
Received March 1, 2019, accepted March 12, 2019, date of publication March 18, 2019, date of current version April 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2906011

Modeling and Timing Analysis for Microkernel-Based
Real-Time Embedded System
RONGFEI XU 1, LI ZHANG1, AND NING GE2
1School of Computer Science and Engineering, Beihang University, Beijing 100083, China
2School of Software, Beihang University, Beijing 100083, China

Corresponding author: Ning Ge (gening@buaa.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61672078 and Grant 61732019.

ABSTRACT Currently, more and more application-specific operating systems (ASOSs) are applied in
the domain of real-time embedded systems (RTESs). With the development of a microkernel technique,
the ASOS is usually customized based on a microkernel using the configurable policy. Evaluating the timing
requirements of an RTES based on the ASOS is helpful to guide the designer toward the choice of the most
appropriate configuration. Modeling and analyzing the time requirements for such a system in the early
design stage are essential to avoid redesigning or recoding the system at a later stage. However, the existing
works are insufficient to support the modeling for both the specific domain of the microkernel-based RTES
and the variability of the configurable policy, as well as a general analysis for the various configurations.
To solve these problems, this paper presents a modeling and timing analysis framework (MTAF) for the
microkernel-based RTES. Our main contributions are twofold: 1) proposing a domain-specific language
(DSL) for the timing analysis modeling of the microkernel-based RTES; then, we define and implement this
DSL as a UML profile and (2) proposing a static timing analysis approach for the RTES design modeled by
the DSL, where a timing analysis tree and uniform execution rules are defined to analyze the variability in a
general way. In the case study, we take the scheduling policy as an example to show the use of our framework
on a real-life robot controller system.

INDEX TERMS Real-time embedded system, microkernel-based RTOS, application-specific operating
system, timing analysis modeling, timing analysis tree.

I. INTRODUCTION
Real-time embedded systems (RTES) have been widely
applied in various safety-critical fields, such as automotive,
medical, military, aerospace, etc. For RTES, guaranteeing
the correctness of timing requirements is a key issue. Espe-
cially for the hard real-time systems, the response time of
tasks in system must be within the deadline. If a design
can not meet the timing requirements in the early design,
the error might propagate to the final code, and possibly
cause hazards; besides, if the error is detected in the later
stages of the development, the cost of re-design is extremely
high. Usually, a real-time operating system (RTOS) is used
to manage the tasks in an RTES, and directly impacts the
timing performance of the system. RTES in various domains
may suffer from the general-purpose OS due to their specific
characteristics. Accordingly, many works were aimed at the

The associate editor coordinating the review of this manuscript and
approving it for publication was Rashid Mehmood.

application-specific operating systems (ASOS) to enhance
the performance for a certain application. Nowadays, more
and more ASOS are designed based on a microkernel, such
as QNX, Integrity, and FreeRTOS. A microkernel [1] is a
minimalistic kernel that contains the near-minimum amount
of functions and features required to implement an OS, and
allows the users to tailor the OS with respect to the functions
needed by an OS. It adopts the ‘‘separation of mechanism
and policy’’ principle, where the policy runs in the user space
and is configurable to build arbitrary OS services. Since
many RTES are safety-critical, most of them are based on
the uniprocessor with basic OS functions to ensure the safety
in practical use [2]. Hence, in this work, we are interested in
the modeling and analyzing of the timing requirements for
such RTES that is implemented on the configurable ASOS
by extending a microkernel with the basic OS functions on a
uniprocessor.

In the microkernel-based RTES context, the flexible poli-
cies (called variability in this paper) are key configurations

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

39547

https://orcid.org/0000-0002-2329-4377

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

for the ASOS, and crosscut the function of tasks. Hence,
modeling the microkernel-based RTES for the timing anal-
ysis is concerned with the modeling approaches for the
system and for the variability. (1) For modeling the sys-
tem, AADL [3], UML [4], and MARTE [5] are the com-
monly applied solutions. As a UML profile, MARTE is a
standard for modeling and analyzing the RTES. MARTE
covers a large scope of modeling elements; consequently,
it is difficult for software engineers to identify where they
should start and which elements should be used to achieve
the design. In practice, only a subset of MARTE elements
is required for the domain-specific purpose. There exist
some works aiming at the modeling of the microkernel-
based RTES, but they focus on the architectural model-
ing without considering the timing requirements. (2) For
modeling the variability, existing works [6], [7] are lim-
ited to configuring partial aspects of the RTOS, e.g., soft-
ware resources, or scheduling parameters, or supporting the
predefined configurations. Therefore, it is insufficient to
model the complete variability on the essential functions
of the microkernel, which covers the scheduling, the IPC
(inter-process communication) and the resource access. To
conclude, it lacks a domain-specific modeling method that
supports both the system modeling and the variability
modeling.

In the model-driven development (MDD) context, tim-
ing analysis for the RTES model is mainly based on two
approaches: dynamic approach and static approach. The
dynamic approaches, which include simulation-based
approach and model checking, suffer from the efficiency
problem. Specifically, the simulation-based approaches do
not suit to assess the variability. This is because that each
alternative policy requires to generate a policy-dedicated
simulation model, which is not feasible for a general-purpose
simulator. The model checking-based approaches have the
same problem as they also need to concern the policy-
dedicated rules in the task model [8]. For the static analysis
approach, it includes three main classes: structure-based,
path-based, and techniques using implicit path enumeration
(IPET). Both the path-based approach [9] and the IPET [10]
are limited to consider the OS in the execution process
of tasks. The structure-based approach analyzes the time
by traversal of the syntax tree of tasks in consideration of
the OS [11]. However, the structure-based approach still
does not support the analysis of variability in the tree.
Therefore, a method for analyzing the timing requirements
under the variability is needed in the microkernel-based
RTES.

Based on our previous work [12], in this paper we propose
a modeling and timing analysis framework (MTAF) for the
microkernel-based RTES, which is used to assess the config-
ured ASOS at the early design stage. The scope of application
of our framework is the hard real-time embedded systemwith
aperiodic tasks, which is implemented on the uniprocessor
with basic OS functions of scheduling, IPC and resource
access (without cache and pipeline).

• We define a domain-specific language (DSL) concern-
ing the designs of the system and the variability. In the
DSL, we follow the aspect-oriented modeling (AOM)
methodology [13] to handle the variability in the target
system, which is flexible to model the variability on a
base model. Then, we define and implement this DSL
as a UML profile.

• In order to perform the timing analysis of the design
model with variability uniformly, we propose a static
analysis method relying on a timing analysis tree (called
ETAT), where the execution rules for refining the vari-
ability are configured in a uniform way.

Finally, we show the experimental results by applying
our framework to modeling and analyzing a real-life robot
controller system.

The paper is organized as follows: Sect. II reviews related
works; Sect. III introduces the background and overview of
our approach; Sect. IV describes the domain-specific mod-
eling for the microkernel-based RTES; Sect. V proposes the
timing analysis approach; Sect. VI evaluates our approach on
a real-life case; and Sect. VII gives some concluding remarks
and perspectives.

II. RELATED WORKS
A. MODELING FOR THE RTES
Currently, many works have been proposed for the mod-
eling of RTES. MARTE [5] is a large-scope standard
and caters the typical needs for the modeling and the
analysis of RTES. There exist some works for customiz-
ing MARTE to model and analyze the specific systems.
The work [14] proposed a methodology for the environ-
ment modeling based on UML/MARTE, and provided an
extension to the standard UML class diagram and state
machine notations. The work [15] proposed a MARTE-
based methodology named Optimum to support the schedu-
lability analysis for UML designs. Besides, AUTOSAR [6]
and EAST-ADL [16] are domain-specific modeling lan-
guages, which are used for the automotive software. However,
these works do not concern the microkernel architecture.
CAmkES [17] provided an architecture for modeling the
componentized microkernel-based systems for the domain of
vehicular applications; however, it did not focus on the timing
requirements.

The works on modeling of the configurable RTOS have
been proposed. AUTOSAR [6] concerned the software
resources in the configuration of a OS. The work [7] pro-
posed a strategy to manage the configuration of scheduling
parameters for the real-time component-based applications.
The work [18] proposed an approach to modeling the details
of the target execution platform, where all platform-specific
implementation choices were described explicitly by a set of
variation points. To tackle the mismatching problem between
the software model and the RTOS model, a re-configurable
middleware was proposed to explicitly describe the software
assumptions in the design [19]. The above works focus on
configuring some one aspect of a RTOS; or focus on the

39548 VOLUME 7, 2019

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

refinement in the implementation of a RTOS. Therefore,
the existing works are not sufficient to handle the flexible
configuration on the microkernel. Besides, the variability
modeling languages such as Kconfig and the Component
Definition Language [20] are proposed to model the variabil-
ity of the open-source RTOS, they aim to manage the vast
configuration space of the variability and do not concern the
structure of a RTOS.

B. TIMING ANALYSIS OF THE RTES
1) DYNAMIC APPROACH
The work [21] performed the schedulability analysis for a
UML-MARTE model by using the MAST analysis models.
The works [22] mapped the MARTE model to the SymTA/S
model for timing analysis based on the symbolic simulation.
The work [23] proposed a simulation-based timing analysis
approach, which depended on a more complicated system
model that described the execution control flow at the code
level. The work [24] was designed for checking the task tem-
poral constraints of a real-time application. The simulation-
based methods need the model transformation or a more
detailed system model; therefore, it is not well suited for the
timing analysis under the variability in this paper. The reason
is that each alternative of the variability needs to realize a
transformation or a refinement, which is trivial at the early
design stage.

Other works addressed the timing analysis using the model
checking based on Timed Automata [25] or Time Petri
Nets [26]. UPPAAL [27] is widely used for the automatic
verification of the safety and bounded liveness properties
of the real-time systems that are modeled as the timed
automata. TIMES [28] is designed for the symbolic schedula-
bility analysis for the real-time systems under the predictable
behaviors. These tools can result in a state-space explosion
issue, which makes such exhaustive analysis infeasible in
practice. To deal with the issue, the work [29] proposed
an approximate response time analysis approach based on
the real-time task graphs; the work [30] limited the for-
mal verification to the level of isolated components; the
work [31] proposed an approximate timing analysis frame-
work for CRTES. The improvement works make the model
checking method capable of being used in RTES. For exam-
ple, the work [32] presented a flexible analysis method for
the worst-case execution time (WCET) using UML-MARTE
Model Checker, which was aimed at detecting the wrong
software designs and refining the correct ones with respect
to the WCET; The work [33] mapped the UML activity
diagram into the priority time petri net (PTPN) to enhance
the formal schedulability test; The work [34] mapped the
workload model of the real-time systems into a Petri Nets to
perform the P-invariant method to generate all transactions.
However, the model checking method needs to specify the
policy-dedicated rules throughout the task model for the case
in this paper, which makes it inflexible for analyzing the
variability.

2) STATIC APPROACH
The static analysis approach analyzes the execution time of
a task based on its control flow and its timing information.
There are three main classes of static analysis approaches:
structure-based, path-based, and techniques using implicit
path enumeration (IPET). For the path-based approach [9],
the execution time is determined by analyzing the paths in the
task. For the IPET [10], the control flow and the basic-block
execution time are combined into the constraints to analyze
the execution time. The above two approaches are limited to
considering the OS functions in the execution process of a
task.

For the structure-based approach [35], the execution time
is analyzed in a bottom-up traversal of the syntax tree of the
task. Based on the syntax tree, many extended approaches
appear. For example, the work [36] proposed a scope-
tree, where an expression stating the maximum execution
frequency of the function and some variable declarations
were associated. The work [37] proposed a task tree, which
encoded the hierarchical decomposition of a task into sub-
tasks, as well as the synchronization constraints between
them. The work [38] proposed an execution flow tree to
represent the functional blocks and the control flows in
a task. Besides, a timing analysis tree consisting of sub-
tasks [39] or functions [40] was proposed to analyze the
WCET for each node in the tree. The above trees take the
functions or the subtasks within a task as the nodes, the exe-
cutions or the interactions of the nodes are concerned from
various aspects, such as WCET, synchronization or instruc-
tion cache locking. Besides, the task trees [11] consisting of
a global set of tasks as its nodes were proposed to analyze the
scheduling of these tasks.

To conclude, the structure-based approach is convenient
for analyzing the execution time of a task considering the
function of OS. However, the existing works only con-
cern some one function of the OS, such as synchroniza-
tion or scheduling, it is insufficient to analyze the ASOS
proposed in this paper. Besides, there is no general method
to analyze the various realizations of the OS function. For
example, the work [37] specifically proposed three analy-
sis methods for the three instruction cache locking strate-
gies respectively: static locking, semi-dynamic locking and
dynamic locking. Therefore, the structure-based approach
needs to be improved to analyze the variability in ASOS.

III. BACKGROUND AND OVERVIEW
A. MICROKERNEL-BASED ARCHITECTURE
In the traditional OS based on a monolithic kernel, all of the
OS functions are placed in the kernel mode, which makes the
OS invariant and is not suitable for the ASOS. In contrast,
the OS based on amicrokernel only retains the basic functions
in the kernel mode, and removes other functions (such as
device drivers, file systems) to the user mode. The func-
tions of user mode in the microkernel-based OS are realized
by the policy of the basic functions or additional services.

VOLUME 7, 2019 39549

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 1. Process of timing analysis.

The services on the microkernel-based OS are tailorable
and vary with different ASOS, while the basic functions
are general. In this paper, we concern the timing analy-
sis of the configurable policies for the basic functions in
ASOS, i.e., scheduling, inter-process communication(IPC),
and resource access.

B. OVERVIEW OF OUR METHODOLOGY
This paper deals with the timing analysis of the RTES with
aperiodic tasks under a given application scenario, to assess
the variability in ASOS at the early design stage, i.e., whether
the response time of tasks under the variability can meet their
deadline. The analysis process is shown in Fig. 1.

As our work aims at evaluating the configuration of the
variability, we thus propose to study the component in the
RTES from a static view to represent the configuration, which
includes the task component and the ASOS component.
To obtain the control flow, the execution sequence needs to
be specified for the task. The control flow is influenced by
the ASOS behavior, which varies with the different config-
uration of the variability. Here, we propose to refine such
behavior at the analysis stage, and only the static components
of the ASOS are specified at the early design stage. Besides,
the timing information needs to be annotated in the task com-
ponent and the ASOS component, i.e., the execution time.
In the design stage, the worst-case execution time (WCET)
of functions in the task is set (conservatively) by a designer.
For a given microkernel, WCET of the basic system calls
in ASOS is calculated by the existing tool. Our work is to
analyze the response time of tasks in the worst case (i.e.,
worst case response time,WCRT) for the design under a given
microkernel. If the response time in the worst case meets the
timing requirements of a system, then the design provides
a bound to guarantee the time for tasks. Therefore, we first
propose a modeling approach for this specific domain.

Given a configuration of the variability, the design model
is analyzed by the following steps: first, the control flow for
every task is analyzed, then the ASOS behavior is analyzed
with the refinement of the behavior. Thus, the execution time
of the task is analyzed by combining the control flow and
the ASOS behavior. Then, we specifically propose a timing
analysis approach for the design model.

FIGURE 2. Framework of the approach.

The DSL modeling approach and the timing analysis
approach compose a modeling and timing analysis frame-
work (MTAF) as shown in Fig. 2. The input of our approach
is the system requirements, which include three parts: the
microkernel-based RTES, the timing requirements, and the
variability. The variability covers three essential functions of
the microkernel: the task scheduling, the inter-process com-
munication (IPC), and the resource access.With respect to the
above requirements, the RTES is modeled as a base model
concerning the system requirements and an aspect model
concerning the variability requirements. The base model and
the aspect model compose the timing analysis model for the
RTES. Then, the timing analysis model is mapped to a timing
analysis tree to analyze the response time of a task, which is
used to assess the variability.

IV. DOMAIN-SPECIFIC MODELING FOR THE
MICROKERNEL-BASED RTES
This section concerns the domain-specific modeling
approach for the microkernel-based RTES. First, a DSL is
described in Sect. IV-A to identify the basic components used
in the timing analysis for the target systems. The semantics of
these components and their relationships are explained with
the aid of metamodels. After that, we define and implement
a UML profile for the DSL in Sect. IV-B. As the DSL is

39550 VOLUME 7, 2019

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 3. Structure of TAM domain model.

dedicated to the timing analysis, we thus name this DSL as
Timing Analysis Modeling (TAM in short).

A. TIMING ANALYSIS MODELING (TAM) FOR RTES
The DSL of TAM includes the RTES modeling and the
variability modeling, and has many facets that are grouped in
individual packages. The overall package structure is shown
in Fig. 3. As is known that a real-time embedded application
is usually designed as a set of tasks managed by a RTOS [41].
Accordingly, the RTES modeling in TAM includes the task
package (TAM_Task) and the ASOS package (TAM_ASOS).
The package of TAM_variability is defined to model the
variability of the configurable policies in ASOS. The purpose
and contents of each package are described in Sect. IV-A.1,
Sect. IV-A.2 and Sect. IV-A.3 respectively.

1) TAM_ASOS PACKAGE
The TAM_ASOS package contains the components related
to the configured ASOS in RTES, as shown in Fig. 4. The
microkernel-based ASOS is composed of kernel mechanisms
and configured policies, as well as a set of basic system
calls [42]. The TAM_Variability package is used to model
the variability of the configurable policies, which will be
introduced in Sect. IV-A.3. Besides, the software resources
and the hardware are also concerned within the ASOS.

The mechanism and the policy are explicitly modeled
in the ASOS. The microkernel-based ASOS includes three

types of mechanisms that cover the essential functions of the
microkernel, including the task scheduling, the inter-process
communication (IPC), and the resource access. Each type of
mechanism can be extended by using a set of alternative con-
figurable policies, i.e., the variability. The configured policy
is realized depending on its corresponding mechanism.

Both the software resource and the basic system call in
a system are used to implement the mechanism or the pol-
icy in ASOS. The software resource includes four classes:
synchronization resource, concurrency resource, communi-
cation resource and computing resource. Each basic system
call realizes an independent function, such as task suspend,
task resume. As the ASOS is implemented on a hardware,
the WCET of a basic system call depends on the hard-
ware. Specifically, the processor in hardware effects the
WCET [43], so the processor type is parameterized in our
modeling approach. Given a specific processor, WCET of
the basic system call is calculated by the existing tool called
Chronos [44]. After the WCET is calculated, the value of the
WCET is used to annotate the ASOS model.

2) TAM_TASK PACKAGE
The TAM_Task package contains the components to com-
pose a task in RTES, as shown in Fig. 5. A task consists of
a sequence of functional blocks and system calls [45]; there-
fore, Task, FunctionalBlock and SystemCall are respectively
defined in TAM_Task.

All tasks in RTES are managed by the ASOS. Each task is
assigned a unique priority, which is used to schedule the tasks.
During the scheduling, four basic states (i.e., running, ready,
blocked and suspended) are used to describe the execution
state of a task. Once released, the task is enqueued to the ready
queue and waits to run. Each task is required to conform to
its deadline, which indicates the maximal time bound on the
completion of this task; therefore, WCRT of a task shall meet
its deadline.

A task can be split into unbreakable functional blocks,
each of which is used to realize an independent function and

FIGURE 4. ASOS domain model.

VOLUME 7, 2019 39551

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 5. Task domain model.

FIGURE 6. Variability domain model.

has its execution time. The functional blocks compose an
execution sequence, which specifies the workload behavior
of the task. In the modeling, we set an attribute of orderInEx-
ecutionSequence to indicate the order where the functional
block is in the execution sequence. The WCET attribute is
annotated by the WCET of a functional block, whose value
is set by the designer according to the system requirements
to specify the maximum budget of the execution time. The
interaction type indicates whether the functional block inter-
acts with other functional blocks. If the interaction exists,
the interaction time between them should be concerned to
perform the timing analysis. Both the interaction (denoted
by interactionType and interactionObject) and the execution
sequence (denoted by orderInExecutionSequence) specify
the behavior of the functional block. Besides, the execution
state and the execution condition are also concerned in our
modeling. The executionState specifies the execution states
(‘‘to execute’’ or ‘‘executed’’) of the functional block. The
executionCondition specifies the condition of activating the
execution of the functional block.

When interacting with the ASOS, a task is usually executed
through a set of system calls, whose time cost contributes to
theWCRT of a task. Such system call is realized based on the
basic system calls in ASOS.

3) TAM_VARIABILITY PACKAGE
The TAM_Variability package contains the components
related to the configurable policy in an ASOS, as shown
in Fig. 6. The policy crosscuts the task’s execution in

a system. The crosscutting structure can be modeled by the
aspect-oriented modeling (AOM) [13], which is a technique
that allows reworking a reusable software asset (model) for
the purpose of customization. Based on the AOM, an aspect-
oriented method is provided for modeling the variability.

In AOM, the concept of Aspect is defined to describe
the crosscutting structure. An Aspect consists of a set of
Introductions and Pointcuts. The Introduction describes the
crosscutting structure, which acts as an aspect model intro-
duced to the base model. The Pointcut describes a set of join
points between the aspect model and the base model. For the
microkernel-based RTES, the kernel and the task are modeled
as the base model; the configurable policy (i.e., variability)
is modeled as the aspect model. When configuring a policy,
the policy is modeled as the Introduction, and the elements
in the base model used to realize the policy are modeled as
the Pointcut. In our modeling approach, a new policy can
be modeled by the aspect model without changing the base
model.

When modeling the Introduction, the associate elements
and constraints need to be specified. The associate element
indicates the elements, which are associated with the policy
and need to be introduced together with the Introduction.
For example, for the round-robin scheduling policy, a time
slice should be introduced together with the policy. Such
associate elements include the software resource and the sub-
policy. The constraint specifies the conditions to apply the
Introduction. For example, when applying a dynamic priority
scheduling policy, the priority of task should be changeable.

When modeling the Pointcut, the dependent elements and
constraints need to be specified. The dependent element indi-
cates the elements in the base model that contain the Point-
cut. For example, the scheduling mechanism is a dependent
element for the Pointcut between scheduling policy and base
model. Such dependent elements include the mechanism and
the basic system call. The constraint indicates the conditions
to apply the Pointcut.

B. UML PROFILE FOR THE DSL
UML [4] is the most widely used modeling language, it pro-
vides an extension mechanism for the particular domains.
Based on the extension mechanism, a UML profile for the
TAM domain model (named TAM_UML) is proposed in
terms of the class diagram. TAM_UML defines how the
elements of domain model extend the metaclasses of UML
metamodel to obtain the corresponding stereotypes.

In the stereotypes of TAM_ASOS, both the Mechanism
and Policy extend the UML::Class to describe the essential
functions in the ASOS. For the two stereotypes, the type
attribute indicates the type of the OS function; the parameter
attribute describes the parameters needed to realize the OS
function. SoftwareResource, Hardware, and BasicSystem-
Call extend theUML::Class and theUML::Property. The type
of a kernel determines the WCET of its basic system calls.
The detailed semantic descriptions of these stereotypes are
provided in Table.1.

39552 VOLUME 7, 2019

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

TABLE 1. Stereotypes for TAM_ASOS.

TABLE 2. Stereotypes for TAM_Task.

TAM_Task defines three kinds of stereotypes for the
task: Task, FunctionalBlock, and SystemCall, whose detailed
semantic descriptions are provided in Table.2. Task extends
the UML::Class and is described in terms of priority setting,
scheduling state, scheduling time, and timing requirement.
Specifically, the attributes of state, blockingTime, suspen-
sionTime, WCRT are defined to specify the scheduling. The
default state of a task is set as ‘‘ready’’. The FunctionalBlock
extends the UML::Class and the UML::Property, which is
specified from two aspects. The first aspect represents the
relationship between the functional block with other func-
tional blocks, which is described in terms of the interac-
tion type, the interaction object and the order in execution
sequence. The second aspect represents the execution of the
functional block, which is described in terms of execution
state, execution condition, and WCET. The attribute of exe-
cutionState is defined to specify the execution of a functional
block. The default value of the executionState is set as ‘‘to
execute’’, which indicates that the functional block is ready
to execute. Once the execution is finished, the attribute of

TABLE 3. Stereotypes for TAM_Variability.

executionState is set as ‘‘executed’’. The executionCondi-
tion of a functional block is that: its execution state is ‘‘to
execute’’, the execution state of its predecessor in the exe-
cution sequence is ‘‘executed’’, and the state of the task is
running. The SystemCall extends the UML::Class and the
UML::Property. The time cost of the system call, which
depends on the type of the system call, also contributes to
the time cost of a task. Then, the attributes of type and time
cost are added to the SystemCall.

There are two stereotypes in TAM_Variability: Point-
cut and Introduction. Both the stereotypes extend the
UML::Class and the UML::Association. The Introduction
is used to model the configurable policy and its associate
elements. The Pointcut is used to model the joint point and its
dependent elements in the kernel. The attribute of constraint
is defined for the two stereotypes to indicate their implemen-
tation constraints. The reason by which the two stereotypes
extend the UML::Association is that the relationship between
aspect model and base model is established by the associa-
tions between them. The detailed semantic descriptions for
TAM_Variability are provided in Table.3.

V. TIMING ANALYSIS FOR MICROKERNEL-BASED
RTES DESIGNS
This section concerns the timing analysis approach for the
microkernel-based RTES designs based on our modeling.
In what follows, we give an overview of our timing analysis
approach in Sect. V-A; define the extensible timing analy-
sis tree (ETAT) in Sect. V-B; explain the model mapping
approach in Sect. V-C; and detail the timing analysis method
in Sect. V-D.

A. OVERVIEW OF TIMING ANALYSIS APPROACH
We propose a static approach to analyze the WCRT of a task
based on the timing behavior of the functional blocks and that
of the system calls in the task. The execution sequence and the
WCET of the functional blocks have been modeled for each
task, as well as the ASOS operations used in the task and the
WCET of the corresponding basic system calls. We define
a timing analysis tree to represent the execution sequence,
WCET and the ASOS operations. As the timing analysis tree
is extensible to express the variability, it is also called the
extensible timing analysis tree (ETAT for short). As shown
in Fig. 7, the task model, including the base model and the
aspect model, is mapped to a ETAT. In the ETAT, the policy
in the aspect model is refined by the execution rules defined in
the child node of the policy node. If a new policy (variability)

VOLUME 7, 2019 39553

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 7. Timing analysis for the RTES model.

is configured, the only part to be modified in the ETAT is the
policy node together with its child node. The benefits of our
method based on the ETAT are manifold: first, it allows the
evaluation of the timing requirements under the configurable
policies (i.e., variability); second, it simplifies the analysis
by fixing the part of base model and only replacing the part
of aspect model; third, it unifies the analysis method for the
alternative policies, either existing ones or user-defined ones.

B. TIMING ANALYSIS TREE
In this section, we first introduce the definition of the timing
analysis tree (ETAT); then, we propose a canonical form
to define the execution semantics for the ETAT by refining
the ASOS operations, based on which the timing analysis
is performed. It should be noted that the focus has been
placed on the operations in the ASOS, while the operations
in the tasks are specified as a set of functional blocks. Based
on the proposed canonical form, we introduce the execution
rules for the three basic OS mechanisms (i.e. configurable
policies): scheduling, IPC and resource access with respect
to the ASOS.

1) DEFINITION OF ETAT
An ETAT is a tree structure, which consists of a set of nodes
and edges. Formally, the ETAT is defined as: ETAT= (TreeN-
ode, TreeEdge).
There are three types of nodes in the ETAT as follows:
• object: The object node specifies the task and the func-
tional blocks in the task model;

• operation: The operation node specifies the ASOS oper-
ations in the taskmodel, including the kernel mechanism
and the configurable policy;

• parameter: The parameter node specifies the basic sys-
tem calls used in the task model, as well as the defined
execution rules, which will be introduced in the next
section.

The relationship between nodes is specified as the edge in
ETAT, which includes five types as follows:

• use: A task or a functional block uses the mechanism
(or policy) in the ASOS; The execution rules and the
WCET of basic system calls are used by the mechanism
(or policy).

• realize: The policy is realized based on the mechanism.
• consist: The functional blocks compose a task.
• sequence: The successor of a functional block is its sub-
sequence in the execution sequence.

• operate: The mechanism (or policy) operates on the
task or the functional block.

2) EXECUTION SEMANTICS FOR ETAT
The operations in an ASOS specify how the OS manages
the tasks. The operation is refined by the execution rules in
ETAT, which define the operating action and the timing action
(i.e. time cost). The time cost for each operation is calculated
based on the WCET of basic system calls. When a task in the
system interacts with the OS platform, the basic system calls
adopted by the task are affected by the system-parameters
(such as the number of tasks in the system, the maximum size
of the blocking queue, the maximum number of suspended
tasks at any given moment, and so on). For example, whether
a task calls the basic system call of suspending a task is
affected by the maximum number of suspended tasks in
the system at any given moment. Therefore, such relation
between the system calls and the system-parameters is also
specified in the execution rules.

A canonical form for the execution rules is defined as

State
[Condition]/Action
−−−−−−−−−−→ State′ (1)

where State represents the current state of a task, Condition
means the condition affecting the execution of the task, and
Action is the timing or the operating action of the task trig-
gered by the satisfaction of conditions.

The execution rules for scheduling mechanism are defined
as shown in Fig. 8.
• Four basic states of a task (running, ready, blocked, sus-
pended) are represented by St_Run, St_Ready, St_Block
and St_Suspend, respectively.

• The set of conditions consists of Cond_Preempted,
Cond_First_Run, Cond_Wait_Event, Cond_Event_Arr
ive, and Cond_Time_Out.
– Cond_Preempted represents the condition of a task

being preempted, either active or passive. The active
preemption enables a task to give up the proces-
sor actively. For instance, the task is finished. The
passive preemption enables a task to give up the
processor passively due to the behavior of other
tasks. For instance, other task has a higher priority.

– Cond_First_Run represents the task is selected to
run first among the tasks in ready queue.

– Cond_Wait_Event represents that the task is waiting
for an event.

– Cond_Event_Arrive represent that the event (a task
is waiting for) arrives.

– Cond_Time_Out represents the waiting is timeout.

39554 VOLUME 7, 2019

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 8. Execution rules for scheduling.

FIGURE 9. Execution rules for resource access.

FIGURE 10. Execution rules for IPC.

• The operating actions (i.e. running, readying, block-
ing and suspending) are represented by Act_Run,
Act_Ready, Act_Block and Act_Suspend respectively.
The timing action is defined as Act_Timing, which is
used to record the time cost of the operating actions.

The execution rules for resource access mechanism are
defined as shown in Fig. 9.
• Two basic states of St_Run and St_Block are involved.
• The conditions of Cond_Request_Resource and
Cond_Req_Resource_Available are used.
– Cond_Request_Resource represents the task

requests a resource during the execution.
– Cond_Req_Resource_Available represents the

resource requested is available right now.
• The operating actions include Act_Run, Act_Block, Act
_Timing, Act_Check_Resource and Act_Get_Resource.
Among them, Act_Check_Resource is defined to check

whether the resource is available, Act_Get_Resource is
defined to obtain the available resource.

The execution rules for IPC mechanism are defined as
shown in Fig. 10.
• Two basic states of St_Run and St_Block are involved.
• The conditions of Cond_Request_Communication and
Cond_Req_Connect_Setup are used.
– Cond_Request_Communication represents the task

requests a communication with other task during
the execution.

– Cond_Req_Connect_Setup represents the connec-
tion for the requested communication is set up.

• The operating actions include Act_Run, Act_Block, Act
_Timing, Act_Connect_Setup and Act_Communicate.
Among them, Act_Connect_Setup is defined to set up
the connection, Act_Communicate is defined to commu-
nicate with other task.

VOLUME 7, 2019 39555

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 11. Mapping process.

The above three kinds of execution rules are specified for
the three mechanisms in the microkernel. For the config-
urable policy (i.e., variability), we only need to refine the
relevant conditions in the execution rules to describe the exe-
cution semantics for the policy. Specifically, as the preemp-
tion condition varies with different scheduling policy, a given
scheduling policy needs to refine the Cond_Preempted in the
execution rules of Fig. 8. Similarly, a given resource access
policy needs to refine the Cond_Req_Resource_Available in
the execution rules of Fig. 9, and a given IPC policy needs to
refine the Cond_Req_Connect_Setup in the execution rules
of Fig. 10.

C. MAPPING RTES MODEL TO ETAT
This section presents the mapping of the RTES model to the
ETAT. In the RTES model, each task model and its associated
operations are mapped to a ETAT. The task model consists
of functional blocks and system calls. The realization of a
system call depends on the mechanism/policy and the basic
system calls in the ASOSmodel. The attributes of the node in
ETAT consist of two parts: one part comes from the attributes
of its corresponding component in the system, the other
part is the attribute of timeCost, which is used to record
the consuming time by the component. The execution rules
defined in the above section are attached to the ETAT to refine
the mechanism/policy node. The mapping process is shown
in Fig. 11.
• Step I: Generate an object node for the task, which serves
as the root node.

• Step II: Generate an operation node for the schedul-
ing mechanism, which serves as a child of the root
node. A use edge is used to link the root node and
the operation node. If there exists a scheduling policy
based on the scheduling mechanism, continue to gener-
ate an operation node for the scheduling policy, which
serves as a child of the mechanism node. A realize

edge is used to link the mechanism node and the policy
node.

• Step III: Generate an object node for each functional
block in the task. According to the attribute of order-
InExecutionSequence in the functional block:
(1) if the functional block is the first one in the execution
sequence, its corresponding object node serves as a child
of the root node, and a consist edge is used to link the
root node and the object node;
(2) if the functional block is neither the first one nor
the last one in the execution sequence, its corresponding
object node serves as a child of its antecedent func-
tional block node, and a sequence edge is used to link
them;
(3) if the functional block is the last one in the execution
sequence, the mapping process is finished after generat-
ing its corresponding object node, and then an ETAT is
output.

• Step IV: If the functional block has an interaction
(IPC or resource access) with others, generate an oper-
ation node for the interaction mechanism, which serves
as a child of the functional block. A use edge is used to
link the functional block node and the mechanism node.
If there is a policy based on the interaction mechanism,
continue to generate an operation node for the policy,
which serves as a child of the mechanism node. A realize
edge is used to link the mechanism node and the policy
node. If this interaction includes another operand, con-
tinue to generate an object node for the operand, which
serves as a child of this interaction node. An operate
edge is used to link the operand node and the interaction
node.

• Step V: Generate the parameter nodes for each operation
node with the use edge, which include a parameter node
for the basic system calls, and a parameter node for the
execution rules.

39556 VOLUME 7, 2019

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 12. Timing analysis process.

D. TIMING ANALYSIS OF ETAT
WCRT of a task consists of the scheduling time, the inter-
action time with other functional blocks, and the WCET of
the functional blocks in this task. Both the scheduling time
and the interaction time rely on the operations in ASOS, and
consist of the WCET of related basic system calls. We pro-
pose to analyze the WCRT by traversing the ETAT. During
the traversal, the consuming time of each node is analyzed
based on its child nodes. After the traversal, the time cost of
the root node is achieved, i.e. the WCRT of the task.

Given an arbitrary task t and its corresponding ETAT T,
the timing analysis process is shown in Fig. 12. First, the root
node of T is visited to check whether the task t is completed
(L. 1). If not, the scheduling child node of the root node is
visited to check whether the task is executable (L. 6). The
time cost of the scheduling operation is analyzed, which is
used to update the time cost of the root node (L. 7,8). If the
task is executable (with the state of ‘‘running’’), the functional
block child node of the root node is visited, then the nodes
of the functional block which have a sequence edge between
them are visited one after another (L. 25). For the functional
block node that is ready to execute, if its execution condition
is satisfied, its time cost is analyzed to update the time cost of
the root node (L. 16-19). When all the functional block nodes

FIGURE 13. Basic structure of object node and operation node.

are visited, the task is set as finished, and the time cost on the
root node indicates the WCRT of the task.

Next, we introduce the timing analysis for the scheduling
node and the functional block node. The time cost of the
scheduling node is the time spent at the scheduling opera-
tion. The time cost of the functional block node includes the
time spent at the object itself and the interaction operation
(if exists). Therefore, we introduce a timing analysis method
for such two types of nodes.

According to the definition of ETAT, the basic structure
of object node and operation node is shown in Fig. 13. (1)
For the object node, it has a child node of object, which has
a consist (for task) or sequence (for functional block) edge
with the object node. If the object node has a scheduling
operation or interaction operation, an operation node is used
as its child node. (2) For the operation node, it has a child
node of parameter, which is used by the operation node.
If the operation node has an extended operation (for policy),
the realize edge is used to link them. If the operation node
has an other operand, there is a child node of object for the
operation node with the operate edge.

The timing analysis for the object node of functional block
and the operation node is presented as follows. For ease of
introduction, we call such a child node that has a use edge
with its father node as the use child node of the father node
in brief (the same for other edges).
• C1: For the object node of the functional block, its time
cost includes the time spent at itself and its use child
node (if exists). The time spent at the functional block
itself is specified by its WCET attribute. The use child
node is actually the operation node, whose time cost can
be analyzed by the way in C2.

• C2: For the operation node, its time cost includes the
time spent at its use child node, realize child node
(if exist) and operate child node (if exist). The time
spent at the use child node is the time cost of the system
call, which is analyzed based on the execution rule.
Specifically, the execution rule specifies the concrete
process of a system call being called by the task. Given a
certain system-parameters, the times of the basic system
call being used to realize the system call can be obtained.
Then, the time cost of a system call is the product of
the times and the WCET of the basic system call. If this
operation node has a realize child node, the realize child
node is actually an operation node, whose time cost is
analyzed by the same way as above. If this operation

VOLUME 7, 2019 39557

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

TABLE 4. WCET settings for functional blocks (in one thousand CPU cycles).

node has other operands except its father object node (as
the operation node is used by its father node, the father
node is one operand of this operation), the operate child
node is actually an object node, whose time cost is
analyzed by the same way as C1.

E. CORRECTNESS OF TIMING ANALYSIS
The response time of a task (RTT) in RTESs consists of the
following three parts:

RTT = ETf + ITt + ITp (2)

where ETf, ITt and ITp denote the execution time of functions
in the task, the interaction time with other task(s), and the
interaction time with the OS platform respectively.

Here, we illustrate that our timing analysis based on the
timing analysis tree can generate a safe response time for
tasks.

In the timing analysis tree (ETAT), five kinds of relation-
ships are defined to express the tasks and the OS platform in
system (see Sect.V-B.1). Specifically, the execution of func-
tional blocks in a task is expressed by the relationships of con-
sist and sequence between the object nodes (of the functional
blocks); the interaction with other task(s) is expressed by
the relationship of operate between the object node (of other
tasks) and the operation node (of the interaction); the interac-
tion with the OS platform is expressed by the relationship of
use between the object node (of the task) and the operation
node (of the interaction). Therefore, the timing analysis tree is
capable of specifying all the basic relationships for the tasks
and the OS platform.

For the ETAT of a task, it can be seen from above that there
are always two basic nodes to be analyzed, i.e., the object
node and the operation node. The timing analysis of these
two basic nodes can be calculated by the rules in C1 and
C2. Specifically, these rules calculate the execution time and
the interaction time for a task based on the parameter node,
which specifies the timing behavior of the basic units (i.e.,
functional block and basic system call) in system using the
worst-case execution time (WCET).When the nodes in ETAT
are traversed to calculate the three parts of the response time
(i.e., ETf, ITt and ITp), the result is about the worst-case
response time (WCRT) for tasks, which is a safe result for
the hard real-time system.

VI. CASE STUDY
A. EXPERIMENTAL SETUP
In this section, we illustrate the application of our approach to
a real-life robot controller system. The robot controller sys-
tem (RCS) [46], which consists of three tasks, is used to keep

the robot operating normally. Among the tasks, the balance
task is to keep the balance of robot by calculating the input
from gyroscope and inclinometer; the navigation task is to
avoid obstacles during the process of going to the destination;
the remote task is to receive the remote command via infrared.
The services of infrared sensor, gyroscope and inclinometer
are realized by the interrupt service routines (ISR), which
are corresponding to infrared_isr, gyro_isr and inclino_isr
respectively. To implement the RCS, we use an open source
kernel µC/OS-II, which is based on the microkernel and
freely available for non-commercial usage, to customize the
ASOS. The µC/OS-II kernel implements a static priority
scheduling policy, and has an optional policy of round robin
scheduling. In this case study, we model the RCS on such
ASOS, and analyze the timing requirements to assess these
two scheduling policies.

The target processor presented in [47] is adopted to imple-
ment the ASOS. The corresponding WCET of basic system
calls in the µC/OS-II kernel on the processor, which is also
given in [47], is used in this case study. For the two scheduling
policies, the time slice in the round robin (RR) scheduling
is set as 10 thousands CPU cycles, the priority (P) for the
three tasks in the static priority (SP) scheduling is set as:
P(balance) = 4, P(navigation) = 6, P(remote) = 5. For
the tasks, their timing requirements are represented by the
deadline (D), which are set as (in one thousand CPU cycles):
D(balance) = 200, D(navigation) = 40, D(remote) = 4000.
Within the tasks, the functional blocks (FBs) together with
their WCET are set as shown in Table. 4.

B. EXPERIMENTAL PROCESS
1) MODEL THE RCS
This subsection presents the timing analysis model of the
robot controller system, which includes the ASOS model and
the task model.

The ASOS model represents the components in the ASOS,
each of which is modeled as a class. Among the compo-
nents, the three mechanisms of scheduling, IPC and resource
access are modeled by the stereotype <<Mechanism>>.
For the scheduling mechanism, the corresponding schedul-
ing policy is modeled by the stereotype <<Policy>>,
which includes two alternative realizations: SP scheduling
and RR scheduling. These two alternatives are modeled as
SP_Introduction and RR_Introduction respectively by the
stereotype <<Introduction>>. As an introduction, the SP
scheduling policy has an associate element of priority; the
RR scheduling policy has an associate element of time slice.
Both of the associate elements are modeled by the assEle-
ment attribute. When the scheduling policies are introduced

39558 VOLUME 7, 2019

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 14. ASOS model.

to the ASOS, the corresponding pointcuts are based on the
scheduling mechanism, which is modeled by the depElement
attribute in the stereotype <<Pointcut>>. The basic system
calls used by the scheduling mechanism are modeled by the
stereotype <<BasicSystemCall>>, as well as the other two
mechanisms. As the µC/OS-II kernel is used in the ASOS,
such type of kernel is specified for the basic system calls as
the kernelType attribute. The detailed ASOS model is shown
in Fig. 14.

As shown in Fig. 15, the tasks of balance, navigation, and
remote are modeled by the stereotype of <<Task>>, with
the priority and deadline settings in Sec. VI-A.We assume the
three tasks are released at the same time (releaseTime = 0).
Once released, the state of the task is set as ready. Then,
the scheduling mechanism together with its configurable
scheduling policy and basic system calls are used to schedule
the three tasks. Besides, the IPC mechanism together with
its basic system calls are used by the balance task and the
remote task to communicate with the ISRs. When the task is
completed, its WCRT specifies the information to return as
an analysis result.

For the tasks, each of them has a set of functional blocks
and system calls, which are modeled by the stereotypes
of <<FunctionalBlock>> and <<SystemCall>> respec-
tively. Each functional block is modeled in terms of WCET,
interaction type, and the order in execution sequence (order-
InExeSeq attribute). For the interaction type, if it is interac-
tion, then the corresponding interaction object should also
be specified. For example, the functional blocks of Get-

InfoFromGyro and GetInfoFromInclino in the balance task
have the interaction objects of Gyro_isr and Inclino_isr
respectively; the functional block of GetInfoFromInfrared in
the remote task has the interaction object of Infrared_isr. For
the functional blocks with the interaction type of interaction,
the system call is involved to realize such interaction. In this
case study, there are two types of system call used: scheduling
(SchSysCal) and IPC (IPC_SysCal), both of them are based
on the basic system calls in ASOS.

In the task model, when the SP scheduling is adopted,
the SP_SchPly in ASOS model is introduced as the SchPly-
Introduction to realize the scheduling of the three tasks. It is
the same for the RR scheduling. As the scheduling policy is
alternative, we set both the assElement attributes in SchPly-
Introduction and asIntroduction as variable (‘‘$v1’’,‘‘$v2’’
expression respectively)

2) CONFIGURE EXECUTION RULES FOR THE POLICIES
This subsection presents the execution rules configured for
the two scheduling policies. As shown in Fig. 16, these exe-
cution rules refine the preempted condition in the scheduling
mechanism (as shown in Fig. 8). Specifically, for the SP
scheduling, an arbitrary task T is preempted when there exists
a ready task with a higher priority than T; for the RR schedul-
ing, the task T is preempted when the time slice for T is used
up. It should be noted that the CON_PREEMPTED in the
execution rules of scheduling mechanism (as shown in Fig. 8)
is set by the actions of ACT_SET_PREEMPTED_TRUE or

VOLUME 7, 2019 39559

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 15. Task model.

FIGURE 16. Execution rules for two alternative scheduling policies.

ACT_SET_PREEMPTED_FALSE in the execution rules of
the two scheduling policies.

3) MAP RCS MODEL TO ETAT
This subsection gives details of the transformation of the RCS
model towards the timing analysis tree ETAT.

For the three tasks in RCS model, we map each of them to
an ETAT as shown in Fig. 17. In the mapping, we transform
the classes in RCS model together with the execution rules
to the nodes in ETAT. According to the three kinds of nodes

in the ETAT as defined in Sec. V-B, the mapping includes
three parts: 1) Each of the three task classes is mapped to
the root node. The functional block classes included in each
task are mapped to the successive child nodes of the root
node in the respective ETAT based on the execution sequence
(represented by orderInExeSeq attribute). Task classes and
functional block classes aremapped to the nodeswith the type
of object (represented by the green color). 2) The scheduling
mechanism class used by the task is mapped to the child node
of the root node in each ETAT, and operates on the other
two tasks. The scheduling policy is mapped to the child node
of the scheduling mechanism. Besides, the IPC mechanism
class is mapped to the child node of the functional blocks of
GetInfoFromGyro, GetInfoFromInclino, and GetInfoFromIn-
frared. Mechanism classes and policy classes are mapped
to the nodes with the type of operate (represented by the
orange color). 3) For the mechanisms, the basic system call
classes (include SchBasSysCal and IPC_BasSysCal) and the
execution rules (defined in Fig.8 and Fig.10) are mapped to
the child nodes of the mechanism. Besides, the configured

39560 VOLUME 7, 2019

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

FIGURE 17. Timing analysis tree for the tasks.

execution rules (CfgSchRules) defined in Sec. VI-B.2 is
mapped to the child node of the scheduling policy. Such basic
system call classes and execution rules are mapped to the
nodes with the type of parameter (represented by the blue
color).

As space is limited, the attributes of each node in the
tree are not presented. Such attributes not only include the
attributes of the corresponding class in RCS model, but also
include an attribute of timeCost to record the time spent at
this node.

C. EXPERIMENTAL RESULTS
1) TIMING ANALYSIS RESULTS
The three timing analysis trees as shown in the previous
subsection contain all the needed information to perform the
timing analysis. For the two scheduling policies, each of them
has a set of configured execution rules. We first used the
SP scheduling policy and its corresponding execution rules
(represented by the SchedulingPolicy node and CfgSchRules
node respectively) to analyze the static priority scheduling

TABLE 5. Timing analysis results (in one thousand CPU cycles).

policy, then replace them with the RR scheduling policy and
its corresponding execution rules to analyze the round-robin
scheduling policy.

Based on our static timing analysis in Sec. V-D, the analy-
sis results are presented in Table. 5. These results show the
WCRT for the three tasks under the two scheduling poli-
cies. According to the timing requirements of the tasks in
Sec. VI-A, we can find that the static priority scheduling is
better to meet the deadline of the tasks.

2) DISCUSSION
This case study shows the use of our modeling and timing
analysis framework (MTAF) on a real-life robot controller
system. In this case study, we take the scheduling policies,

VOLUME 7, 2019 39561

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

i.e., static priority scheduling and round-robin scheduling,
as an example to illustrate our approach. Without loss of
generality, any other scheduling policies can also be analyzed
based on the timing analysis trees in Fig. 17 by configur-
ing their execution rules. The configurable execution rules
are mapped to the leaf node (as a parameter node) of the
timing analysis tree, which makes it possible to analyze a
new policy by only changing this leaf node. This is the same
case for the policies of the other two mechanisms: IPC and
resource access. Therefore, for a specific application in the
domain of RTES, we only need such timing analysis tree
(transformed from the RTES model based on our modeling)
to assess the timing requirements under the various alternative
policies, which cover the basic functions of the microkernel.
Any policy (even defined by the designer himself) that can
be described by our execution rules is supported by our
approach. Thus, our approach can guide a designer towards
a better policy in the time aspect for the microkernel-based
RTES design.

VII. CONCLUSION AND PERSPECTIVES
With more and more application-specific operating systems
(ASOS) based on the microkernel are applied in real-time
embedded systems, it is necessary to assess such ASOS from
a time point of view in the early design stage. There is a
lack of the modeling and analysis approach to support the
microkernel-based RTES on the configurable ASOS. In this
paper, we are interested in the ASOS configured from the
three essential functions of the microkernel: the task schedul-
ing, the inter-process communication (IPC), and the resource
access. Such configuration is realized based on a set of alter-
native policies, which is considered as the variability in this
paper. To achieve this objective, we propose a modeling and
timing analysis framework (MTAF) for the specific domain.
This framework includes two parts: the DSL for the timing
analysis modeling of the microkernel-based RTES and the
timing analysis approach for the RTES design based on our
modeling. Our approach is aimed to model and analyze the
variability of the configurable policy in the microkernel-
based RTES, which makes it capable of assessing the policy
from a set of alternatives in advance at the early design stage.

There are four factors to threaten the internal validity of
our approach: the division of the functional blocks in a task,
the execution rules defined for a policy, the WCET of basis
system calls in the kernel, and theWCET set by a designer for
the functional blocks. Specifically, if the size of the functional
block is too big, it is imprecise to analyze its time cost, as the
interactions and system calls within the functional block may
be ignored; on the contrary, if the size is too small, it will
increase the burden of modeling and analyzing the functional
blocks. Usually, the functional block should have no more
than one system call or one interaction (with other functional
block). In the analysis process, as the execution rules for the
policy are defined by the designer, their correctness has a
direct impact on the timing analysis. The WCET of basis
system calls in the kernel is analyzed by the existing tools,

whose capacity also affects our results. Besides, the WCET
of functional blocks is set by a designer based on his/her
experience, which directly affects the precision of the timing
analysis, i.e., whether the design provides a tight bound to
guarantee the timing requirements for tasks. As the run-time
environment in RTES is unpredictable, the WCET of func-
tional blocks is usually set by a random variable to specify its
multiple possible values. In this case, our approach is used to
analyze the WCRT of tasks under each possible value of the
WCET, then the design is assessed in a probabilistic way.

For the external validity of our approach, currently our
approach only supports the configurable policies about the
three aspects of scheduling, inter-process communication,
and resource access. With the RTES is becoming more and
more complex, more functions are needed by the ASOS,
such as network management, file system, and so on. In the
near future, we will improve our approach to support more
kinds of OS functions in ASOS, such as synchronization.
Besides, our approach currently only supports the real-time
embedded system with aperiodic tasks on the uniprocessor.
In our ongoing work, we are improving our approach to
support the periodic tasks, as well as the multi-core platform.

ACKNOWLEDGMENT
The authors would like to thank the reviewers and editors for
their valuable comments on this article.

REFERENCES
[1] L. F. Friedrich, J. Stankovic, M. Humphrey, and M. Marley, ‘‘A survey of

configurable, component-based operating systems for embedded applica-
tions,’’ IEEE Micro, vol. 21, no. 3, pp. 54–68, May/Jun. 2001.

[2] S. Engle. It’s Time: Avionics Need to Move to Multicore Processors.
Accessed: Mar. 26, 2018. [Online]. Available: http://www.modern-
avionics.com/news/2018/its-time-avionics-need-to-move-to-multicore-
processors/

[3] P. H. Feiler, D. P. Gluch, and J. J. Hudak, ‘‘The architecture analysis &
design language (AADL): An introduction,’’ Softw. Eng. Inst., Carnegie-
Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-2006-TN-011,
2006.

[4] OMG. (2015). Unified Modeling Language. [Online]. Available:
http://www.omg.org/spec/UML/

[5] OMG. (2011). UML Profile for Marte. [Online]. Available: http://www.
omg.org/spec/MARTE

[6] S. Fürst et al., ‘‘AUTOSAR—A worldwide standard is on the road,’’
in Proc. 14th Int. VDI Congr. Electron. Syst. Vehicles, Baden-Baden,
Oct. 2009, pp. 1–16.

[7] P. L. Martínez, L. Barros, and J. M. Drake, ‘‘Scheduling configu-
ration of real-time component-based applications,’’ in Reliable Soft-
ware Technologiey—Ada-Europe. Berlin, Germany: Springer, 2010,
pp. 181–195.

[8] E. M. Clarke,W. Klieber, M. Nováček, and P. Zuliani,Model Checking and
the State Explosion Problem. Berlin, Germany: Springer, 2011.

[9] F. Stappert and P. Altenbernd, ‘‘Complete worst-case execution time analy-
sis of straight-line hard real-time programs,’’ J. Syst. Archit., vol. 46, no. 4,
pp. 339–355, 2000.

[10] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, ‘‘Automatic
derivation of loop bounds and infeasible paths for WCET analysis using
abstract execution,’’ in Proc. IEEE 27th Int. Real-Time Syst. Symp.,
Dec. 2006, pp. 57–66.

[11] G. Aupy, C. Brasseur, and L. Marchal, ‘‘Dynamic memory-aware task-
tree scheduling,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.,
May/Jun. 2017, pp. 758–767.

[12] R. Xu, L. Zhang, N. Ge, and J. Jing, ‘‘Timing analysis for microkernel-
based real-time embedded system,’’ in Proc. 30th Int. Conf. Softw. Eng.
Knowl. Eng., 2018, pp. 512–517.

39562 VOLUME 7, 2019

R. Xu et al.: Modeling and Timing Analysis for Microkernel-Based RTES

[13] T. Elrad, O. Aldawud, and A. Bader, ‘‘Aspect-oriented modeling: Bridg-
ing the gap between implementation and design,’’ in Generative Pro-
gramming and Component Engineering. Berlin, Germany: Springer, 2002,
pp. 189–201.

[14] M. Z. Iqbal, A. Arcuri, and L. Briand, ‘‘Environment modeling with
UML/MARTE to support black-box system testing for real-time embedded
systems: Methodology and industrial case studies,’’ in Proc. Int. Conf.
Model Driven Eng. Lang. Syst., 2010, pp. 286–300.

[15] C. Mraidha, S. Tucci-Piergiovanni, and S. Gerard, ‘‘Optimum: A marte-
based methodology for schedulability analysis at early design stages,’’
ACM SIGSOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1–8, 2011.

[16] V. Debruyne, F. Simonot-Lion, and Y. Trinquet, ‘‘EAST-ADL—An archi-
tecture description language,’’ in Architecture Description Languages.
Berlin, Germany: Springer, 2005, pp. 181–195.

[17] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, ‘‘CAmkES: A component model
for secure microkernel-based embedded systems,’’ J. Syst. Softw., vol. 80,
no. 5, pp. 687–699, 2007.

[18] W. E. H. Chehade, A. Radermacher, S. Gerard, and F. Terrier, ‘‘Detailed
real-time software platform modeling,’’ in Proc. 17th Asia Pacific Softw.
Eng. Conf., Nov./Dec. 2010, pp. 108–117.

[19] R.Mzid andM.Abid, ‘‘UML-based reconfigurablemiddleware for design-
level timing verification in model-based approach,’’ in Proc. 11th Int.
Design Test Symp., Dec. 2016, pp. 181–186.

[20] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, ‘‘A study of
variability models and languages in the systems software domain,’’ IEEE
Trans. Softw. Eng., vol. 39, no. 12, pp. 1611–1640, Dec. 2013.

[21] J. L. Medina and Á. G. Cuesta, ‘‘From composable design models to
schedulability analysis with UML and the UML profile for marte,’’
ACM SIGBED Rev., vol. 8, no. 1, pp. 64–68, 2011.

[22] M. Hagner and U. Goltz, ‘‘Integration of scheduling analysis into UML
based development processes through model transformation,’’ in Proc. Int.
Multi-Conf. Comput. Sci. Inf. Technol., Oct. 2010, pp. 797–804.

[23] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte, ‘‘Simulation-based
timing analysis of complex real-time systems,’’ in Proc. 15th IEEE Int.
Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2009, pp. 321–328.

[24] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, ‘‘Cheddar: A flexible
real time scheduling framework,’’ ACM SIGAda Ada Lett., vol. 24, no. 4,
pp. 1–8, 2004.

[25] R. Alur and D. L. Dill, ‘‘A theory of timed automata,’’ Theory Comput.
Scince, vol. 126, no. 2, pp. 183–235, 1994.

[26] L. Popova-Zeugmann, ‘‘Time Petri nets,’’ in Proc. Time Petri Nets, 2013,
pp. 31–137.

[27] G. Behrmann, A. David, and K. G. Larsen, ‘‘A tutorial on UPPAAL,’’ in
Formal Methods for the Design of Real-Time Systems. Berlin, Germany:
Springer, 2004, pp. 33–35.

[28] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, ‘‘TIMES:
A tool for schedulability analysis and code generation of real-time sys-
tems,’’ in Proc. Int. Conf. Formal Modeling Anal. Timed Syst., 2003,
pp. 60–72.

[29] N. Guan, C. Gu, M. Stigge, Q. Deng, and W. Yi, ‘‘Approximate response
time analysis of real-time task graphs,’’ in Proc. IEEE Real-Time Syst.
Symp. (RTSS), Dec. 2014, pp. 304–313.

[30] K. Lampka, S. Perathoner, and L. Thiele, ‘‘Analytic real-time analysis and
timed automata: A hybrid methodology for the performance analysis of
embedded real-time systems,’’ Des. Automat. Embedded Syst., vol. 14,
no. 3, pp. 193–227, 2010.

[31] Y. Lu, T. Nolte, and J. Kraft, ‘‘An approximate timing analysis framework
for complex real-time embedded systems,’’ in Proc. IEEE 13th Int. Conf.
Comput. Sci. Eng., Dec. 2010, pp. 102–111.

[32] N. Ge, M. Pantel, and B. Berthomieu, ‘‘A flexible WCET analysis method
for safety-critical real-time system using UML-MARTE model checker,’’
Rapport LAAS n◦ 12401, 2016, pp. 1–12.

[33] Y. H. Kacem, A. Mahfoudhi, A. Magdich, C. Mraidha, and W. Karamti,
‘‘Using MDE and priority time Petri Nets for the schedulability analysis
of embedded systems modeled by UML activity diagrams,’’ in Proc. 19th
Int. Conf. Workshops Eng. Comput. Based Syst., Apr. 2012, pp. 316–323.

[34] M. Naija, S. B. Ahmed, and J.-M. Bruel, ‘‘New schedulability analysis
for real-time systems based on MDE and Petri Nets model at early design
stages,’’ in Proc. 10th Int. Joint Conf. Softw. Technol., vol. 1, Jul. 2015,
pp. 1–9.

[35] A. Colin and I. Puaut, ‘‘Worst case execution time analysis for a processor
with branch prediction,’’ Real-Time Syst., vol. 18, nos. 2–3, pp. 249–274,
2000.

[36] A. Colin and G. Bernat, ‘‘Scope-tree: A program representation for sym-
bolic worst-case execution time analysis,’’ in Proc. 14th Euromicro Conf.
Real-Time Syst., Jun. 2002, pp. 50–59.

[37] R. Simmons and D. Apfelbaum, ‘‘A task description language for robot
control,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 3,
Oct. 1998, pp. 1931–1937.

[38] T. Liu, M. Li, and C. J. Xue, ‘‘Instruction cache locking for multi-task real-
time embedded systems,’’ Real-Time Syst., vol. 48, no. 2, pp. 166–197,
2012.

[39] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg, ‘‘Fast: Frequency-
aware static timing analysis,’’ACMTrans. Embedded Comput. Syst., vol. 5,
no. 1, pp. 200–224, 2006.

[40] R. Arnold, F. Mueller, D.Whalley, andM. Harmon, ‘‘Bounding worst-case
instruction cache performance,’’ in Proc. Real-Time Syst. Symp. (RTSS),
Dec. 1994, pp. 172–181.

[41] Y. Harada, K. Abe, M. Yoo, and T. Yokoyama, ‘‘Aspect-oriented cus-
tomization of the scheduling algorithms and the resource access protocols
of a real-time operating system family,’’ in Proc. IEEE Int. Conf. Smart
City/SocialCom/SustainCom, Dec. 2015, pp. 87–94.

[42] L. K. Chong, C. Ballabriga, V.-T. Pham, S. Chattopadhyay, and
A. Roychoudhury, ‘‘Integrated timing analysis of application and operating
systems code,’’ in Proc. IEEE 34th Real-Time Syst. Symp., Dec. 2013,
pp. 128–139.

[43] D. P. B. Renaux, R. E. De Góes, and R. R. Linhares, ‘‘Performance
characterization of real-time operating systems for systems-on-silicon,’’ in
Proc. 12th BrazilianWorkshop Real-Time Embedded Syst., 2010, pp. 1–12.

[44] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, ‘‘Chronos: A tim-
ing analyzer for embedded software,’’ Sci. Comput. Program., vol. 69,
nos. 1–3, pp. 56–67, 2007.

[45] F. Verdier, B. Miramond, M. Maillard, E. Huck, and T. Lefebvre, ‘‘Using
high-level RTOS models for HW/SW embedded architecture exploration:
Case study on mobile robotic vision,’’ EURASIP J. Embedded Syst.,
vol. 2008, no. 1, 2008, Art. no. 349465.

[46] T. Braunl, ‘‘EyeBot: A family of autonomous mobile robots,’’ in Proc. 6th
Int. Conf. Neural Inf. Process., vol. 2, Nov. 1999, pp. 645–649.

[47] M. Lv et al., ‘‘WCET analysis of the µC/OS-II real-time kernel,’’ in Proc.
Int. Conf. Comput. Sci. Eng., vol. 2, 2009, pp. 270–276.

RONGFEI XU received the B.S. and M.S.
degrees from Shijiazhuang Tiedao University, Shi-
jiazhuang, China, in 2010 and 2013, respectively.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Engineering,
Beihang University, Beijing, China. His research
interest includes modeling and analysis of real-
time systems.

LI ZHANG is currently a Professor with the School
of Computer Science and Engineering, Beihang
University, Beijing, China, where she is also the
Associate Dean of the School of Software and
leading a research group in Software Engineering
Institution. She has published over 100 articles in
refereed conferences and journals. Her research
interests include system modeling, model-driven
engineering, software product line, and business
process modeling and simulation.

NING GE received the Ph.D. degree in soft-
ware safety and highly performance computing
from the IRIT Laboratory of CNRS, University
of Toulouse, Toulouse, France, in 2014. She is
currently a Lecturer with the School of Software,
Beihang University, Beijing, China. Her research
interests include formal methods, software safety,
model-driven engineering, and real-time embed-
ded systems.

VOLUME 7, 2019 39563

	INTRODUCTION
	RELATED WORKS
	MODELING FOR THE RTES
	TIMING ANALYSIS OF THE RTES
	DYNAMIC APPROACH
	STATIC APPROACH

	BACKGROUND AND OVERVIEW
	MICROKERNEL-BASED ARCHITECTURE
	OVERVIEW OF OUR METHODOLOGY

	DOMAIN-SPECIFIC MODELING FOR THE MICROKERNEL-BASED RTES
	TIMING ANALYSIS MODELING (TAM) FOR RTES
	TAM_ASOS PACKAGE
	TAM_TASK PACKAGE
	TAM_VARIABILITY PACKAGE

	UML PROFILE FOR THE DSL

	TIMING ANALYSIS FOR MICROKERNEL-BASED RTES DESIGNS
	OVERVIEW OF TIMING ANALYSIS APPROACH
	TIMING ANALYSIS TREE
	DEFINITION OF ETAT
	EXECUTION SEMANTICS FOR ETAT

	MAPPING RTES MODEL TO ETAT
	TIMING ANALYSIS OF ETAT
	CORRECTNESS OF TIMING ANALYSIS

	CASE STUDY
	EXPERIMENTAL SETUP
	EXPERIMENTAL PROCESS
	MODEL THE RCS
	CONFIGURE EXECUTION RULES FOR THE POLICIES
	MAP RCS MODEL TO ETAT

	EXPERIMENTAL RESULTS
	TIMING ANALYSIS RESULTS
	DISCUSSION

	CONCLUSION AND PERSPECTIVES
	REFERENCES
	Biographies
	RONGFEI XU
	LI ZHANG
	NING GE

