IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 14, 2019, accepted March 6, 2019, date of publication March 18, 2019, date of current version April 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2905769

Exploiting Blockchain Data to Detect Smart
Ponzi Schemes on Ethereum

WEILI CHEN "2, ZIBIN ZHENG 12, EDITH NGAI“3, PEILIN ZHENG'2, AND YUREN ZHOU 12

1School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou 510006, China
3Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden

Corresponding author: Zibin Zheng (zhzibin @mail.sysu.edu.cn)

This work was supported in part by the National Key Research and Development Program under Grant 2016YFB 1000101, in part by the
National Natural Science Foundation of China under Grant U1811462 and Grant 61773410, in part by the Guangdong Province
Universities and Colleges Pearl River Scholar Funded Scheme (2016), in part by the Program for Guangdong Introducing Innovative and
Entrepreneurial Teams under Grant 2016ZT06D211, and in part by the STINT Initiation Grant for International Collaboration under Grant
1B2017-6978.

ABSTRACT Blockchain technology becomes increasingly popular. It also attracts scams, for example,
a Ponzi scheme, a classic fraud, has been found making a notable amount of money on Blockchain, which
has a very negative impact. To help to deal with this issue and to provide reusable research data sets for
future research, this paper collects real-world samples and proposes an approach to detect Ponzi schemes
implemented as smart contracts (i.e., smart Ponzi schemes) on the blockchain. First, 200 smart Ponzi
schemes are obtained by manually checking more than 3,000 open source smart contracts on the Ethereum
platform. Then, two kinds of features are extracted from the transaction history and operation codes of the
smart contracts. Finally, a classification model is presented to detect smart Ponzi schemes. The extensive
experiments show that the proposed model performs better than many traditional classification models and
can achieve high accuracy for practical use. By using the proposed approach, we estimate that there are more
than 500 smart Ponzi schemes running on Ethereum. Based on these results, we propose to build a uniform

platform to evaluate and monitor every created smart contract for early warning of scams.

INDEX TERMS Blockchain, smart contract, Ponzi Schemes, ethereum, data mining.

I. INTRODUCTION

Blockchain technology is described as a disruptive technol-
ogy that is going to revolutionize many industries. The ongo-
ing discussion of blockchain technology has triggered the
attention of policymakers, regulators and the industrial and
academic communities [1], [2]. Blockchain takes its origins
from the famous Bitcoin which makes value transfer between
anonymous participants possible without relying on authori-
tative third-parties by combining many mature technologies
such as digital signature schemes, the proof-of-work mech-
anism, distributed technologies, and so on [3]. Technically,
it is a continuously growing list of records of value transfer
transactions maintained by a peer-to-peer network through
a distributed consensus mechanism. It has many compelling
features and is usually referred to as the next generation of
Internet [4], as they create an Internet of Value compared with
the traditional Internet of Information.

The associate editor coordinating the review of this manuscript and
approving it for publication was Quan Zou.

Nowadays, many applications based on blockchain
are proposed, such as banking industry [5], Internet of
Things (IoT) [6], and smart grids [6]. Many projects aiming
to support blockchain-based applications have been cre-
ated. Ethereum is a famous open-source blockchain based
distributed platform. It provides a Turing-complete virtual
machine (i.e., Ethereum virtual Machine, EVM) to imple-
ment smart contrasts. A smart contract, coined by Nick
Szabo, is a set of promises and protocols specified in digital
form [7], [8]. Smart contracts are easy to implement based on
Ethereum platform because of its decentralized distributed
characteristics and supporting of many high-level languages,
such Solidity.! Smart contracts deployed on Ethereum plat-
form can never be tampered with and will automatically
enforce when preset conditions are met. Thus, it can be
applied in various domains [9]-[11]. Blockchain platforms
that support smart contracts are considered as the second-
generation blockchain [4].

1 http://solidity.readthedocs.io/en/develop

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

37575

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3455-1241
https://orcid.org/0000-0001-7872-7718
https://orcid.org/0000-0002-3454-8731
https://orcid.org/0000-0002-0497-0835

IEEE Access

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

New technologies are vulnerable to exploitation by scams.
For example, the rise of email attracts a lot of spams.
Blockchain, as an emerging technology, also attracts many
scams because of its lack of regulation and anonymous
characteristic. Many types of scams can be found in the
blockchain area, such as exploits, hacks, and phishing [12].
A recent study estimates that more than 7 million USD has
been gathered during 9/2/2013 to 9/9/2014 by scams in Bit-
coin [13]. Ponzi scheme, a classic fraud named after a notori-
ous fraudster of almost 100 years ago, also has its blockchain-
based form [13], [14]. A Ponzi scheme is a fraudulent invest-
ment operation where the operator generates returns for older
investors through revenue paid by new investors, rather than
from legitimate business activities or profits of financial trad-
ing [15]. In a Ponzi scheme, many participants, especially
those posteriors, are doomed to lose most of their invested
money. It has been reported that all kinds of Ponzi schemes
are making big money from people who want to participate
in the blockchain technology but do not understand how it
works [16]-[18]. Obviously, Ponzi schemes hurt the economy
and are prohibited in many countries.

Nowadays, many Ponzi schemes disguised themselves
under the veil of smart contracts [14]. We call these Ponzi
schemes as smart Ponzi schemes and the corresponding smart
contract as Ponzi scheme contract. Ponzi scheme contracts
have many advantages for operators, such as 1) no mainte-
nance fee is needed after the smart contract implemented;
2) participants have great confidence in continuously pay-
ing back as the smart contract cannot be terminated and is
automatically enforced; and 3) the operators stay anonymous.
Figure 1 displays the propaganda picture of a typical smart
Ponzi scheme. The propaganda words are as the following:

“Hello! My name is Rubixi! I'm new &
verified pyramid smart contract on the Ethereum
blockchain. When you send me 1 ether, I will
multiply the amount and send it back to your
address when the balance is sufficient. My
multiplier factor is dynamic (min. x1.2 max. x3),

FIGURE 1. The Propaganda Picture of a Smart Ponzi Scheme Source:
https://bitcoindtalk.org/index.php?topic=1400536.0.

37576

thus my payouts are accelerated and guaranteed
for months to come”

As publicized, the smart contract was relatively profitable
and the returns seem guaranteed to come soon. However,
the true situation is far from described. Through manually
checking the contract’s transaction history, we found that only
19.6% (22 out of 112) participants made a profit from the
contract and more than 40% of the profit was taken by two
participants. One of the two profit makers was the contract
creator. Obviously, this contract causes loss in most of the
participants.

The above examples show that detecting blockchain based
Ponzi schemes is a significant and urgent task for the fol-
lowing reasons: 1) It is a big challenge for investors and
users lacking professional knowledge to understand what
blockchain is and detect the scams; and 2) it is imperative for
national authorities and regulators to strengthen supervision
and legislation for the health and rightfulness of blockchain
related markets [19].

To help dealing with this issue, this paper focuses on
detecting smart Ponzi schemes implemented on Ethereum.
Because blockchain data are publicly accessible, it is pos-
sible to address this problem by exploiting the blockchain
data. However, detecting smart Ponzi schemes is not an easy
job for three reasons: 1) enough verified samples must be
collected, and it can only be verified by manually check the
source codes, as they disclose the logic of smart contracts;
2) with the development of Ethereum, many smart contracts
are implemented on Ethereum each day, which makes it
inefficient to manually check each contract; and 3) there are
more than two million smart contracts running on Ethereum
at the moment, but only around 1% have source codes.? (We
call all smart contracts having source code as open source
contracts, the others as hidden source contracts.) Thus, detect-
ing smart Ponzi schemes through manual checking is neither
unrealistic nor comprehensive. Therefore, this paper proposes
to establish a classification model not relying on the source
code to automatically identify smart Ponzi schemes.

To build an effective model for detecting smart Ponzi
schemes without source code, we need 1) enough smart con-
tracts that have labels (verified whether they are smart Ponzi
schemes) and 2) effective features which can be extracted
without source codes. To this end, as shown in Fig. 2, we first
obtain all the source codes of open source smart contracts
implemented before 9/7/2017 from Etherescan.io and manu-
ally check whether it is Ponzi scheme contract (i.e., collecting
ground truth data). Then, two kinds of features, namely the
account features and the code features, of these contracts
are extracted from the external transactions, internal transac-
tions and operation codes. Next, a better classification model,
as compared with many other methods, is proposed. Finally,
the proposed model is applied to detect all the latent smart
Ponzi schemes (i.e., smart Ponzi schemes hidden source
code).

2https://etherscan.io/accounts/c

VOLUME 7, 2019

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

IEEE Access

S—
Etherscan.io

Account
features

Code
features

External
transactions
Internal

transactions

Disassemble

Classifier

Label

Other Ponzi schme
contracts contracts

Collecting ground truth

Operation
code

| Application

Extracting features Model & Application

FIGURE 2. The framework of smart ponzi schemes detection.

Extended from its previous conference version [20], which
reports preliminary method and results on this issue, the jour-
nal version makes new contributions, including: 1) provid-
ing more samples by manually checking more open source
smart contracts (manually checked 3,780 open source con-
tracts (1,382 in [20]) and collect 200 smart Ponzi schemes
(131 in [20]); 2) a better model is proposed and the efficiency
of the proposed model is demonstrated by extensive experi-
mental results; 3) six new account features are extracted for
better classification; 4) the problem of sample imbalance is
considered in this new version and the proposed model is
compared with acommonly used framework for this problem;
5) this paper adds to the body of literature in blockchain fraud
detection by comparing the smart Ponzi scheme detection
problem with the anomaly detection problem and evaluating
the efficiency of the proposed model in comparison to many
methods. Furthermore, the new model is used to estimate the
number of smart Ponzi schemes created each month.

The remaining of this paper is organized as follows.
Section II provides a brief introduction of the Ethereum
platform, some key concepts and the related work. A detailed
description of the data, the extracted features, and the clas-
sification model are presented in Section III. Experimen-
tal results, analysis, and application are summarized in
Section I'V. Finally, we conclude the paper in Section V.

Il. ETHEREUM, SMART CONTRACTS AND RELATED WORK
This section briefly introduces Ethereum and smart contracts.
First of all, we introduce the Ethereum platform and its
state transition mechanism. Then, a source code snippet of
a Ponzi scheme contract is provided and analyzed. Finally,
the operation code, the mnemonic form of bytecode, and the
main source of features in our model, is introduced.

A. ETHEREUM IN A NUTSHELL

Ethereum is a famous blockchain platform [8]. Unlike Bit-
coin, it provides an Ethereum Virtual Machine (EVM) that
can execute code of arbitrary algorithmic complexity. The
EVM is the runtime environment for EVM bytecode, which
is a Turing-complete programming language. To help build
applications, many new high-level languages such as Solid-
ity are presented. It takes only a few lines of code to create
a simple distributed application with Ethereum platform.

3 http://solidity.readthedocs.io/en/develop

VOLUME 7, 2019

Smart contracts, a famous idea coined by Nick Szabo
in 1996, aim to provide new ways to formalize busi-
ness or personal relationships [7]. It becomes very convenient
to implement smart contracts based on the Ethereum platform
because of EVM. Technically, it takes only three steps to
implement a smart contract based on Ethereum: 1) write the
source code of the smart contract with high-level languages,
such as Solidty; 2) compile the source code into bytecode
using an EVM compiler; and 3) upload the bytecode to the
Ethereum blockchain with an Ethereum client.

From a technical point of view, a blockchain system can be
considered as a state transition and maintenance system [8].
In Ethereum blockchain, the state comprises all the accounts
and their status. An account, or an address, is a string of digits
and characters that can be shared with anyone who wants
to interact with the account. Two types of accounts can be
found in Ethereum: external accounts that are controlled by
users (i.e., a human) and contract accounts that are controlled
by the bytecode stored together with the account. Regardless
of the types of the accounts, they are treated equally by
the EVM. Every account has two fields which determine a
unique status of the account: nonce (indicates the number of
transactions sent from that address) and balance.

A transaction is usually a message sending from one
account to another with binary data (its payload) or Ether (the
crypto-fuel for the Ethereum network). Transferring Ether
and calling a function in a contract are two typical transac-
tions initiated by users. Besides, new transactions may be
triggered by existing transactions. For example, a victim who
invests some Ether to a Ponzi scheme contract account may
trigger Ether transfer transactions from the contract account
to previous victims. We call the transactions of sending Ether
to a contract account as external transactions (or investments)
and the triggered transfer transactions as internal transactions
(or payments) of the contract.

An external transaction can be seen as a trigger for the
operation of smart contracts. It is usually initiated by a user
(i.e., external accounts) with some binary data to invoke a
function in the contract. The internal transactions is a kind
of response to an external transaction. For example, suppose
a contract B has a function which will transfer some Ether
to accounts C and D when the contract receives some Ether
from other accounts. Then, if account A sending 5 Ether to
account B, it will trigger two transfer transactions from B to C
and D. In this example, the transaction from A to B is a exter-
nal transaction of contract B; and the transactions from B to C
and D are two internal transactions of contract B. Thus, exter-
nal and internal transactions can be seen as invoke-responses
for a smart contract, which may be useful in reflecting the
logic of the contract. Actually, we extracted account features
from the transactions for smart Ponzi scheme detection.

Transactions occurred in a certain period of time, which
have been validated by miners, or the maintenance nodes
of the Ethereum network, are packaged into blocks and
appended into a public and append-only ledger, i.e., the
blockchain. Each transaction is charged with a certain amount

37577

IEEE Access

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

of gas, according to the consumed resources used for vali-
dating the transaction, to encourage miners to maintain the
blockchain and to prevent system abuse. The gas multi-
plied by the user-defined Gasprice is the fee for the trans-
action, which has to be paid upfront from the sending
account and depleted gradually according to specific rules.
The leftover gas will be refunded in the same way after
the execution. If the gas is used up before the comple-
tion of the execution, the transaction is failed and all the
side effects are reverted. Thus, it is very important for the
creator to provide enough gas to ensure the success of a
transaction.

As each transaction is executed and packaged indepen-
dently by miners, a consensus protocol must be employed
to maintain a unique state of Ethereum blockchain in a
certain time period. Consensus protocol is the foundation
of mutual trust between users in the blockchain system.
Ethereum adopts a similar consensus protocol as Bitcoin.
This ensures that the Ethereum system will be safe unless
a particular attacker owning 51% computing power of the
whole network. Based on the security of the system, trust is
built among Ethereum users for its transparent code execution
process.

B. A SOURCE CODE SNIPPET OF A SMART

PONZI SCHEME

In the Ethereum platform, Solidity is a commonly used lan-
guage for writing smart contracts. It is a contract-oriented,
high-level language whose syntax is similar to that of
JavaScript. In this subsection, we present a simplified Ponzi
scheme contract written with Solidity (Fig. 3) to show how
to identify a Ponzi scheme contract by exploiting its source
code. This is also the way we classify the downloaded open
source smart contracts and collect positive samples.

The code snippet shown in Fig. 3 is extracted from the
contract named Rubixi for understanding why it is a smart
Ponzi scheme. The code snippet begins with the keyword
contract to define a smart contract named Rubixi. Generally
speaking, the body of a smart contract consists of two parts:
variables and functions. Functions can be called by transac-
tions or messages from other accounts. During the execution
of a function, the data stored in that contract can be renewed.

The codes from line 2 to 12 are variable definition used
to record the key information of the contract. For example,
balance records the current balance of the smart contract
and the creator records the address of the creator. The struct
Participant records an investor’s address and its correspond-
ing reward. The dynamically-sized array of ‘‘Participant”
structs are used to store all the investors of the contract. Other
variables are contract-specific and will be explained in the
following.

The function Rubixi defined from line 14 to 16 is the
constructor which assigns the creator with the address of
the contract creator. It runs only once when the contract
is created. The function with no name in line 17, which
contains only a function call to addPayout, is called fallback

37578

FIGURE 3. A simplified ponzi scheme contract(Rubixi).

function. It is executed when receiving Ether sending from
other accounts. Thus, an investment transaction will trigger
the function addPayout, defined in line 19 to 35. This function
is the key of the contract as it implements the main logic of
a Ponzi scheme. Firstly, it records the address and the reward
to payout of the investor in order (line 21-22). Then, it calcu-
lates fees (line 28). Finally, it pays to previous investors while
the balance is enough (line 29-34).

The array participants defined in line 12 records all
the investors in order, including address (msg.sender)
and reward to payout (payout=msg.value *pyramidMulti-
plier)/100). Note that the propagated high profit (see Fig. 1) is
controlled by the variable pyramidMultiplier, which was first
set to 300 (line 6), but then reduced to 200 (line 23) from the
10th participant and 150 (line 25) from the 25th participant.
Obviously, to attract early participants, the contract owner
promised a higher profit for them. It is worth mentioning
that pyramidMultiplier should be set to above 100 to be
profitable. The while loop from line 29 to line 34 tries to pay
all the previous participants by their investment order until
the balance is not enough.

Taking fees from participants is the main purpose of oper-
ating a Ponzi scheme. Figure 3 shows that the creator of
Rubixi charges every investment 10 percent, and the fees are

VOLUME 7, 2019

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

IEEE Access

collected by calling the function collectAllFees in line 37.
Note that the function can only be called by the owner of the
contract (i.e., the creator).

Figure 3 clearly shows the logic of the contract, which
obviously can be identified as a Ponzi scheme. As seen from
the code snippet, two kinds of transactions may occur with
a smart contract: external transactions and internal transac-
tions. The essence of a smart Ponzi scheme determines the
payment order of the internal transactions. Thus, it is possible
to identify a smart Ponzi scheme from its transactions history.

C. DEPLOY A CONTRACT

As mentioned in subsection II-A, an Ethereum contract is a
series of “Ethereum virtual machine code” or “EVM code™
residing in the Ethereum blockchain. We call this the byte-
code of a contract. To deploy a smart contract, one should
first write the source code of the smart contract with a high-
level language (e.g., Solidity), then compile the source code
into EVM bytecode. It consists of a series of bytes. Each byte
is an operation (or the operand of operation). Each operation
has a corresponding mnemonic form for human readability.
For example, the mnemonic form of EVM bytecode 0x 10 is
LT, which means less-than comparison. We call LT and such
mnemonic form of EVM bytecode as opcode. The appendix
of Ethereum yellow paper [21] contains a complete list of
the EVM bytecode and its mnemonic form, i.e., opcode.
A disassembler* can be used to get the operation code of a
contract from bytecode.

To make the contract callable from other accounts,
the bytecode should be deployed in the main Ethereum net-
work. A special transaction targeted to the zero-account (the
account with address 0) creates a new contract. The bytecode
of the contract provided as the payload of that transaction will
be executed; the result will be stored with the new contract
account and be record permanently in the blockchain. The
address of the new contract will return to the creator, which
can then be shared with others. Note that only the bytecode is
needed to deploy a smart contract, thus the creator can hide
the source code of the contract. As a matter of fact, most smart
contracts are deployed without source code according to
etherscan.io. Thus, it may be impossible for a user to identify
latent smart Ponzi schemes (i.e., smart Ponzi schemes hidden
source codes).

D. RELATED WORK

Blockchain technology is described as a disruptive technol-
ogy that is going to revolutionize many industries. Thus, it has
become a research hotspot. Three types of research can be
found in the literature. The first type focuses on the under-
lying techniques, such as consensus mechanisms [22]-[24],
performance improvement and evaluation [25], [26], and
smart contract [27]. The second type discusses the application
of blockchain technology, such as finance service [28], [29],
Internet of Things (IoT) [10], [30], and smart traveling [31].

4https://etherscan.io/opcode-tool

VOLUME 7, 2019

More information can be found in the survey [32]. The last but
the most related type of work is data mining on blockchain.
Thanks to the publicly accessible characteristic, blockchain
provides an unprecedented opportunity for data analysis to
answer various questions, for example, usage characteris-
tics [33]-[35], anonymity [36], [37] and economic behavior
analysis [38], [39].

With the development of the Internet, online “High-yield”
investment program (HYIP) became a typical form of Ponzi
schemes. A preliminary analysis was provided on economic
aspects of it by using data collected from HYIP websites [40].
More detailed research can be found in [41], where a model
was set out to estimate the turnover and profits of HYIPs.
Both papers focused on HYIPs which use centralized virtual
currencies. With the development of blockchain technology,
various scams in the name of technical innovation upsurge
inevitably. As a previous research pointed out [42], many
investors are approaching blockchain technology in the hope
of getting on a promising investment vehicle. However, it is
difficult for a ordinary investor to understand blockchain
technology and detect any scams on it. Thus, many scams take
advantage of this information asymmetry. Marie Vasek and
Tyler Moore present an empirical analysis of Bitcoin-based
scams [13]. Four groups of scams including Ponzi schemes,
mining scams, scam wallets, and fraudulent exchanges were
identified. It is reported that 13,000 distinct victims were
found and at least $11 million has been contributed to the
192 scams. Data mining technologies have been used for the
detection of financial fraud [43] and it is used for detect-
ing Bitcoin Ponzi schemes [44]. A recent study focused on
the economic aspects of smart Ponzi schemes [14]. They
use normalized Levenshtein distance [45] as a measure of
similarity between bytecodes to detect hidden smart Ponzi
schemes. Different from their study, this paper focused on
identifying smart Ponzi schemes with bytecodes by using
machine learning and data mining methods.

Ill. DATA, FEATURE EXTRACTION AND

CLASSIFICATION MODEL

This section provides an overview of the data, the extracted
features, and the classification model.

A. DATA

1) GROUND TRUTH

Due to the source code of most smart contracts are hid-
den, we must build a model without source code. However,
we need ground truth data which can be verified by manually
checking to train the model. To this end, we collect all the
open source code smart contract created before 9/7/2017 from
the etherscan.io and manually check whether they are Ponzi
scheme contracts. In this way, 200 Ponzi scheme contracts
and 3580 non-Ponzi scheme contracts are identified. These
manually checked smart contracts are then used as ground
truth data to build the classification model. In order to make
the model applicable to all smart contracts, the features are

37579

IEEE Access

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

extracted without source codes. For example, features are
obtained from the transaction history and the bytecode.

2) TRANSACTION HISTORY

Two kinds of transactions (i.e., external transactions and
internal transactions) are collected and used in this paper.
Since external transactions are stored in the blockchain,
it is easy to collect by running an Ethereum client to syn-
chronize all the data. However, internal transactions result
from the execution of smart contracts and do not store
in the blockchain. In our previous work [20], we col-
lect these transactions by crawling the Ethereum explorer
website etherscan.io. However, only the last 10,000 trans-
actions of an account can be download due to the restric-
tion of the website. To address this issue, we modify an
Ethereum client and replay all the transactions. By doing
this, we collect all the transaction history from the launch
of Ethereum on 7/30/2015 to 9/7/2017. Our dataset of Ponzi
schemes and all the transaction history are available at
https://pan.baidu.com/s/1 TNBPjubIDcOGJ1kLKjiJyw. After
collecting the data, the external and internal transactions
are cleaned and stored into one table. Each row in the
table records a transaction. There are many fields providing
corresponding information of a transaction. In particular,
an is Error field indicates whether the transaction is failed.
By using this table, we can extract all the transactions referred
to a contract. We use all the successful transactions in our
model.

3) BYTECODE

Bytecode is the “body” of a smart contract and is stored
with the account after deploying by a special transaction
in the blockchain. Thus, we can get all the bytecodes of
smart contracts from the transaction history. To make the
model applicable to all contracts, we extract features from
the bytecode (note that we do not need source code in feature
extraction). However, bytecode is a string of numbers, which
is difficult to extract effective features. Thus, we disassemble
the bytecode into operation code and extract features from it.
Specifically, bytecodes are results of source code compiling
using the Ethereum client and the operation code is disassem-
bled from the bytecode. Figure 4 shows the front segment of
the bytecode and the operation code of the Rubixi contract
which displayed in Figure 3. As one can see, the opera-
tion code is composed of instruction mnemonics (such as
PUSHI1) and its operands (such as 0x60). Please note that
some instructions do not have an operand. The opcodes (i.e.,

FIGURE 4. The front fragment of bytecode (left) and operation code
(right) of rubixi.

37580

instruction mnemonics) are useful in classifying the func-
tion of the contract as they indicate all possible operations
of the contract [46], [47]. Thus, it is used as the source
of code features in this study. It is worth noting that byte
n-grams features can be extracted from bytecode without any
reverse engineering, and may be a good choice for smart
Ponzi scheme detection [48].

B. ACCOUNT FEATURES

Due to the fraudulent essence, smart Ponzi schemes have
several distinct characteristics compared with other con-
tracts: 1) Ponzi scheme contracts usually send Ether to those
invested into them; 2) some accounts receive more counts of
payment than its counts of investment, for example, the cre-
ator who charges fees frequently from the contract; and 3) to
keep an image of fast and high return, smart Ponzi schemes
may pay back to the investors once they have enough balance,
which may result in a low balance.

The intrinsic characteristics of a smart Ponzi scheme deter-
mine its special behavior, which in return can be used to judge
whether it is a smart Ponzi scheme. As the main behavior
of a contract can be reflected by its transactions with other
accounts, we manually investigated the transaction history
of two typical smart contracts: Rubixi and LooneyLottery.
Rubixi is the introduced smart Ponzi scheme (Fig. 1) while
LooneyLottery> is a typical lottery game contract. Through
inspecting the Rubixi transaction history, we found that there
are 112 participants involved in the contract, but most pay-
ment transactions pertain to the first 25 participants, which
means that the majority of the subsequent participants lost
their Ether. Furthermore, only the first two participants make
a profit from the contract, one of them is the creator who
keeps collecting fees from the contract. When analyzing
the transaction history of LooneyLottery, we found distinct
random characteristics. Just as its name suggests, we found
22 participants having 733 transactions with the amount
larger than zero, but only 13 (0.18%) transactions actually
pay to its participants from the contract; besides, the payees
appear to be random. This phenomenon shows that users
participant in the contract many times in the hope of receiving
a random reward.

The analysis of the transaction history of Rubixi gives
some initial impression of smart Ponzi schemes, such as,
1) the payment transactions usually occur after investment
transactions, which indicates that the contract usually pays
to “known” accounts; 2) many participants receive nothing
from the contract; 3) some participants have more payment
transactions than investment transactions. Based on these
observations and characteristics, we extract 13 key features
referred as account features. For the convenience of descrip-
tion, we introduce difference vectors vl and v2 to describe
the difference in counts and amounts between payment and
investment for all participants in a contract. Specifically,
suppose that there are p participants pertaining to the contract,

5 http://the looney.farm/game/lottery

VOLUME 7, 2019

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

IEEE Access

vl and v2 are vectors with length p. The i—th element of v1
is vI[i] = n; — m;, where m; and n; denote the counts of
investments and payments of the i—th participant. Similar to
v1, the i—th element of v2 is the difference of the amount of
investments and payments of the ith participant. The extracted
features are as follows:

e Balance (Bal): the balance of the smart contract.
o N_maxpay (N_max): the max number of payments to all

participants.

e N_investment (N_Inv): the number of investments to the
contract.

o N_payment (N_pay): the number of payments from the
contract.

o Paid one (P1): the proportion of investors who received
at least one payment.

o Known rate (Kr): the proportion of receivers who have
invested before payment. A high Kr means the contract
interact more with accounts already knew. We expect
with very high Kr of smart Ponzi schemes.

o Difference counts mean (Dcm): the mean of the differ-
ence vector vl.

o Difference counts standard deviation (Dcsd): the
standard deviation of the difference vector v1.

o Difference counts skewness (Dcs): the skewness of the
difference vector v1.

o Difference amounts mean (Dam): the mean of the differ-
ence vector v2.

o Difference amounts standard deviation (Dasd): the
standard deviation of the difference vector v2.

o Difference amounts skewness (Das): the skewness of the
difference vector v2.

o Paid rate (Pr): the quotient of N_payment divided by
N_investment.

The mean, standard deviation, and skewness of the vector
vl and v2 are the newly introduced features (except for Dcs)
as compared with the conference version [20]. The main rea-
son for introducing these new features is that the vectors (i.e.,
vl and v2) depict the difference of income and expenditure
of the investors, which is the key for judging whether it is a
Ponzi scheme. Actually, the feature Dcs (denotes as D_ind)
has been proven effective in [20].

Table 1 shows three statistics of the extracted features:
mean, median and standard deviation (Sd). The table contains

TABLE 1. Statistics of extracted account features.

two parts: the upper part is the result of all Ponzi scheme
contracts and the bottom part is non-Ponzi scheme contracts.

As seen clearly from the table, the statistics between Ponzi
scheme contracts and non-Ponzi scheme contracts are hugely
different. The first thing to observe is that the standard
deviations of all features in non-Ponzi scheme contracts are
larger than in Ponzi scheme contracts. This indicates smart
Ponzi schemes may behave similarly which results in lower
standard deviation. Another notable thing is that the median
of many features are very small as compared with the mean,
indicating that the distribution of the features may be hetero-
geneous among the accounts.

The huge difference in the statistics of some features
implies that smart Ponzi schemes are a special kind of smart
contracts. For example, the mean of balance in the ordinary
contract is larger than that in Ponzi scheme contract. The
number of participants in common contracts (N_max, N_inv,
N_pay) is obviously more than Ponzi scheme contracts. The
huge difference between the feature Dam vividly shows that
the two types of contracts have remarkable difference in Ether
flow.

C. CODE FEATURES

The operation code is successful in analyzing the latent
problem of a smart contract as it reflects the logic of the
smart contract from the aspect of Ethereum Virtual Machine
(EVM) [46], [47]. We expect that features extracted from
operation code are useful in detecting smart Ponzi schemes.
To this end, we extract all the opcodes (i.e., instruction
mnemonics) and calculated their frequency. Each opcode
with its frequency is regarded as a feature. Please note that
we ignore the digit after the opcode, for example, PUSH1 and
PUSH?2 are considered the same and denote as PUSH. Sixty-
four different opcodes are found in the 3,780 contracts’ oper-
ation codes. Thus, the code feature is 64 dimension. We have
noticed that some opcodes appear frequently in all the con-
tracts (in Figure 5 of the conference version [20], we showed
the opcode clouds of two contracts without three frequent
opcodes, i.e., PUSH, DUP and SWAP), but we recommend to
include all the opcodes as the source of code features because
the overall feature space is only 64 dimension and it may be
hard to defined a proper parameter to exclude the frequent
opcodes.

Ponzi Scheme contracts

Bal N_max N_inv N_pay P1 Kr Dcm Dcsd Dcs Dam Dasd Das Pr

Mean 93.63 81.38 326.24 14856 0.27 0.53 -100.15 4.44x105 -0.98 -0.44 1167.69 0.01 0.53

Median 0.00 0.12 63.00 200 0.16 0.75 -2.00 2875 -0.30 0.00 0.00 0.00 0.06

Sd 1193.81 468.74 1366.49 884.57 032 048 683.02 4.44x106 6.81 5.49 8177.73 446 1.26

Non-Ponzi Scheme Contracts

Bal N_max N_inv N_pay P1 Kr Dcm Dcsd Dcs Dam Dasd Das Pr

Mean 1214.65 3.45x10%7 2621.06 1822.79 021 021 27131 3.28x10% -0.73 1.51x10%5 1.45%109 1.03 0.60

Median 0.00 0.00 6.00 0.00 0.00 0.00 -1.00 1.00 0.00 0.00 0.00 0.00 0.00

Sd 28944.53 2.07x102° 21199.76 2077851 032 037 1547.70 1.05x10% 14.52 9.03x10%6 8.02x10'9 1159 246
VOLUME 7, 2019 37581

IEEE Access

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

FIGURE 5. The opcode cloud in ponzi scheme (left) and Non-ponzi
scheme contract (right).

Figure 5 shows the word cloud graph of opcodes Ponzi
contracts and non-Ponzi contracts. Each word is an opcode
with its font size representing the used frequency. As one
can see, the frequency of opcodes is heterogeneous. The
mostly used four opcodes in the two categories are PUSH,
DUP, SWAP, and JUMP. These opcodes are used more than
200 times on average in the contracts, the main reason is
that the EVM is not a register machine but a stack machine,
so all computations are performed in a data area called the
stack and these opcodes are all stack-related. For example,
PUSH is used for placing items and DUP for duplicate items
in the stack. The least used opcode in Ponzi scheme contracts
is CREATE, which is used only 20 times in the 200 Ponzi
scheme contracts. It makes sense because CREATE is used
to create a new account with associated code, and there is
almost no reason for a Ponzi scheme contract to create a new
account. The least used opcode in non-Ponzi scheme contract
is SMOD, the signed modulo remainder operation, which was
used in only 222 contracts in the 3580 non-Ponzi contract.

D. CLASSIFICATION MODEL
In the conference version of this paper [20], we use
a boosting-based algorithm (i.e., XGBoost [49]) as the
classifier (please note that there are other boosting-based
methods, for example, AdaBoost [50]), however, three char-
acteristics of the data set prompt us to find a more robust
model. First, in this new version, we expanded the sample
set with more newly created smart contracts (1,382— 3,780),
which makes the sample set more diverse. Second, unlike
traditional classification problems, detecting Ponzi scheme
contract encounters the problem of sample imbalance, as only
a small fraction of smart contracts are Ponzi schemes. Finally,
informed by [14], there are four types of Ponzi scheme con-
tracts (i.e., array-based pyramid schemes, tree-based pyramid
schemes, handover schemes, and waterfall schemes). Thus,
in this journal version, we adopt a bagging-based algorithm
(i.e., Random Forest [51]), which is proved to be more effi-
ciency in reducing variance as compared with boosting based
algorithms [52] (please note that there are other bagging-
based algorithms like UnderBagging and SMOTEBagging
methods [53]).

A Random Forest (RF) [51] is a combination of Decision
Trees, trained by the training sets obtained by the bagging
method. In this study, we use pasting method [54], in which

37582

the training sets are sampled without replacement from the
dataset). Suppose there are N smart contracts in the dataset
{(xi,y) | i = 1,2,...,N}, where x; € R? is the extracted
features associated with the i—th smart contract, y; € {0, 1}
is the classification label, such that y; = 1 if and only if the
smart contract is a verified Ponzi scheme contract. We adopt
the following steps to detect a Ponzi scheme contract:

1) Produce N training sets which are independent and
identically distributed;

2) N decision trees are trained independently by each
training sets. Traditional decision tree selects the best
decision attribute from all the attributes of the current
node to grow the tree while Random Forest randomly
select m attributes from all the attributes of the current
node and then selects the best attribute from the m
attributes;

3) The final result is obtained through voting by the N
Decision Trees.

IV. EXPERIMENTAL RESULTS AND FEATURE ANALYSIS

In this section, we present our experimental results. First,
we describe the experiment settings and evaluation metrics.
Then, the experiments of the proposed method and other
competing methods based on the comparison of the two cate-
gories of extracted features are summarized. Finally, the most
discriminative features are analyzed and the mode is used to
estimate the number of smart Ponzi schemes created before
9/7/2017.

A. EXPERIMENT SETTING

1) DATASETS

Two datasets used in this study. The first dataset consists of all
the labels and features of the 3780 open source contracts. This
dataset is used to build a classification model. To compare the
discriminative power of the two categories of features, three
kinds of features: account features, code features, and their
combination are used in the experiments. Another dataset
contains code features of all the smart contracts (including
open source contracts and hidden source contracts) which
is used to approximate the number of smart Ponzi schemes
running on Ethereum platform. To build the model, we split
the corresponding dataset into 80% for training and 20% for
testing. The experiments conducted for ten times and the
average results are summarized in Table 2.

2) BASELINES

The method is compared with a variety of competing methods
grouped into the following categories:

Classification methods. To detect Ponzi scheme contract
from others can be seen as a typical two-class classification
problem, thus we compared the method with two traditional
classification methods: decision trees (DT) [55] and support
vector machine (SVM) [56]. Besides, XGBoost [49], which
is used in the conference version of the paper [20], is also
compared with our method.

VOLUME 7, 2019

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

IEEE Access

TABLE 2. A performannce comparison.

Algorithm Precision Recall F-score
Account Code AIl [Account Code All | Account Code All
IF 0.04 0.03 0.02 0.09 0.06 0.05 0.06 0.04 0.04
OCSVM 0.07 0.06 0.05 0.76 1.00 1.00 0.13 0.10 0.10
OCSVM+DT 0.58 065 033 0.64 0.72 0.21 0.61 0.68 025
OCSVM+SVM 0.41 095 091 0.04 041 0.16 0.07 0.57 0.27
SVM 0.32 095 0091 0.06 043 0.16 0.09 059 027
DT 0.58 0.64 031 0.64 073 024 0.60 0.68 027
XGBoost 0.59 091 0.90 0.22 073 0.67 0.32 0.81 0.76
RF 0.64 094 095 0.20 0.73 0.69 0.30 0.82 0.79

Anomaly detection. Ponzi scheme contracts might be seen
as anomaly due to they account for only a small fraction
of all the smart contracts. Thus, anomaly detection methods
may be used to identify these contracts. Two commonly
used methods: One-class SVM (OCSVM) [57] and Isolation
Forest (IF) [58] are used.

Two-step methods. Two-step methods are proved useful in
dealing with the unbalance of the data [59]. It adopts unsuper-
vised learning method (for example, One-class SVM in this
paper) to alleviate the problem of imbalance and then further
use the supervised methods (DT and SVM in this paper) to
classify samples as the second step.

3) EVALUATION METRICS
To evaluate the performance of the models, we use the three
commonly used metrics as follows:

. true positive
Precision = — —
true positive + false positive
true positive
Recall = — P :
true positive + false negative
Precision x Recall
F — score =

Precision + Recall

B. RESULTS SUMMARY

Table 2 summarizes the performances of the proposed
method and the baselines listed above with the three
kinds of features in detecting Smart Ponzi schemes.
For the XGBoost model, the combination optimization
of three important parameters, which includes learn-
ing_rate, max_depth and n_eastimators, is carried out.
Other parameters are default values. The combinatorial
optimization space is the product of the three parame-
ter spaces, i.e., learning_rate@max_depth@)n_eastimators,
where learning_rate= {0.1, 0.2, 0.3}, max_depth = {3,6,8,9}
and n_eastimators = {100, 110, 120, --- , 200}. The best
combination is learning_rate=0.2, max_depth=9 and
n_eastimators=180. For the RF (Random Forest), we adopt
a similar strategy, the combinatorial optimization space is
n_eastimators@bootstrap)criterion, where n_eastimators=
{20, 30, 40, - - -, 200}, bootstrap={ture, false} and criterion=
{ gini, entropy }. The best combination is n_eastimators=120,
bootstrap=False, criterion=entropy.

VOLUME 7, 2019

Several conclusions can be made from the table. First,
the proposed method (i.e., RF) significantly improves the
performance of all metrics as compared with XGBoost based
on code features. Especially, the precision is raised to 0.95,
which indicates RF is an ideal method for smart Ponzi
scheme detection. In contrast, all the metrics of the two
anomaly detection methods are very low, meaning that Ponzi
scheme contracts detection cannot be seen as a traditional
anomaly detection problem. As for the two-step methods,
OCSVM+SVM seems good in precision, however, the low
recall causes a huge reduction in efficiency, because it will
miss a lot of true Ponzi scheme contracts. It is worth mention-
ing that the recall of OCSVM seems relatively high, but this
is just an illusion because the precision is too low to make a
meaningful prediction. Second, the low F-scores of all meth-
ods based on the account features indicate that they cannot be
used alone in detecting Ponzi scheme contract. One possible
reason of this result may be that many smart contracts are
experimental, which makes it hard to detect their types from
behavior. Another reason, as compared with code features,
may be the number of account features is too small. Third,
though the account features cannot be used alone, it may
help improving the model’s precision, and the precision is
more important in the smart Ponzi scheme detection problem.
Thus, it may be useful in further analysis. Finally, as based
on just code features being good enough, the proposed model
can be used to detect Ponzi scheme contracts at the moment
of its creation.

SLOAD
AND
CODECOPY
LT

LOG
MSTORE
MUL
SSTORE
SuB

STOP

Features

| |

| |

1 |
0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Importance

FIGURE 6. The importance of the ten most significant code features of
random forest.

37583

IEEE Access

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

C. IMPORTANT FEATURES

As code features are good enough to detect Ponzi scheme
contracts, we list the ten most significant code features of
random forest in Fig. 6. The description of the opcodes in
the graph are summarized in Table 3.

TABLE 3. Opcode and its description.

Opcode | Description

SLOAD | Load word from storage.
AND | Bitwise AND operation.
CODECOPY | Copy code running in current environment to memory.
LT | Less-than comparison.
LOG | Append log record with 0~4 topics.
MSTORE | Save word to memory.
MUL | Multiplication operation.
SSTORE | Save word to storage.
SUB | Subtraction operation.
STOP | Halts execution.

Fig. 6 shows that the most significant features of random
forest and their contributions in detecting Ponzi scheme
contract. However, to understand why these features are
effective is difficult. Roughly speaking, two classes of
opcodes are extracted in these features. One class is stor-
age or memory-related instructions, including SLOAD,
CODECOPY, MSTORE, and SSTORE. Another class
involves two kinds of operations, i.e., arithmetic operations
(including MUL and SUB) and bitwise logic operations
(including AND and LT). One possible reason for the effec-
tiveness of the two categories of instructions is that the main
function of smart contracts are realized by various operations
on some data, thus the numbers of these instructions con-
tained in the smart contracts indicate the type of the contract.

D. ESTIMATION THE NUMBER OF SMART

PONZI SCHEMES

One application of our model is to estimate how many
smart Ponzi schemes are running on Ethereum. To this
end, all the bytecodes of the smart contracts created before
9/7/2017 are extracted from the transaction history. In this

300

200

Counts

24 18

0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9
Probability Range

FIGURE 7. The number of detected smart ponzi schemes with
corresponding probability range.

37584

way, we obtained 1.58 million contracts and their correspond-
ing bytecodes in total. Then, the bytecodes are disassembled
into operation codes and the code features are extracted.
Finally, we predict all the smart contracts with our model
based on the code features. The result indicates that there
are 394 smart Ponzi schemes. Figure 7 shows the number of
detected smart Ponzi schemes with corresponding probabil-
ities. As shown from the figure, many detected smart Ponzi
schemes have relatively high probability, indicating that the
problem of smart Ponzi schemes is more serious than what
has been estimated before [14].

188

150

Counts
=)
8

50 4 %

1"
6-12
7-01

02

03

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

FIGURE 8. The number of detected smart ponzi schemes created each
month.

Figure 8 shows the number of detected smart Ponzi
schemes created in each month. We find that many smart
Ponzi schemes created during February to April 2016.
Although there are not many smart Ponzi schemes created
in other months, we should note that the number began to
increase again after May 2017. This phenomenon indicates
that there may be more smart Ponzi schemes nowadays.

Taking the precision and recall of the model into account,
it is estimated that there are 507 (394 x precision/recall)
smart Ponzi schemes created on Ethereum platform before
9/7/2017, accounting for 0.03% of all the contracts. Although
the proportion is low, the number cannot be ignored.
We should pay more attention to these contracts, access the
impacts and take measures when necessary.

V. CONCLUSION AND FUTURE WORK

Financial scams based on blockchain and cryptocurrency
have become an important research problem. With the devel-
opment of blockchain technology, Ponzi schemes are now
under the veil of smart contracts. In this study, we propose a
machine learning method to detect smart Ponzi schemes. First
of all, the ground truth data is obtained by manually checking
the source code. Then, two categories of features, i.e., account
features and code features, are extracted. Finally, based on
the features and ground truth data, a random forest model
is built and applied to identify latent smart Ponzi schemes.
We estimate that there are more than 500 smart Ponzi schemes

VOLUME 7, 2019

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

IEEE Access

on Ethereum. It is worth mentioning that the code features are
extracted without source code, thus the proposed model can
be used to evaluate any contract at the moment of its creation.

In the future, we are going to further this study in three
aspects. Firstly, to build more accurate classification model,
especially model based on account features and byte n-grams
features. Secondly, to study the impacts and types of the
detected smart Ponzi schemes. Thirdly, to build a unified
platform to evaluate every smart contract for early warning of
scams. It is necessary to promote security in the development
of blockchain technology.

REFERENCES

[1]1 Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain chal-
lenges and opportunities: A survey,” Int. J. Web Grid Serv., vol. 14, no. 4,
p. 352, 2018.

[2] M. Swan, Blockchain: Blueprint for a New Economy. Newton, MA, USA:
O’Reilly Media, 2015.

[3] Bitcoin: A Peer-to-Peer Electronic Cash System. [Online]. Avail-
able: https://bitcoin.org/bitcoin.pdf

[4] CoinDesk. (2017). Understanding Ethereum-blockchain Research

[51
[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Report. [Online]. Available: www.coindesk.com/research/understanding-
ethereum-report/

Y. Guo and C. Liang, “Blockchain application and outlook in the banking
industry,” Financial Innov., vol. 2, no. 1, p. 24, 2016.

N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentral-
ized energy trading through multi-signatures, blockchain and anonymous
messaging streams,” IEEE Trans. Depend. Sec. Comput., vol. 15, no. 5,
pp. 840-852, Sep./Oct. 2018.

N. Szabo. (Sep. 1996). Smart Contracts: Building Blocks for Digital
Markets. [Online]. Available: http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.
best.vwh.net/smart_contracts_2.html

A Next-Generation Smart Contract and Decentralized Application Plat-

form. [Online]. Available: https:/github.com/ethereumlwiki/wiki/White-

Paper

A. Norta, “Creation of smart-contracting collaborations for decentralized
autonomous organizations,” in Proc. Int. Conf. Bus. Inform. Res. Cham,
Switzerland: Springer, 2015, pp. 3—17.

K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292-2303, May 2016.
A. Juels, A. Kosba, and E. Shi, ““The ring of gyges: Investigating the future
of criminal smart contracts,” in Proc. Int. Conf. Comput. Commun. Secur.,
2016, pp. 283-295.

Chainalysis. (Aug. 2017). The Rise of Cybercrime on Ethereum.
[Online]. Available: https://blog.chainalysis.com/the-rise-of-cybercrime-
on-ethereum/

M. Vasek and T. Moore, “There’s no free lunch, even using bitcoin:
Tracking the popularity and profits of virtual currency scams,” in Proc. Int.
Conf. Financial Cryptogr. Data Secur. Berlin, Germany: Springer, 2015,
pp. 44-61.

M. Bartoletti, S. Carta, T. Cimoli, and R. Saia. (2017). “Dissecting ponzi
schemes on ethereum: Identification, analysis, and impact.” [Online].
Available: https://arxiv.org/abs/1703.03779
Wikipedia. (Oct. 2017). Ponzi Scheme.
https://en.wikipedia.org/wiki/Ponzi_scheme

S. Higgins. (Oct. 1, 2015). SEC Seizes Assets from Alleged Altcoin Pyra-
mid Scheme. [Online]. Available: https://www.coindesk.com/sec-seizes-
alleged-altcoin-pyramid-scheme

G. Keirns. (Mar. 15,2017). ‘Gemcoin’ Ponzi Scheme Operator Hit with $74
Million Judgment. [Online]. Available: https://bitcoinwiki.co/gemcoin-
ponzi-scheme-operator-hit-with-74-million-judgment/

D. Z. Morris. (May 31, 2017). The Rise of Cryptocurrency Ponzi
Schemes. [Online]. Available: https://www.theatlantic.com/technology/
archive/2017/05/cryptocurrency-ponzi-schemes/528624/

C. K. Elwell, M. M. Murphy, and M. V. Seitzinger. (Dec. 20, 2013).
Bitcoin: Questions, Answers, and Analysis of Legal Issues. [Online]. Avail-
able: https://digital.library.unt.edu/ark:/67531/metadc272070/

W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,” in
Proc. World Wide Web Conf. World Wide Web, 2018, pp. 1409-1418.

[Online]. Available:

VOLUME 7, 2019

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

(45]

G. Wood. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. [Online]. Available: http://gavwood.com/paper.pdf
S. King and S. Nadal. Ppcoin: Peer-to-Peer Crypto-Currency with

Proof-897 of-Stake. [Online]. Available: https://bitcoin.peryaudo.
org/vendor/peercoin-paper.pdf
Hyperledger. (2015). Hyperledger Project. [Online]. Available:
https://www.hyperledger.org
D. Schwartz, N. Youngs, and A. Britto. The Ripple Protocol
Consensus 901 Algorithm. [Online]. Available: https://www.

cryptiaexchange.com/Whitepaper_Ripple.pdf

W. Chen, Z. Zheng, M. Ma, P. He, P. Zheng, and Y. Zhou, “Poster:
Efficient blockchain-based software systems via hierarchical bucket tree,”
in Proc. 40th Int. Conf. Softw. Eng., Companion (ICSE-Companion),
May/Jun. 2018, pp. 360-361.

P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, “A detailed and
real-time performance monitoring framework for blockchain systems,” in
Proc. 40th Int. Conf. Softw. Eng., Softw. Eng. Pract. Track (ICSE-SEIP),
May/Jun. 2018, pp. 134-143.

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum
smart contracts (SoK),” in Principles of Security and Trust. Berlin, Ger-
many: Springer, 2017, pp. 164-186.

G. W. Peters and E. Panayi, Understanding Modern Banking Ledgers
Through Blockchain Technologies: Future of Transaction Processing and
Smart Contracts on the Internet of Money. Cham, Switzerland: Springer,
2016, pp. 239-278.

D. Kondor, M. Pésfai, I. Csabai, and G. Vattay. (2016). From ‘Blockchain
Hype’ to a Real Business Case for Financial Markets. [Online]. Available:
https://ssrn.com/abstract=2760184

M. Conoscenti, A. Vetro, and J. C. D. Martin, “Blockchain for the internet
of things: A systematic literature review,” in Proc. IEEE/ACS 13th Int.
Conf. Comput. Syst. Appl., Dec. 2016, pp. 1-6.

W. Chen, M. Ma, Y. Ye, Z. Zheng, and Y. Zhou, “IoT service based on
jointcloud blockchain: The case study of smart traveling,” in Proc. IEEE
Symp. Service-Oriented Syst. Eng. (SOSE), Mar. 2018, pp. 216-221.

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
Proc. Int. Congr. Big Data, Jun. 2017, pp. 557-564.

S. Meiklejohn et al., ““A fistful of bitcoins: Characterizing payments among
men with no names,” Commun. ACM, vol. 59, no. 4, pp. 86-93, 2016.

A. Yelowitz and M. Wilson, “Characteristics of bitcoin users: An analysis
of Google search data,” Appl. Econ. Lett., vol. 22, no. 13, pp. 1030-1036,
2015.

D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin transac-
tion graph,” in Proc. Int. Conf. Financial Cryptogr. Data Secur. Berlin,
Germany: Springer, 2013, pp. 6-24.

E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in Proc. Int. Conf. Financial Cryp-
togr. Data Secur. Berlin, Germany: Springer, 2013, pp. 34-51.

F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin system,”
in Security and privacy in Social Networks. New York, NY, USA: Springer,
2013, pp. 197-223.

D. Kondor and M. Pésfai, I. Csabai, and G. Vattay, ‘Do the rich get richer?
An empirical analysis of the bitcoin transaction network,” PLoS ONE,
vol. 9, no. 2, 2014, Art. no. e86197.

D. Kondor, I. Csabai, and J. Sziile, M. Pésfai, and G. Vattay, “Inferring the
interplay between network structure and market effects in bitcoin,” New J.
Phys., vol. 16, no. 12, 2014, Art. no. 125003.

T. Moore, J. Han, and R. Clayton, “The postmodern ponzi scheme:
Empirical analysis of high-yield investment programs,” in Proc. Int. Conf.
Financial Cryptogr. Data Secur., vol. 7397. Berlin, Germany: Springer,
2012, pp. 41-56.

J. Neisius and R. Clayton, “Orchestrated crime: The high yield investment
fraud ecosystem,” in Proc. APWG Symp. Electron. Crime Res. (eCrime).
Sep. 2014, pp. 48-58.

F. Glaser, K. Zimmermann, M. Haferkorn, M. C. Weber, and M. Siering,
“Bitcoin-asset or currency? Revealing users,hidden intentions,” in Proc.
22th Eur. Conf. Inf. Syst., 2014, pp. 1-14.

E. W. T. Ngai, Y. Hu, Y. H. Wong, Y. Chen, and X. Sun, “The application
of data mining techniques in financial fraud detection: A classification
framework and an academic review of literature,” Decision Support Syst.,
vol. 50, no. 3, pp. 559-569, 2011.

M. Bartoletti, B. Pes, and S. Serusi, “Data mining for detecting bit-
coin ponzi schemes,” in Proc. Crypto Valley Conf. Blockchain Technol.
(CVCBT), Jun. 2018, pp. 75-84.

L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1091-1095, 2007.

37585

IEEE Access

W. Chen et al.: Exploiting Blockchain Data to Detect Smart Ponzi Schemes on Ethereum

[46] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (SoK),” in Proc. Int. Conf. Princ. Secur. Trust, Springer,
2017, pp. 164-186.

[47] T. Chen, X. Li, X. Luo, and X. Zhang, ‘“‘Under-optimized smart contracts
devour your money,” in Proc. IEEE 24th Int. Conf. Softw. Anal., Evol.
Reeng. (SANER), Feb. 2017, pp. 442-446.

[48] E.Raff et al., “An investigation of byte n-gram features for malware clas-
sification,” J. Comput. Virology Hacking Techn., vol. 14, no. 1, pp. 1-20,
2018.

[49] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016,
pp. 785-794.

[50] D.P.Solomatine and D. L. Shrestha, “AdaBoost.RT: A boosting algorithm
for regression problems,” in Proc. IEEE Int. Joint Conf. Neural Netw.,
vol. 2, 2004, pp. 1163-1168.

[51] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

[52] P. Biihlmann and B. Yu, “Analyzing bagging,” Ann. Statist., vol. 30, no. 4,
pp. 927-961, 2002.

[53] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: Bagging-
, boosting-, and hybrid-based approaches,” IEEE Trans. Syst, Man,
Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 463-484, Jul. 2012.

[54] L. Breiman, “Pasting small votes for classification in large databases and
on-line,” Mach. Learn., vol. 36, nos. 1-2, pp. 85-103, 1999.

[55] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81-106, 1986.

[56] M. A.Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, ““Support
vector machines,” IEEE Intell. Syst. Appl., vol. 13, no. 4, pp. 18-28, 1998.

[57] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional
distribution,” Neural Comput., vol. 13, no. 7, pp. 1443-1471, 2001.

[58] E.T.Liu, K. M. Ting, and Z.-H. Zhou, “TIsolation forest,” in Proc. 8th IEEE
Int. Conf. Data Mining, 2008, pp. 413-422.

[59] B. Du, C. Liu, W. Zhou, Z. Hou, and H. Xiong, “Catch me if you can:
Detecting pickpocket suspects from large-scale transit records,” in Proc.
22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2016,
pp. 87-96.

WEILI CHEN received the M.S. degree in
probability and statistics from Central South Uni-
versity, Changsha, China. He is currently pursu-
ing the Ph.D. degree with the School of Data
and Computer Science, Sun Yat-sen University,
Guangzhou, China. His research interests include
blockchain, data mining, and machine learning.

ZIBIN ZHENG received the Ph.D. degree from
the Chinese University of Hong Kong, in 2011.
He is currently a Professor of data and computer
science with Sun Yat-sen University, China. He
serves as the Chair of the Software Engineering
Department, Pearl River Young Scholars, and the
Founding Chair of the Services Society Young
Scientists Forum (SSYSF). In the past five years,
he published over 120 international journal and
conference papers, including three ESI highly-
cited papers, 40 ACM/IEEE TransacTiONs papers. According to Google
Scholar, his papers have more than 6300 citations, with an H-index of 41.
His research interests include blockchain, services computing, software
engineering, and financial big data. He was a recipient of several awards,
including the outstanding Thesis Award of CUHK, in 2012, the ACM
SIGSOFT Distinguished Paper Award at ICSE2010, the Best Student Paper
Award at ICWS2010, and IBM Ph.D. Fellowship Award. He served as Col-
laborateCom’ 16 General Co-Chair, ICIOT’ 18 PC Co-Chair, and IoV’ 14 PC
Co-Chair.

37586

EDITH NGAI received the Ph.D. degree from The
Chinese University of Hong Kong, in 2007. She
held a postdoctoral position with Imperial Col-
lege London, U.K., from 2007 to 2008. She is
currently an Associate Professor with the Depart-
ment of Information Technology, Uppsala Uni-
versity, Sweden. She is also a Guest Researcher
with Ericsson Research, Sweden, from 2015 to
2017. Previously, she has conducted research with
Simon Fraser University, Tsinghua University, and
UCLA. Her research interests include the Internet of Things, cloud com-
puting, network security and privacy, smart city, and urban computing. She
is a Senior Member of ACM. She is a VINNMER Fellow (2009) awarded
by the Swedish Governmental Research Funding Agency VINNOVA. Her
co-authored papers have received best paper runner-up awards in IEEE
IWQoS 2010 and ACM/IEEE IPSN 2013. She was a Program Chair of
ACM womENcourage 2015, the TPC Co-Chair of the IEEE SmartCity
2015, the IEEE ISSNIP 2015, and ICNC 2018 Network Algorithm and
Performance Evaluation Symposium. She is an Associate Editor for the IEEE
Accetss, the IEEE INTERNET OF THINGS JOURNAL, and the IEEE TRANSACTIONS OF
INDUSTRIAL INFORMATICS.

PEILIN ZHENG is currently pursuing the Ph.D.
degree with the School of Data and Computer Sci-
ence, Sun Yat-sen University, Guangzhou, China.
His research interests include performance moni-
toring and evaluation on blockchain, optimization
of smart contracts, and blockchain-based decen-
tralized applications.

YUREN ZHOU received the B. Sc. degree in
mathematics from Peking University, Beijing,
China, in 1988, and the M.Sc. and Ph.D. degrees
in computer science in mathematics from Wuhan
University, Wuhan, China, in 1991 and 2003,
respectively. He is currently a Professor with the
School of Data and Computer Science, Sun Yat-
sen University, Guangzhou, China. His current
research interests include design and analysis of
algorithms, evolutionary computation, and social
networks.

VOLUME 7, 2019

	INTRODUCTION
	ETHEREUM, SMART CONTRACTS AND RELATED WORK
	ETHEREUM IN A NUTSHELL
	A SOURCE CODE SNIPPET OF A SMART PONZI SCHEME
	DEPLOY A CONTRACT
	RELATED WORK

	DATA, FEATURE EXTRACTION AND CLASSIFICATION MODEL
	DATA
	GROUND TRUTH
	TRANSACTION HISTORY
	BYTECODE

	ACCOUNT FEATURES
	CODE FEATURES
	CLASSIFICATION MODEL

	EXPERIMENTAL RESULTS AND FEATURE ANALYSIS
	EXPERIMENT SETTING
	DATASETS
	BASELINES
	EVALUATION METRICS

	RESULTS SUMMARY
	IMPORTANT FEATURES
	ESTIMATION THE NUMBER OF SMART PONZI SCHEMES

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	WEILI CHEN
	ZIBIN ZHENG
	EDITH NGAI
	PEILIN ZHENG
	YUREN ZHOU

