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ABSTRACT In this paper, atom search optimization (ASO) algorithm and a novel chaotic version of it
[chaotic ASO (ChASO)] are proposed to determine the optimal parameters of the fractional-order propor-
tional+integral+derivative (FOPID) controller for dc motor speed control. The ASO algorithm is simple and
easy to implement, which mathematically models and mimics the atomic motion model in nature, and is
developed to address a diverse set of optimization problems. The proposed ChASO algorithm, on the other
hand, is based on logistic map chaotic sequences, which makes the original algorithm be able to escape from
local minima stagnation and improve its convergence rate and resulting precision. First, the proposed ChASO
algorithm is applied to six unimodal and multimodal benchmark optimization problems and the results
are compared with other algorithms. Second, the proposed ChASO-FOPID, ASO-FOPID, and ASO-PID
controllers are compared with GWO-FOPID, GWO-PID, IWO-PID, and SFS-PID controllers using the
integral of time multiplied absolute error (ITAE) objective function for a fair comparison. Comparisons were
also made for the integral of time multiplied squared error (ITSE) and Zwe-Lee Gaing’s (ZLG) objective
function as the most commonly used objective functions in the literature. Transient response analysis,
frequency response (Bode) analysis, and robustness analysis were all carried out. The simulation results
are promising and validate the effectiveness of the proposed approaches. The numerical simulations of the
proposed ChASO-FOPID and ASO-FOPID controllers for the dc motor speed control system demonstrated
the superior performance of both the chaotic ASO and the original ASO, respectively.

INDEX TERMS DC motor speed control, fractional order PID controller, chaotic atom search optimization
algorithm, robustness analysis, transient response.

I. INTRODUCTION
Proportional+integral+derivative (PID) controllers are com-
monly used in industry to improve both the transient and
steady state behaviors of a system [1]. These controllers are
known as traditional or integer order controllers [2]. On the
other hand, the fractional order PID (FOPID) controller is a
generalized version of the traditional PID controller that uses
fractional derivative-integral calculus [3]. The FOPID con-
troller has two additional parameters in addition to the tradi-
tional PID controller parameters. These parameters are called
the proportional gain constant (KP), the integral gain constant
(KI ), the derivative gain constant (KD), the order of fractional
integration (λ) and the order of fractional derivative (µ).

The associate editor coordinating the review of this manuscript and
approving it for publication was Md Asaduzzaman.

This expansion of traditional PID controllers adds robustness
and flexibility to the system [4]. The advantages of FOPID
controllers compared to traditional PID controllers include:
lower steady-state error, less oscillation and overshoot, bet-
ter response time, robustness to changes in parameters of
the controlled system, and insensitivity to disturbing effects
[2]–[7]. FOPID controllers are used in applications such
as direct current (DC) motor control [2], [8], asynchronous
motor drive system [9], DC-DC amplifier converter [10],
synchronization and control of chaotic systems [11], and
magnetic levitation system [12].

In general, controller parameters tuning is a difficult task
and FOPID controllers have five parameters to be set as men-
tioned before. There are many time domain and frequency
domain methods for tuning of FOPID controller parame-
ters [13]. In general, these tuning methods can be classified
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under three headings; rule-basedmethods, analytical methods
and numerical methods [7]. The parameter tuning methods
using heuristic optimization algorithms fall into the numeri-
cal methods group and have been used by many researchers
in the literature. Heuristic optimization methods such as
particle swarm optimization (PSO) [14]–[16], dynamic PSO
(dPSO) [2], simulated annealing (SA) [17], genetic algorithm
(GA) [18] and bacterial swarm optimization (BSO) [19], are
some of the example works that are used for FOPID controller
parameter tuning. The greatest advantage of heuristic opti-
mization algorithms compared to other methods is their abil-
ity to do search in a random and larger field in solution space.
In this way, they can converge to optimum or near optimum
solutions effectively. However, the convergence properties of
heuristic optimization algorithms are strongly connected to
the random numbers generated in each algorithm run [20].
Therefore, chaotic sequences are being adopted instead of
randomly generated numbers to get better results, which has
made the chaotic systems based algorithms as one of the
paradigms of modern heuristic optimization [21].

In literature, several algorithms can be found using chaotic
sequences to boost the performance of metaheuristic algo-
rithms for solving optimization problems in engineering
applications. In [22], three chaotic maps, namely the piece-
wise linear, logistic, and sinusoidal, are used with kidney-
inspired algorithm (KA) for rainfall forecasting, which
significantly improved the accuracy and convergence speed
of the original KA. In [23], ten chaotic maps, namely the
Chebyshev, circle, Gauss/mouse, iterative, logistic, piece-
wise, sine, singer, sinusoidal and tent, and in [24], four chaotic
maps, namely the circle, logistic, piecewise, and tent, are
used with salp swarm algorithm (SSA) for feature selection,
which maximized the classification accuracy of the original
SSA with minimum number of selected features. In [25], ten
chaotic maps, namely the Chebyshev, Gauss/mouse, logistic,
sine, sinusoidal, circle, iterative, piecewise, singer and tent,
are used with grasshopper optimization algorithm (GOA)
for global optimization, which significantly boost the perfor-
mance of the original GOA. In [26], the singer chaotic map is
used with whale optimization algorithm (WOA) for parame-
ter estimation of photovoltaic cells, which improved the local
minima stagnation avoidance and convergence speed of the
original WOA. In [27], ten chaotic maps, namely Cheby-
shev, circle, Gauss/mouse, iterative, logistic, piecewise, sine,
singer, sinusoidal and tent, are used with moth swarm opti-
mization (MSO), which improved the performance of the
original MSO in terms of convergence speed. In [28], five
chaotic maps, namely the singer, piecewise, logistic, tent
and sinusoidal, are used with antlion optimization (ALO)
algorithm for feature selection problem. The results showed
that the chaotic ALO is efficient in finding an optimal feature
subset, which maximized the classification accuracy with
minimum number of selected features. In [29], ten chaotic
maps, namely Gauss/mouse, Chebyshev, logistic, iterative,
piecewise, sine, singer, circle, sinusoidal and tent, are used
with biogeography-based optimization (BBO) and improved

the performance of the original BBO for both exploration and
exploitation. In [30], logistic chaotic map is used with genetic
algorithm (GA) for image encryption. In [31], piecewise
chaotic map is used with harmony search (HS) algorithm for
the flow shop scheduling problem with limited buffers and
improved the solution quality and robustness of the original
HS algorithm. In [32], logistic chaotic map is applied to the
mutualism and commensalism phases of symbiotic organisms
search (SOS) algorithm for optimal reactive power dispatch
problem in power systems, which gave substantially better
results than the other state-of-art algorithms. In [33], ten
chaotic maps, namely the Bernoulli, logistic, Chebyshev, cir-
cle, cubic, iterative with infinite collapses, piecewise, singer,
sinusoidal and tent, are used to regulate a key parameter of
grey wolf optimizer (GWO) for constrained benchmark and
engineering problems, which clearly outperformed the stan-
dard GWO with very good performance in comparison with
other algorithms. In [34], ten chaotic maps, namely the logis-
tic, cubic, sine, sinusoidal, singer, circle, iterative, tent, piece-
wise, and Gauss/mouse, are considered for tuning the main
parameter of WOA, which helped in controlling the explo-
ration and exploitation phases of the algorithm and improved
the performance of standard WOA significantly. In [35],
ten chaotic maps, namely Chebyshev, circle, Gauss/mouse,
iterative, logistic, piecewise, sine, singer, sinusoidal, and tent,
are embedded into the gravitational constant of gravitational
search algorithm (GSA), which improved the performance of
the original GSA significantly. In [36], twelve chaotic maps,
namely the Chebyshev, circle, Gaussian, intermittency, itera-
tive, Liebovitch, logistic, piecewise, sine, singer, sinusoidal,
and tent, are applied to tune the step size of the cuckoos used
in the original cuckoo search (CS) algorithm, which signif-
icantly enhanced the search ability of the standard CS on
most benchmark problems and on sensor selection problem
of turbofan engines as an engineering problem. In [37], three
chaotic maps, namely circle, singer and tent, are integrated
into the krill herd (KH) algorithm, which yielded superior
results compared to the original KH in terms of local optima
avoidance and convergence speed.

Tuning of controller parameters for DC motor speed con-
trol is an observable real world application that is commonly
used as a test bed for heuristic optimization algorithms. For
the FOPID controller parameter tuning, GWO [38], PSO [39],
and constrained PSO (CPSO) [40]; and for the traditional
PID controller parameters tuning, GWO [38], [41], [42], inva-
sive weed optimization (IWO) [43], stochastic fractal search
(SFS) [44], GA [45], SSA [46], Jaya optimization algo-
rithm (JOA) [47], and ABC [48] are some of the algorithms
that have been utilized in literature. In [38], GWO-FOPID
and GWO-PID controllers are designed with the objective
function of the integral of time multiplied absolute error
(ITAE) and compared with IWO-PID [43], PSO-PID [43] and
SFS-PID controllers [44]. The results have shown that the
GWO-FOPID approach with ITAE objective function yields
less settling and rise times with comparable overshoot values
in comparison to existing approaches. In [39], PSO-FOPID
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controller is designed with four different performance
indices, namely, the ITAE, the integral of absolute error
(IAE), the integral of squared error (ISE), and the inte-
gral of time multiplied squared error (ITSE) and compared
with PSO-PID controller. From the results, it is shown
that the PSO-FOPID controller has performed better than
the PSO-PID controller and the ITAE has given the best
results among the other used objective functions. In [40],
CPSO-FOPID controller with ITSE objective function has
been designed with five different output constraints, which
were based on time and frequency response measures such
as settling time, overshoot percentage and phase margin.
From MATLAB simulation results, it has been shown that
CPSO-FOPID controller yields much more efficient per-
formance than Ziegler-Nichols (ZN) based PID controller
in terms of settling time, rise time and overshoot percent-
age. In all of the above mentioned FOPID and PID con-
trollers that are tuned by heuristic optimization algorithms,
the proposed approaches have given much better results than
those controllers tuned by the classical methods such as ZN,
Cohen-Coon (CC), pole placement and phase/gain margin.
However, due to the lack of the proposed algorithms they
cannot find the optimal parameters of the utilized controller.
For instance, GA, PSO and ABC suffer from memory capa-
bility and computational burden despite having great poten-
tials to solve many optimization problems. Better results
may be achieved with different optimization approaches.
However, these algorithms have disadvantages such as local
minimum stagnation, early convergence, difficulty in the
selection of control parameters and increased calculation
time depending on the size of the system studied [49]–[51].
In addition, there is no precise algorithm for the best solu-
tion of the controller parameters in a DC motor speed
control system. Therefore, studying a new heuristic optimiza-
tion algorithm is an important and observable problem for
researchers.

From the fore-mentioned motivations, in this study, a novel
approach based on chaos theory and atom search optimization
(ASO) algorithm that is called chaotic ASO (ChASO) is pro-
posed for tuning of controller parameters in a DCmotor speed
control system. ASO is a recently proposed metaheuristic
optimization algorithm that is inspired by basic molecular
dynamics, which mathematically models and mimics the
atomic motion in nature [52]. Although the original ASO
algorithm is simple and easy to implement, it suffers from
two main drawbacks, the local minima stagnation and slow
convergence speed, which are common to most metaheuristic
algorithms. Therefore, in order to overcome these problems,
in this paper, a chaotic sequence created by the logistic map
will be used instead of the randomly generated numbers in the
original ASO algorithm. To the best of author’s knowledge,
there is no study proposed in literature to improve the ASO
with chaotic dynamics. The main contributions of this paper
can be summarized as follows:

1) A novel combination of ASOwith chaotic logistic map,
namely the chaotic ASO (ChASO) is proposed.

2) The proposed ChASO algorithm is applied to six uni-
modal and multimodal benchmark optimization prob-
lems and the results are compared with other algo-
rithms.

3) Not only the proposed ChASO but also the original
ASO algorithms are both applied to the parameter tun-
ing problem of FOPID controller for DC motor speed
control. This is the first application of ChASO andASO
algorithms in electrical engineering field.

4) The performances of the proposed approaches are com-
pared with other metaheuristic algorithms; namely the
grey wolf optimization (GWO) [38], invasive weed
optimization (IWO) [43] and stochastic fractal search
(SFS) algorithm [44] in terms of the transient response
analysis results using the same objective function of
ITAE.

5) In addition to the ITAE objective function, two other
most commonly used objective functions in literature,
the ITSE and ZLG (the time domain based objec-
tive function proposed by Zwe–Lee Gaing) [53] are
also used to test the effectiveness of the proposed
approaches.

6) Comparative transient response analysis, frequency
response (Bode) analysis and robustness analysis under
DC motor parameter changes are carried out for the
proposed ChASO-FOPID approach.

II. THE PROPOSED HEURISTIC
OPTIMIZATION ALGORITMS
A. ATOM SEARCH OPTIMIZATION (ASO) ALGORITHM
ASO is a recently proposed physics-inspired, population-
based heuristic algorithm that mimics the atomic motion
controlled by interaction and constraint forces to design
an effective search mechanism for global optimization
problems [52]. The total interaction forces acting on the ith
atom in d th dimension, which in fact is the vector sum of
the repulsion and the attraction exerted from dynamically
changing neighbor atoms on ith atom is given as

Fdi (t) =
∑

j∈Kbest

randjFdij (t) (1)

where randj is a random number in the range of [0,1] and
Kbest is a subset of atom population, which consist of the
first K atoms with the best fitness function values. To make
ASO doing more exploration at the early iterations, each
atom needs to interact with as many atoms with better fitness
values as its K neighbors, and to make algorithm doing more
exploitation at final iterations, each atom needs to interact
as few atoms with better fitness values as its K neighbors.
Therefore, the value of K needs to be gradually decreased
with the course of iterations as follows

K (t) = N − (N − 2)×

√
t
T

(2)

where N is the total number of atoms in an atomic system,
t is the current iteration and T is the maximum number
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of iterations. Fdij in (1) is the interaction force that the jth best
atom exerts on the ith atom in d th dimension. The interaction
force is the gradient of Lennard-Jones (L-J) potential, and in
order to handle the optimization problems, the revised version
of this model with positive attraction and negative repulsion
forces [52] is given as

Fdij = −η(t)
[
2
(
hij(t)

)−13
−
(
hij(t)

)−7] Erij
rij

(3)

where η(t) is the depth function for adjusting the repul-
sion or the attractive regions and hij(t) = rij/σ (t) is the
ratio of the distance between two atoms to the length scale,
which is named as the scaled distance between two atoms,
in this paper. Erij = Exj − Exi is the position difference vector
where Exj = (xj1, xj2, xj3) is the position vector of the jth atom
and Exi = (xi1, xi2, xi3) is the position vector of the ith atom.
Hence, rij is the Euclidian distance between the ith and the jth
atoms and given as

rij =
∥∥Exj − Exi∥∥

=

√
(xj1 − xi1)2 + (xj2 − xi2)2 + (xj3 − xi3)2 (4)

The depth function in (3) is defined as

η(t) = α
(
1−

t − 1
T

)3

e−
20t
T (5)

where α is the depth weight and equals to 50, in this paper.
The interaction force function with different depth values
(η = 1, 5, 10, 30, and 50) versus the scaled distance (h)
ranging from 0.9 to 2 is shown in Fig. 1.

FIGURE 1. The revised interaction force function versus the scaled
distance (h) with different depth values (η = 1,5,10,30, and 50) [52].

The scaled distance between two atoms is given as

hij(t) =


hmin

rij(t)
σ (t)

< hmin

rij(t)
σ (t)

hmin ≤
rij(t)
σ (t)
≤ hmax

hmax
rij(t)
σ (t)

> hmax

(6)

where hmin and hmax denotes the lover and the upper bounds
of the scaled distance (h), respectively, and defined as follows{

hmin = g0 + g(t)
hmax = u

(7)

where g0 is the lowest limit set to 1.1 and u is the upper limit
set to 1.24, and g(t) is the drift factor to make the algorithm
capable of drifting from exploration to exploitation, which is
given as

g(t) = 0.1× sin
(
π

2
×

t
T

)
(8)

The length scale σ (t) in (6) denotes the collision diameter and
defined as

σ (t) =

∥∥∥∥∥∥∥xij(t),
∑

j∈Kbest
xij(t)

K (t)

∥∥∥∥∥∥∥
2

(9)

Supposing that each atom in ASO has a covalent bond with
the best atom, the resulting geometric constraint force, which
is the weighted position difference between each atom and
the best atom, can be given as

Gdi (t) = λ(t)
(
xdbest (t)− x

d
i (t)

)
(10)

where xdbest (t) is the position of the best atom in d th dimension
and λ(t) is the Lagrangian multiplier, which is defined as

λ(t) = βe−
20t
T (11)

where β is a multiplier weight and equals to 0.2, in this
paper. Having defined the interaction force and the constraint
force resulting from L-J potential and bond-length potential,
respectively, the acceleration of the ith atom in d th dimension
at iteration t can now be calculated as follows

adi (t) =
Fdi (t)

mdi (t)
+
Gdi (t)

mdi (t)

= −α

(
1−

t − 1
T

)3

e−
20t
T

×

∑
j∈Kbest

randj
[
2
(
hij(t)

)−13
−
(
hij(t)

)−7]
mi(t)

·

(
xdj (t)− x

d
i (t)

)
∥∥Exi(t), Exj(t)∥∥2 +βe−

20t
T

(
xdbest (t)− x

d
i (t)

)
mi(t)

(12)

where mdi (t) is the mass of the ith atom in d th dimension
at iteration t , and calculated by its fitness function value as
follows

Mi(t) = e−
Fiti(t)−Fitbest (t)

Fitworst (t)−Fitbest (t) (13)

mi(t) =
Mi(t)∑N
j=1Mj(t)

(14)

where Fiti(t) is the fitness function value of ith atom at itera-
tion t ,Fitbest (t) andFitworst (t) are the fitness values of the best
and worst atoms at iteration t , respectively, and defined as

Fitbest (t) = min
i∈{1,2,...,N }

Fiti(t) (15)

Fitworst (t) = max
i∈{1,2,...,N }

Fiti(t) (16)
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TABLE 1. Some benchmark functions.

Finally, the velocity and position update of ith atom at itera-
tion (t + 1) are defined as

vdi (t + 1) = randdi · v
d
i (t)+ a

d
i (t) (17)

xdi (t + 1) = xdi (t)+ v
d
i (t + 1) (18)

For more detailed explanation of ASO, one can refer to [52].

B. THE NOVEL CHAOTIC ATOM SEARCH OPTIMIZATION
(CHASO) ALGORITHM
Chaos has randomness characteristics with better dynami-
cal and statistical characteristics [54]. Small changes in its
parameters or initial conditions may lead to vastly different
future behaviors [21]. Therefore it is recognized as very
useful in metaheuristic optimization algorithms due to the
diversity of generated solutions it guarantees. In literature,
there are different types of chaotic maps that have been used
for generating chaotic sequences in optimization algorithms
[20]–[31]. In this paper, a chaotic approach based on the
logistic map is proposed. This chaotic map is one of most
used [54] and the simplest chaotic sequences that will replace
the randj parameter of the original ASO algorithm in (1), (12),
and (17). The other reason for preferring this map is that it
has given the best results after many trials carried out with
the piecewise linear map and the sinusoidal map. The logistic
map is given by the following expression

yi+1 = δ · yi(1− yi) (19)

where y is a variable and for i = 1, 2, 3, . . . , yi and yi+1 are
values at ith and (i + 1)th iterations, respectively. The initial
value of y is chosen as 0.2027 [20], in this paper. Here, δ is 4,
so that a chaotic sequence of numbers in a range of [0,1] can
be generated.

In order to verify the performance of the proposed ChASO
algorithm, the six most well-known benchmark functions

are discussed. The definitions of these test functions are
summarized in Table 1. The detailed information of these
functions can also be found in [36] and [52]. In order to
make a suitable comparison with other algorithms found in
literature, such as wind driven optimization (WDO) [52],
SA [52], PSO [52], GSA [52], GA [52] and ASO [52] the
proposed ChASO algorithm was run 50 times, and the pop-
ulation size as well as the maximum number of iterations
were selected as 50 and 1000, respectively. The statistical
results (average, standard deviation andminimum of the best-
so-far solution) obtained for the related test functions are
presented in Table 2. The best results are highlighted in bold
type. As can be seen from the results in Table 2, the best
results were found with the proposed ChASO algorithm
compared to other algorithms including the original ASO
algorithm.

FIGURE 2. DC motor equivalent circuit.

III. DC MOTOR MODEL
DC motors are classified as externally and self-excited types.
In this paper, an externally excited DC motor is considered
for speed control via the control of armature voltage. The
equivalent circuit of DCmotor speed control system is shown
in Fig. 2 [55].
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TABLE 2. Comparison of results for various benchmark functions.

The parameters of this system are as follows

Ra: armature resistance, �
La: armature inductance, H
ia: armature current, A
if : field current, A
ea: applied armature voltage, V
eb: back electromotive force, V
T : motor torque, N.m
ω: angular speed of motor shaft, rad/s
J : inertia torque of motor, kg.m2
Kb: electromotive force constant, V.s/rad
K : motor torque constant, N.m/A
B: motor friction constant, N.m.s/rad

For a constant flux, the induced voltage eb, is proportional
to the angular velocity ω = dθ/dt .

eb = Kb
dθ
dt
= Kbω (20)

The speed of an armature-controlled DC servo motor is con-
trolled by the armature voltage ea. The differential equation
for the armature circuit is as follows

ea = La
dia
dt
+ Raia + eb (21)

The armature current produces a torque that corresponds to
the sum of inertia and friction torques, thus

T = J
dω
dt
+ Bω = Kia (22)

Note that the load torque is not included in (22) since it is
considered as a disturbance to the linear DC motor speed
control system. The load disturbance response of the system
will be discussed in the last section of simulation results.
Assuming that all initial conditions of the system are zero,

FIGURE 3. DC motor system.

the Laplace transform of (20)-(22) will yield the following
equations

Eb(s) = Kbω(s) (23)

Ea(s) = (Las+ Ra)Ia(s)+ Eb(s) (24)

T (s) = (Js+ B)ω(s) = KIa(s) (25)

Fig. 3 illustrates block diagram of a DC motor system. The
open loop transfer function of DC motor from input voltage
to output motor speed can be written as follows

G(s) =
ω(s)
Ea(s)

=
K

(Las+ Ra)(Js+ B)+ KbK
(26)

For simulation, the parameters and their values used in the
present work for DC motor speed control have been given
in Table 3 [38], [43], [44].

TABLE 3. Parameters of DC motor.
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IV. FOPID CONTROLLER FOR DC MOTOR
SPEED CONTROL
A. ESSENTIALS OF FOPID CONTROLLER
A FOPID controller is an extended version of the traditional
PID controller. Fractional controllers are less susceptible
to changes in the parameters of the supervised system and
controller [3], [7]. A fractional controller can very easily
obtain iso-damping property that is the system response can
have the same phase margin in a given frequency range. The
generalized transfer function of FOPID controller is given as
follows

GFOPID(s) = KP + KI s−λ + KDsµ, (λ,µ > 0) (27)

whereKP,KI andKD are proportional, integral and derivative
gain constants, respectively, λ is the fractional order of the
integral term and µ is the factional order of the derivative
term. In general, the range of fractional orders is within 0
to 2 [7]. If λ = 1 and µ = 1 then the obtained controller
is a traditional PID controller; if λ = 0 and µ = 1,
it is a PD controller; if λ = 1 and µ = 0, it is a PI
controller; and if λ = 0 and µ = 0, it is a P controller.
All of these traditional type of controllers are special cases
of the FOPID controller. The graphical representation of the
FOPID controller is shown in Fig. 4, where x axis represents
the fractional order of the integral term while y axis illus-
trates the fractional order of the derivative term. This figure
describes the relationship between the FOPID controller and
the standard PID controller. As can be seen from the figure,
the FOPID controller extends the integer order PID controller
from a point to a plane. This extension adds more flexibility
to the controller design, allowing for more accurate control
of real-life processes [56].

FIGURE 4. The plane of FOPID controller.

B. INTEGER ORDER APPROXIMATION OF
FOPID CONTROLLER
In (27), sr (r ∈ −λ,µ) is the Laplace transform variable
with fractional orders. Since this is an abstract concept, which
has no exact analytical solutions, the solution of this vari-
able can only be found with an integer order approximation.
Oustaloup’s recursive approximation method CRONE [57],

is one of the well-known methods of integer order approx-
imation. CRONE is an acronym for ‘Commande Robuste
d’Ordre Non Entier’ in French meaning fractional order
robust control. CRONEmodel [11], [57] with poles and zeros
distributed recursively is defined as follows

sr ∼= C
N∏
i=1

1+ s
ωz,i

1+ s
ωp,i

, r > 0 (28)

ωz,i = ωl

(
ωh

ωl

) (2i−1−r)
2N

(29)

ωp,i = ωl

(
ωh

ωl

) (2i−1+r)
2N

(30)

C = ωrl (31)

where N is the order of approximation, C is the transient
gain, ωl and ωh are the low and high transitional frequencies,
respectively. In case of r <0, sr is obtained by inverting (28).
However, in case of |r| >1, the above approximation does
not yield satisfactory results, which requires the splitting of
the fractional order as follows

sr = szsx , r = z+ x, z ∈ Z , x ∈ [0, 1] (32)

Hence, only the term sx in (32) has to be approximated.

C. DC MOTOR SPEED CONTROL WITH
FOPID CONTROLLER
The block diagram of the closed loop DC motor speed con-
trol system using the FOPID controller is shown in Fig. 5.
The closed loop transfer function of DC motor with FOPID
controller and unity feedback is given as follows

TFOPID

=
K (KDsλ+µ +KPsλ +KI )

[(Js+B)(Ls+R)+KbK ]sλ+K (KDsλ+µ +KPsλ +KI )
(33)

When designing a controller for DC motor model, two
main objectives have been considered. The first one is the
preference of a FOPID controller, which is more effective
than the traditional PID controller that is mostly used in
the literature. And the second one is proposing the ChASO
algorithm, which has a better performance than the origi-
nal ASO algorithm, for tuning FOPID controller parameters
(KP, KI , KD, λ and µ). The ChASO-FOPID controller design
approach that is based on these two objectives will not only
optimize the dynamic response of the DCmotor speed control
system but also rapidly eliminate its steady-state error.

V. MATHEMATICAL PROBLEM FORMULATION
A. OBJECTIVE FUNCTION AND CONSTRAINTS
OF THE PRESENT WORK
In order to present a fair comparison with [38], [43], and [44],
the same objective function, ITAE, is adopted in this paper.
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FIGURE 5. Block diagram of DC motor with FOPID controller.

FIGURE 6. DC motor speed control with ChASO-FOPID controller.

The ITAE objective is given as

ITAE =

tsim∫
0

t · |e(t)| · dt (34)

where e(t) is the error signal that is the difference between
reference and actual angular speeds, and tsim is the simu-
lation time, which is 2.0 s, in this paper. When the ITAE
objective function is minimized, the transient response of
the DC motor speed control system is improved in terms of
maximum overshoot, settling time and rise time. The lower
and upper limits of each FOPID controller parameters are
0.001 ≤ KP ≤ 20, 0.001 ≤ KI ≤ 20, 0.001 ≤ KD ≤ 20,
0 ≤ λ ≤ 2.0 and 0 ≤ µ ≤ 2.0. These limits are
identical to [38], [43], and [44] to be compared.
In Oustaloup’s approximation, ωl = 10−3ωc, ωh = 103ωc,
where ωc is the transient gain frequency, and the order of
approximation N is 11.

B. IMPLEMENTATION OF THE PROPOSED CHASO-FOPID
APPROACH FOR DC MOTOR SPEED CONTROL
To improve the closed-loop response of the DC motor in
terms of the transient response criteria (maximum overshoot,

settling time and rise time), the optimal values of FOPID
controller parameters can be found using the proposed
ChASO algorithm, which has excellent exploitation and
exploration capabilities compared to the original ASO algo-
rithm. Fig. 6 illustrates the block diagram of the proposed
ChASO-FOPID controller approach in DC motor speed
control.

In order to optimize the five parameters of FOPID con-
troller via the proposed ChASO algorithm, the parameters
are first coded to an atom population such as P = [KP;KI ;
KD; λ;µ], where each atom is represented by a real number.
Then, the atoms are optimized by following the main steps
of the ChASO algorithm to minimize the value of an objec-
tive function. In the proposed approach, the first population
consists of randomly created m atoms (the population size).
For each atom, the time domain simulation of the system
with FOPID controller and unity feedback are made and the
output speed curve of the DCmotor is obtained. Each atom is
likely to yield a different output speed response curve with
the associated maximum overshoot, settling time and rise
time values. After that, the ITAE objective function in (34)
is calculated for each atom and the atoms are returned to
the optimization module to be updated for the next iteration.
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FIGURE 7. The block diagram of the proposed ChASO algorithm implementation for DC motor speed control.

This bidirectional process flow between the DC motor
speed control system and the proposed ChASO optimization
module is maintained until themaximumnumber of iterations
is reached. At the end of the optimization process, the best
atom with the lowest objective function value is recognized
as the optimal FOPID parameter set. The detailed flow chart
of the ChASO algorithm that is applied to optimize the per-
formance of the DC motor speed control system is shown
in Fig. 7.

VI. SIMULATION RESULTS AND DISCUSSIONS
The programming codes that is necessary for the ChASO
algorithm and the simulations of the transient response,
frequency response and robustness analyzes were all per-
formed by means of the MATLAB/Simulink software pack-
age via a personal computer with Intel R© i7 2.50 GHz
processor and 16.00 GB RAM. The parameters of the
proposed ChASO algorithm and their values are listed
in Table 4.
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TABLE 4. ChASO algorithm parameters.

In order to see the effectiveness and superiority of the pro-
posed ChASO-FOPID approach, ChASO-FOPID controller
is compared not only with the original ASO-based PID and
FOPID (ASO-PID and ASO-FOPID) controllers accordingly
but also with different approaches found in literature, using
the same DC motor parameters (GWO-FOPID [38], GWO-
PID [38], IWO-PID [43] and SFS-PID [44]). In addition,
the best results in comparative analysis are highlighted in
bold. The important results of this study are shown in the
following subsections.

FIGURE 8. Convergence curves for ITAE objective function.

A. CONVERGENCE PROFILE
Fig. 8 shows the typical convergence profile of the proposed
controller. As can be seen from the figure, the FOPID con-
troller tuned by ChASO algorithm has the lowest ITAE value
and converges with the least number of iterations (only 8 iter-
ations). At the end of the optimization process the obtained
ChASO-FOPID controller parameters are: KP = 19.7722,
KI = 9.1117, KD = 8.1189, λ = 0.8401, and µ = 0.9112;
and ASO-FOPID controller parameters are: KP = 19.3282,
KI = 7.9728, KD = 4.7805, λ = 0.9755, and µ = 0.9428;

and ASO-PID controller parameters are: KP = 11.9437,
KI = 2.0521, and KD = 2.4358. The transfer functions
obtained according to these parameters are given in (35)-(37),
as shown at the bottom of this page, respectively.

The speed step responses of the DC motor for ChASO-
FOPID, ASO-FOPID and ASO-PID controllers are shown
in Figs. 9-11, respectively. As can be seen from the figures,
the proposed ChASO-FOPID controller has the best transient
response profile as it performs a faster stability with no
overshoot.

FIGURE 9. Speed step response of the DC motor with ChASO-FOPID
controller.

FIGURE 10. Speed step response of the DC motor with ASO-FOPID
controller.

B. SPEED COMPARISON OF DC MOTOR WITH
VARIOUS APPROACHES
The gain parameters of the PID and FOPID controllers
obtained with different algorithms are listed in Table 5.

TChASO−FOPID =
0.12178s1.7513 + 0.29658s0.8401 + 0.13668

0.00108s2.8401 + 0.0061s1.8401 + 0.12178s1.7513 + 0.29821s0.8401 + 0.13668
(35)

TASO−FOPID =
0.071707s1.9183 + 0.28992s0.9755 + 0.11959

0.00108s2.9755 + 0.0061s1.9755 + 0.071707s1.9183 + 0.29155s0.9755 + 0.11959
(36)

TASO−PID =
0.03654s2 + 0.1792s+ 0.03078

0.00108s3 + 0.04264s2 + 0.1808s+ 0.03078
(37)
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FIGURE 11. Speed step response of the DC motor with ASO-PID controller.

TABLE 5. Parameters of PID and FOPID controllers for DC motor obtained
by various algorithms.

TABLE 6. Comparison of the transient response analysis results for
different controllers.

In Table 6, comparative analysis of the proposed ChASO-
FOPID approach with ASO-FOPID, ASO-PID, GWO-
FOPID [38], GWO-PID [38], IWO-PID [43] and
FS-PID [44] is shown in terms of the transient response
measures. Also, the comparison of speed step responses for
different controllers is shown in Fig. 12. As can be seen
from the simulation results, the ChASO-FOPID controller
designed for DC motor speed control has no overshoot
with faster stability indices compared to PID and FOPID
controllers that are optimized with different algorithms.

FIGURE 12. Speed step response comparison of DC motor with different
controllers.

C. COMPARISON OF PERFORMANCE INDICES
ITSE and ZLG performance indices were also chosen for
comparison because of their widespread use. The formulas
of the ITSE and ZLG indices are given in (38) and (39),
respectively [58]–[60].

ITSE =

tsim∫
0

t · e2(t) · dt (38)

ZLG = (1− e−β ) · (Mp + Ess)+ e−β · (ts − tr ) (39)

In (39) Mp, Ess, ts and tr denotes the maximum overshoot,
steady state error, settling time and rise time, respectively.
The weight factor β is usually taken as 1.0 [58]. The transient
response performance of a system is maximized when the
ITSE and ZLG values are the lowest. The comparative values
of ITSE and ZLG performance indices obtained from differ-
ent approaches are given in Table 7. As can be seen from this
table, ITSE and ZLG values of the proposed ChASO-FOPID
controller are the lowest compared to the other approaches.
These numerical results clearly demonstrate that the proposed
ChASO algorithm is superior to other algorithms, including
ASO, and that the FOPID controller is more efficient than the
traditional PID controller.

TABLE 7. Performance indices comparison of different controllers.

D. FREQUENCY RESPONSE ANALYSIS
In order to evaluate the stability performance of the DCmotor
speed control system that is designed by the proposed ChASO
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FIGURE 13. Bode plot of DC motor speed control system with
ChASO-FOPID controller.

TABLE 8. Bode analysis of DC motor with different controllers.

TABLE 9. Operating points of DC motor.

and ASO algorithms, the frequency response analysis were
performed. The Bode plot for the proposed approach is shown
in Fig. 13, and the comparative simulation results obtained
for DC motor speed control system are given in Table 8.
As seen from the table, ChASO-FOPID controller has the
best performance with infinite gain margin, a phase margin
close to 180◦ and the maximum bandwidth compared to other
approaches. These results validate the effectiveness of the
proposed ChASO algorithm for tuning of FOPID controller
parameters.

E. ROBUSTNESS ANALYSIS
Robust controller is very much required for a system for
maintaining the system’s acceptable response in abnormal
cases. The behavior of the system is observed by the
robustness analysis when subjected to the system uncertain-
ties. In this paper, in order to show the robustness of the

TABLE 10. Comparison of transient response analysis results for Case I.

TABLE 11. Comparison of transient response analysis results for Case II.

TABLE 12. Comparison of transient response analysis results for Case III.

proposed method, the electrical resistance (Ra) and the torque
constant (K ) of DC motor have been changed separately with
±50% and ±40%, respectively, which creates four possi-
ble operating points as given in Table 9. The comparative
simulation results obtained for transient response analysis of
DC motor speed control system for all operating points are
given in Tables 10-13, and the comparative DC motor speed
step response curves are given in Figs. 14-17. From these
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TABLE 13. Comparison of transient response analysis results for Case IV.

FIGURE 14. Comparative DC motor speed step response curves for Case I.

FIGURE 15. Comparative DC motor speed step response curves for Case II.

tables and figures, it can be seen that despite the changes that
occur in system parameters, the proposed ChASO-FOPID
controller has the least settling time and rise time values with
no overshoot in all cases except the Case II and Case IV
with a negligible overshoot percentage when compared to
all other controllers. These results validate the robustness of
the proposed ChASO-FOPID controller for DC motor speed
control system.

FIGURE 16. Comparative DC motor speed step response curves for
Case III.

FIGURE 17. Comparative DC motor speed step response curves for
Case IV.

FIGURE 18. Step load disturbance response of DC motor.

F. LOAD DISTURBANCE RESPONSE
This subsection presents the suppression capability of the
closed loopDCmotor speed control systemwith the proposed
controllers as well as different controllers that are tested under
the step load disturbance. When a change in load torque
occurs in the DC motor speed control system, the output
speed response of the system because of this disturbance, has
to be settled down to zero as soon as possible. Fig. 18 shows
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the dynamic response of the DC motor speed control for a
step load disturbance. From the figure, it is clear that the
proposed ChASO-FOPID controller has the best load distur-
bance response in terms of minimum undershoot and settling
time, compared to the other controllers. Hence, the proposed
controller is effective in successfully suppressing the load
disturbances, as well.

VII. CONCLUSION
Tuning the parameters of FOPID controllers is a very chal-
lenging process. If the tuning success is insufficient, not
only the control performances worsen, but also the control
system becomes inefficient. In this study, the use of FOPID
(ChASO-FOPID) controller based on the ChASO algorithm,
which is developed by adding chaotic property to the orig-
inal ASO algorithm, is proposed as a new approach in DC
motor speed control. For DC motor speed control system
with the FOPID controller and unity feedback, the ChASO
algorithm was run to minimize the ITAE objective function
and at the end of the optimization process the parameters of
the FOPID controller were obtained with the least number
of iterations. In order to demonstrate the effectiveness of
the proposed ChASO-FOPID approach, performance com-
parisons were made not only with the original ASO tuned
PID and FOPID (ASO-PID and ASO-FOPID) controllers,
but also with recent approaches through various analyzes.
As the recent approaches in the literature, GWO-FOPID [38],
GWO-PID [38], IWO-PID [43] and SFS-PID [44] were
selected since they have used the same DC motor model.
The comparative analysis results showed that the proposed
ChASO-FOPID controller added system had the best tran-
sient response profile and a good frequency response in terms
of maximum overshoot, settling time, rise time, ITSE and
ZLG. Furthermore, the ChASO-FOPID approach is more
robust to model uncertainties than other approaches and more
successful in suppressing the abrupt changes that may occur
in the system output due to load disturbances.
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