrates that 80% fault injections on ESP and
EBP lead to crashes rather than SDCs, owning to the fact that
ESP is used as a stack pointer and EBP is used as a stack
frame base pointer. This means that both EBP and ESP have
a lower SDCvulnerability. Thus, the total SDC vulnerabilities
of registers used by an instruction is labeled as an feature. It is
represented by regvulofins.
The quantifiable representation of regvulofins is described

by taking an instruction called ins as an example. The
regvulofins value of ins is the sum of SDC vulnerabilities
of registers it uses. Therefore, SDC vulnerability of every
register used by ins needs to be acquired.
Denote the accurate SDC vulnerability of a register called

reg as evuln(reg). To get evuln(reg), full fault injection exper-
iments have to be conducted on instructions which use reg.
This incurs a large number of fault injections. To reduce
the cost of fault injection, partial fault injection approach

is applied to calculate the SDC vulnerability of reg. Only a
certain number of instructions that use reg are injected faults.
The SDC vulnerability of reg is calculated by (1), where
countsdc(reg) is the number of injected faults that lead to
SDCs, and suminject(reg) is the number of total injections.
As soon as the SDC vulnerability of the register is obtained,
the regvulofins value of ins is denoted by (2), where REG is
the set of the register used by ins, size(REG) stands for the
size of REG, and ri is the i-th element of set REG.

vuln(reg) =
countsdc(reg)
suminject(reg)

. (1)

regvulofins(ins) =
size(REG)∑

i=1

vuln(ri). (2)

Partial fault injection brings a difference between vuln(reg)
and evuln(reg). Revisit EAX in Fig. 2 to give an illustration.
In full fault injection, faults are injected to EAX in Line 1,
Line 5, Line 9 and Line 11 respectively to get evuln(eax).
In partial fault injection, regpct(eax) is defined as the ratio
of the number of instructions that are selected for fault injec-
tion to the number of instructions using EAX. Suppose that
regpct(eax) is 50% and instructions in Line 5 and Line 11 are
selected. Table 3 shows the statistics of partial fault injection
related to EAX with 32 bits.
TABLE 3. A comparison of full fault injection and partial fault injection.

Notice that the number of fault injections decreases greatly
from 128 to 64. Further, there is a difference between
evuln(eax) and vuln(eax). The difference is calculated by (3).
In order to explore a better trade-off between the number of
fault injections and the accuracy of vuln(reg), experimental
analysis is conducted in section VI-B to obtain the optimal
regpct for registers.

regerror(reg) =
|vuln(reg)− evul(reg)|

evul(reg)
. (3)

Restrepo-Calle et al. [15], [16] point out that the lifetime of
a register is related to reliability. They gain a better trade-off
between performance, code size, and fault coverage by dupli-
cating registers with long lifetime. Thus, the total lifetime of
registers used by an instruction is taken as another feature.
It is denoted by reglifeofins.
The lifetime of every register in ins needs to be specified

in order to quantify reglifeofins. The lifetime of a register is
the sum of living intervals during one program execution.
A living interval starts with a write operand and ends with
the last read operand which precedes the next write operand
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or the end of the program execution [15], [16]. With living
intervals, the lifetime of a register is expressed by (4), where
lj is the j-th living interval of reg and livecount(reg) is the
number of living intervals of reg. The reglifeofins value of
ins is expressed by (5).

lifetime(reg) =
livecount(reg)∑

j=1

lj. (4)

reglifeofins(ins) =
size(REG)∑

i=1

lifetime(ri). (5)

C. MEMORY-RELATED FEATURES
Memory cells are also suffered by single event upsets. Similar
to register-related features, the total SDC vulnerabilities of
memory cells used by an instruction, which is denoted as
memvulofins and the total lifetime of memory cells used by
an instruction, which is denoted as memlifetimeofins, are two
features to characterize memory. The quantifiable represen-
tations of the two instruction features are similar to those of
register-related features.

Memory cells store returned values, parameters and local
variables. Since returned values and parameters have already
been considered in connector instructions [1], only memory
cells that associate with local variables are considered here.

D. OTHER FEATURES
In addition to the aforementioned selected features, the num-
ber of operands and the execution times of an instruction are
also selected as features.

E. CLASSIFIER TRAINING
With the obtained θm and feature engineering, the process
of training a classifier for a target program is described in
Algorithm 2. P denotes a target program and T is the thresh-
old of the SDC vulnerability of P.

Firstly, feature values are acquired (Line 2-4). Then, θm
instructions are selected and full fault injection is applied
on them to get their labels. Labels are combined with the
corresponding features to generate a training set (Line 5-15).
Next, a SVM classifier is trained by the training set (Line 16).
Finally, the trained classifier is used to classify the remaining
instructions (Line 17-24).

VI. EXPERIMENTAL ANALYSIS
To make sure the feasibility of our proposed approach,
experimental analysis is conducted, including evaluating θ to
find θm, performance of trained classifiers and adaptability
of PVInsiden. What’s more, the cost of fault injection of
PVInsiden is presented.

A. EXPERIMENTAL SETUP
Pin is a binary instrumentation framework for IA-32 and
x86-64 instruction set. It has been widely used in soft
error field [20]. Pin is employed to carry out fault injection

Algorithm 2 Process of Training a Classifier for a Target
Program
Input: P, T , θm
Output: PVInsset(P)
1: Get ins(P)
2: for i = 0→ size(P) do
3: Obtain the feature values of insi
4: end for
5: for i = 0→ θm ∗ size(P) do
6: select insi from ins(P)
7: calculate sdcvul (insi) by full fault injection
8: if sdcvul (insi) > t then
9: label (insi) = 1, add insi to PVInsset
10: else
11: label (insi) = 0, add insi to unPVInsset
12: end if
13: generate a sample s, denoting insi
14: add s to trainset
15: end for
16: training a classifier by trainset
17: for insj not in trainset do
18: get p_label

(
insj

)
by the classifier

19: if p_label
(
insj

)
= 1 then

20: add insj to PVInsset
21: else
22: add insj to unPVInsset
23: end if
24: end for

experiments. Our experiments are performed on Dell Work-
station with i7 processor running Ubuntu10.04. Programs
considered here are replace.c (performs string matching and
replacement), print_tokens.c (performs lexical analysis) and
tot_info.c (computes statistics over input data) in Siemens
suite.

B. EXPERIMENTAL EVALUATION
(i) The Influence of θ

The accurate SDC vulnerability of registers and memories
is used. Fig. 3 shows precision, recall and f0.5-score of the
classifier. In Fig. 3(a), precision experiences a great rise
when θ goes from 10% to 20% for all programs. After then,
it does not increase obviously. When θ is 20%, the averaged
precision is about 76%. In Fig. 3(b) and Fig. 3(c), recall and
f0.5-score share a similar changing trend as precision. The
averaged recall and f0.5-score up to 85% and 78% respec-
tively when θ is 20%.
These curves illustrate that θm is 20% if the SDC vulnera-

bility of registers and memories is accurate. This means that
20% fault injections is sufficient to generate a training dataset.
With the training dataset, a SVM classifier is trained to clas-
sify the remaining instructions, with the averaged precision,
recall and f0.5-score are 76%, 85%, and 78% respectively.

(ii) The Relationship Between regerror(reg) and regpct ,
and Between memerror(mem) and mempct
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FIGURE 3. The performance of the classifier learned under different θ . (a) precision. (b) recall. (c) f0.5-score.

The cost of PVInsiden includes the cost of generating a
training dataset and the cost of getting the SDC vulnerability
of registers and memories. In section V-B, to reduce the cost
of the latter, we calculate the SDC vulnerability of registers
and memories by partial fault injection. Partial fault injection
results in regerror(reg) and memerror(mem), impacting the
quality of feature values and the performance of the classi-
fier. In order to gain a better trade-off between the cost of
the latter and the performance of the classifier, we explore
the relationship between regerror(reg) and regpct to find the
optimal regpct . The same exploration is also conducted on
memory cells.

Fig.4(a) depicts the results of registers. It takes EAX,
EDX and ESP in replace.c as examples. In Fig. 4(a),
regerror(reg) decreases while regpct increases. When regpct
is 10%, themaximum regerror(reg) is less than 35%. Besides,
regerror(reg) is less than 25% as regpct is 20%. Other pro-
grams show a similar changing trend, steering us to set regpct
to 10% or 20% to get the SDC vulnerability of registers with
a small error at a lower cost.

Fig. 4(b) shows the results of memory cells. Addstrmem,
omatchmem, omatchmem1 and omatchmem2 mark four dif-
ferent memory cells in replace.c. memerror(mem) generally
decreases as the increase ofmempct .With the similar analysis
to registers, mempct is set to 30% or 40%.
To find the optimal mempct and regpct , experiments are

conducted on different regpct and mempct with θ of 20%.
Fig. 5 gives the performance of classifiers learned in different
combinations of regpct and mempct . In Fig. 5, the perfor-
mance of the classifiers in four scenarios are basically con-
sistent for the three programs. The results only have a slight
difference with the results posted in Fig.3. Take the precision
of replace.c as an example. In Fig. 5(a), precision ranges from
70% to 70.3% across four scenarios. In Fig. 3(a), the precision
of replace.c is 70.4% as θ is 20%.
Further thought on this phenomenon discovers that the

SDC vulnerability ranks of registers in four scenarios are the
same. They are also the same as that in full fault injection.
Besides, memories perform a similar experimental results to
registers.

Table. 4 shows a comparison of the ranks obtained under
full fault injection (regpct = 100%,mempct = 100%) and

FIGURE 4. (a) regerror (reg) under different regpct . (b) memerror (mem)
under different mempct .

scenario one (regpct = 10%,mempct = 30%). Although
differences exist in the SDC vulnerability of registers and
memories, the ranks are the same.

Based on this study, the conclusion is that setting regpct to
10% and mempct to 30% is enough. It is worth noting that
under the circumstance, the averaged precision, recall and
f0.5-score of the trained classifier are 75%, 81% and 76%
respectively across the programs.

(iii) The Performance of PVInsiden
PVInsiden gets a training dataset from a target program

by fault injection. PVIns identified by PVInsiden includes
the PVIns identified by a classifier as well as the PVIns
identified by fault injection. Taking these two results into
consideration, the performance of PVInsiden is presented on
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FIGURE 5. The performance of the classifier under different regpct and mempct (scenario 1: regpct = 10% and mempct = 30%. scenario 2:
regpct = 10% and mempct = 40%. scenario 3: regpct = 20% and mempct = 30%. scenario 4: regpct = 20% and mempct = 40%). (a) replace.
(b) tot_info. (c) print_tokens .

TABLE 4. The SDC vulnerability and rank of registers and memory cells in
replace.c.

Fig. 6(a). Fig. 6(a) points out the minimum precision, recall
and f0.5-score, which are 76%, 81%, and 77% respectively.
On average, the three evaluation metrics are 80%, 85%, and
81% across the programs.

PVInsiden is compared with ePVF. The ePVF results are
shown in Fig. 6(b). Its averaged precision, recall and f0.5-
score are 66%, 100%, and 71% respectively. This means that
PVInsiden outperforms ePVF in identifying PVIns.

(iv) The Adaptability of PVInsiden
Multiple program inputs are considered to evaluate the

adaptability of PVInsiden. The results are shown in Fig. 7.
Given a target program, the difference of precision under
different inputs is slight, with the maximum of 7.2% (tot_info
(input 2) and tot_info (input 3)). The maximum difference of
recall and f0.5-score are 6% (tot_info (input 2) and tot_info
(input 3)) and 4.9% (replace (input 2) and replace (input 3))
respectively.

In contrast, in Fig. 7(b), ePVF shows a larger differ-
ence. For print_tokens.c, though its recall is 100% for every
program input, the maximum difference of precision and
f0.5-score are 20.6% (input 2 and input 3) and 18% respec-
tively (input 2 and input 3). This is due to the fact that there
is a large difference in segment faults frequencies as shown
in table 5.

FIGURE 6. (a) The performance of PVInsiden. (b) The performance of
ePVF.

The adaptability is also evaluated on different programs.
In Fig. 6(a), the maximum difference of averaged precision,
recall and f0.5-score among programs is 8.4% (replace and
tot_info), 7% (replace and tot_info), and 8% (replace and
tot_info) respectively. In Fig. 7(b), they are 22% (replace
and print_tokens), 0%(replace and print_tokens) and 20%
(replace and print_tokens).

By the comparison, PVInsiden is more adaptable than
ePVF for different program inputs and different programs.

(v) The Cost of PVInsiden
The cost of PVInsiden includes the cost of fault injection

and the cost of a classifier. Full fault injection approach is
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TABLE 5. Relative crash frequency analysis for programs.

FIGURE 7. (a) The performance of PVInsiden under different inputs.
(b) The performance of ePVF under different inputs.

applied to programs and the statistic results are shown in
table 6. In table 6, sum is the number of injections in full fault
injection approach, and nreg stands for the number of injec-
tions related to registers, and nmem is the number of injections
related to memories. cost is the ratio of cost of fault injec-
tion of PVInsiden and cost of full fault injection approach,
expressed by (6). Table. 6 shows that the averaged cost is
about 35.5% when θm, regpct , and mempct are 20%, 10%,
and 30% respectively.

The cost of a classifier includes the time of extracting
feature values and training a classifier. It can be ignored as
it is trivial in comparison with the time of fault injection.

cost =
sum ∗ θm + nreg ∗ regpct + nmem ∗ mempct

sum
. (6)

Full fault injection approach has the best performance
in identifying PVIns, but the number of fault injections is

TABLE 6. Statistics under full fault injection method and the cost of
PVInsiden.

tremendous, making full fault injection approach hard to
practice. Although fault injection is not necessary for ePVF,
the averaged precision recall, and f0.5-score are 66%, 100%
and 71% respectively. Besides, ePVF has a non-negligible
difference in performance. The maximum difference of aver-
aged precision, recall and f0.5-score of ePVF up to 22%,
0% and 20% among programs. Among different program
inputs, they are 20.6%, 0% and 18% respectively. In order
to make a better trade-off between the cost of fault injec-
tions and the performance, PVInsiden uses SVM to learn a
classifier to identify PVIns. It trains a classifier iteratively to
determine the minimum number of fault injections. Setting
full fault injection as a baseline, PVInsiden only uses 35%
fault injections to identify PVIns with the averaged precision,
recall and f0.5-score are 80%, 85% and 81% respectively.
Furthermore, themaximum difference of precision, recall and
f0.5-score of PVInsiden among programs are 8.4%, 7% and
8%. Among different program inputs, they are 7.2%, 6% and
4.9% respectively. These results show that PVInsiden has a
better trade-off between the performance and the cost of fault
injections in identifying PVIns. And it is more adaptable than
ePVF. Besides, The dataset used by PVInsiden is collected
from a target program, making PVInsiden light-weighted.

VII. CONCLUSION
In this paper, PVInsiden is proposed to identify PVIns in
programs. To reduce the cost of fault injections, we apply
partial fault injection to generate a training dataset to train a
classifier to identify PVIns. The training dataset is generated
from a target program, making PVInsiden light-weighted.

We explore the relationship between partial fault injection
and the performance of a classifier to make sure to what
extend fault injection should conduct. Experimental results
show that with accurate SDC vulnerability of registers and
memories, 20% fault injections is sufficient to learn a clas-
sifier, with the averaged precision, recall and f0.5-score are
76%, 85%, and 78% respectively. In general, PVInsiden uses
35% fault injections at most to identify PVIns with 80%
precision, 85% recall and 81% f0.5-score on average, outper-
forming ePVF.

Feature engineering includes selecting features and
transforming the selected features into quantifiable rep-
resentations. Instruction features, register-related features,
memory-related features and some other features are con-
sidered and selected. Besides, the framework of training a
classifier and identifying PVIns is given.
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Experiments are also conducted under different program
inputs as well as different programs to assess the adaptability
of PVInsiden. The results show that compared with ePVF,
PVInsiden has a smaller difference in performance, indicat-
ing that is more adaptable than ePVF in identifying PVIns.

In future work, new instruction features will be extracted
to improve the performance of a classifier. Furthermore,
different machine learning models and the improvement of
generalization and stability of PVInsiden will be studied.
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