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ABSTRACT Solid oxide fuel cell (SOFC) has a high energy conversion efficiency and emits a low level of
pollutants in the environment. One of the crucial elements is an anode that, typically, is a composite of nickel
and yttria-stabilized zirconia (Ni-YSZ). The microstructure morphology of an anode plays an important
role in determining the electrochemical performances of a single cell and, consequently, a stack of cells.
Therefore, the microstructure optimization design should be included in the development of a system at a
very early stage. The anode material microstructure can be tailored to fulfill the role it has at the particular
location in the stack. This paper presents a novel approach of using an evolutionary algorithm to optimize
the microstructure of an SOFC’s anode. The optimization problem consists of 16 microstructural parameters
connected by the mesh of the dependencies. One group of algorithms that can face this challenge is an
evolutionary algorithm family. In this paper, a genetic algorithm and a particle swarm optimization are
employed to optimize the cell microstructure and to help in improving the performance of an SOFC. The
developed mathematical model can correctly predict the performance of the SOFC anode and is employed
in the evolutionary algorithms to select the optimal microstructure. The results show that the optimal
microstructure leads to better cell performance than the conventional one.

INDEX TERMS Anodes, evolutionary computation, fuel cells, genetic algorithms, microstructure, particle
swarm optimization, solid oxide fuel cell, optimization, energy conversion.

I. INTRODUCTION
A. SOLID OXIDE FUEL CELLS
A Solid Oxide Fuel Cell (SOFC) is an electrochemical device
that converts the chemical energy of fuels directly into elec-
tricity. SOFCs have high energy conversion efficiency in a
wide range of power output, which is graphically presented
in Fig. 1. A typical solid oxide fuel cell consists of two porous
ceramic electrodes (the cathode and the anode) separated by
a solid, dense ceramic electrolyte made typically of yttria-
stabilized zirconia (YSZ). An effective anode material allows
electrochemical reactions in a large fraction of the volume of
the electrode. The most common SOFC anode is a porous
Ni/YSZ cermet. Each phase plays a unique and essential role
in the transport phenomena providing pathways for different
species: the YSZ phase for oxygen ions, the Ni phase for
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electrons and the pore phase for gases. As a consequence,
the electrochemical reaction occurs only at the boundary of
the three phases, the so-called Triple Phase Boundary (TPB).
This contiguous contact of electronic, ionic and gas phases
provides a direct link between the microstructure and the
electrochemical performance of the anode. Figure 2 presents
the role of each phase in the transport of charge and mass in
the vicinity of the reaction domain in a conventional Ni/YSZ
anode. The diffusion of oxygen ions from the cathode to the
anode through the electrolyte is the slowest transport process.
Consequently, electrochemical reactions occur in the vicinity
of the anode-electrolyte interface.

B. SOFC MICROSTRUCTURE DESIGN
The breakthrough in microstructure design came together
with the development of direct microstructure observation
methods. For example, the FIB-SEM electron tomography.
The FIB-SEM combines a Focused Ion Beam (FIB) and
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FIGURE 1. SOFC efficiency compared to other technologies in a wide
range of power output [1]–[5]. GT - gas turbine, ST - steam turbine,
MCFC - Molten Carbonate Fuel Cell, PEMFC - Proton-exchange Membrane
Fuel Cell, SOFC - Solid Oxide Fuel Cell, SOFC/GT - SOFC-GT combined
system, SOFC/GT/ST - SOFC triple combined-cycle system.

FIGURE 2. Schematical view on an electrochemical reaction in SOFC’s
anode with marked phases: YSZ is yttria-stabilized zirconia, Ni is nickel,
Pore is empty space.

Scanning Electron Microscope (SEM) in a single system.
A 3D reconstruction technique was introduced to the field
of SOFCs by Wilson et al. [6] in 2006. The method enables
the observation of many sequential 2D images of a porous
microstructure and reconstructs it into three-dimensional
digital models using advanced image processing. From the
reconstructed microstructure, it is possible to quantify the
microstructure parameters. These parameters are used to
describe the relationships between the anode microstructure
and the cell power generation. This is the procedure of the
quantitative evaluation of the microstructure morphology.
This opens a new perspective in SOFC studies:microstructure
oriented modeling and design.

In a conventional approach, the microstructure opti-
mization design is similar in its essence to the random
search. Numerical simulations evaluate the performance of
several electrodes with different microstructure morpholo-
gies. The best electrodes are fabricated and electrochemically
tested. The feedback from the power generation experiment is
then used to further modify the microstructure [7]–[9]. Using
an optimization algorithm, this procedure can be significantly
improved. Shi and Xue [10] conducted the first and so far the
only attempt in the open literature (known to the authors) to
use evolutionary algorithms for the optimization of an SOFC

anode’s microstructure. The authors combined a classical
SOFC transport model and genetic algorithm (GA) to deter-
mine the optimal distributions of porosity and particle sizes
for the electrodes [10]. This approach, although breaking
new ground, has its limitations. The number of optimized
parameters was restricted to porosity distribution and particle
size. The impact of particles size on the reaction domain
was estimated using a sphere packing algorithm, in which a
contact angle was an adjustable parameter [10]. Moreover,
the relations between the microstructural parameters were
not included in the study [10]. The primary challenge to
anode optimization still lies in the mathematical description
of the relations between microstructural parameters. Collect-
ing tomographic data binding a microstructure’s parameters
would take many years. Therefore, the generation of the
synthetic microstructure is required to speed up the data
collection. Shi and Xue [10] chose sphere packing to gen-
erate the synthetic microstructures, as it is the most common
approach in the literature [11]. However, the random-packing
algorithmwas found to underestimate the tortuosity and triple
phase boundary in comparison to the real microstructure [12].
The limitations of the sphere packing algorithm draw atten-
tion to the cellular automata (CA) simulations, which give
a possibility of generating complex three-dimensional vir-
tual structures. Cellular automata consist of many identical
simple components, which together are capable of creating
complex virtual structures. The cellular automata simula-
tion was recently employed as a model of SOFC electrodes
microstructure [13], [14]. Sebdani et al. [13] generated over
400 synthetic microstructures to find the one with the maxi-
mal reaction domain (TPB). The microstructures were gen-
erated randomly and therefore the algorithm falls into the
category of random search. Furthermore, recent studies show
that the performance of the cell can increase despite the decay
of TPB [15]–[17]. Therefore, the more suitable optimization
function should be built based on the output power.

C. AIM OF THIS WORK
The underlying motivation for this paper is to bridge the
gap in the existing literature and provide a comprehensive
optimization of SOFC anode microstructure. The research
uses evolutionary algorithms and cellular automata simu-
lation. The microstructural parameters obtained from the
analysis of the synthetic microstructures are juxtaposed with
FIB-SEMempirical data taken from the literature.We showed
that the synthetic microstructures reflect the morphologies
of the real electrode. The obtained results are used to solve
the optimization problem. The optimization covers all the
microstructural parameters and the relations between them.
The optimization’s objective function was built based on the
maximum current density flowing through the cell under
the chosen polarization. We have chosen GA for optimiza-
tion, as a continuation of work done by Shi and Xue [10].
To increase the convergence of the optimization we have used
a simpler and faster algorithm - particle swarm optimization
(PSO) [18]. As the main objective of this paper is to provide
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and prove the concept of the optimization we did not consider
more complex algorithms.

This paper consists of the following parts: section II,
a description of the physical model of SOFC, section III,
the evaluation of the microstructural parameters correlations
using the CA algorithm, section IV the introduction to the
optimization algorithms used, section V, the verification of a
physical model and the optimization algorithms, section VI,
the results of the optimization and section VII, conclusions.

II. PHYSICAL MODEL OF SOFC ANODE
A. GOVERNING EQUATIONS
The transport phenomena to be considered are the diffusion
of gases through the pore phase, the transport of electrons
through an electron-conducting nickel phase and the transport
of ions via an ion-conducting YSZ phase.

1) DIFFUSION OF GASEOUS SPECIES
The main fluxes contributing to mass transport in a porous
electrode are a diffusive flux and a viscous flux. The viscous
flow is driven by a pressure gradient and therefore is negligi-
ble compared to the diffusive flow in porous electrodes [19].
For the gaseous phase, the Fick’s model has been chosen for
its low computational complexity [20], [21]. It is based on
the Bosanquet approximation of diffusivity and is expressed
as follows:

∇ ·
(
Deff
i

RT
∇Pi

)
= Si, (1)

where R is the gas constant, R = 8.314459848 J/(mol K),
T is the temperature (K), Deff

i is the effective diffusion
coefficient (m2/s), the subscript i denotes the chemical
species: H2 and H2O. The mass source terms are due to
the electrochemical reactions and they are calculated using
Faraday law as follows:

sH2 =
iTPB
2 F

, sH2O = −
iTPB
2F

, (2)

where iTPB is the volumetric exchange current density (A/m3)
and F is the Faraday constant, F = 96 485.3365 s A/mol. The
formulation of iTPB is described later, in Section II-B.

The effective diffusion coefficients in the porous anode are
estimated by using the bulk diffusion coefficients of gases,
the volume fraction and tortuosity factor of the pore phase:

Deff
i =

εpore

τpore
Di. (3)

The diffusion of the chemical components through the
porous anode includes the Knudsen flow and the multicom-
ponent diffusion. Therefore, the bulk diffusion coefficients
used in Equation (3) come from the Maxwell-Stefan diffu-
sion model [22] with the inclusion of the Knudsen diffusion
term [23]:

Di =

 1
DK,i
+

∑
j6=i

Xj
Dij

−1 , (4)

where DK,i and Dij are the Knudsen diffusion coefficient for
component i and the binary diffusion coefficient for compo-
nents i and j, respectively (m2/s). TheKnudsen diffusion coef-
ficients DK,i (m2/s) are estimated by the following equation:

DK,i =
dp,pore

2
2
3

√
8RT
πMi

, (5)

whereMi is the molecular mass of component i (kg/mol), and
dp,pore is the mean pore diameter (m). For the binary diffusion
coefficients Di,j (m2/s), the Fuller et al. method [24], [25] is
adopted in this study:

Di,j =
14.3T 1.75√1/Mi + 1/Mj
√
2P(61/3

i +6
1/3
j )2

, (6)

where P is the pressure (atm.) and 6i is the diffusion volume
of species i (1) obtained by summing the atomic diffusion
volumes [24].

2) TRANSPORT OF THE ELECTRONS AND IONS
In the SOFC anodes, the electrons and oxide ions are trans-
ported through the Ni phase and the YSZ phase, respectively.
Conservation equations for the electronic and ionic phase
potentials are derived from the conservation of the charge and
are expressed as follows:

∇ ·
(
σ eff
ele∇φele

)
= iTPB, (7)

∇ ·
(
σ eff
ion∇φion

)
= −iTPB, (8)

where φele and φion are the electric potential in the elec-
tron conductive phase (Ni) and the oxide-ion conductive
phase (YSZ), respectively (V), and iTPB is the volume-
specific density of the current exchanged between the two
phases (charge-transfer current) (A/m3), σ eff

ele and σ
eff
ion are the

effective electronic and ionic conductivities (S/m), which are
defined using the microstructural parameters and the bulk
conductivities:

σ eff
ele =

εNi

τNi
σele, σ eff

ion =
εYSZ

τYSZ
σion, (9)

where εi and τi are the volume fraction and the tortuosity
factor of the phase i, σele and σion are the conductivities of
the bulk materials obtained from the literature [26], [27]:

σele = 3.27 · 106 − 1065.3 T , (10)

σion = 3.4 · 104 exp
(
−
10350
T

)
, (11)

where T is the temperature (K).

B. ELECTROCHEMICAL REACTION MODEL
The electrochemical reaction that occurs at the triple
phase boundary of the SOFC anode is hydrogen molecule
oxidation:

H2 + O2−
→ H2O+ 2e−. (12)

One can proof that by applying the power law kinetic
model to describe the backward and forward rates of the
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reaction (12), the equation to calculate the exchange current
density at TPB can be derived. The final form of the so-called
Butler-Volmer equation varies depending on the application
and in the case of SOFCs it has the following form [28]:

iTPB = i0

[
exp

(
2 F
RT

ηact

)
− exp

(
−
F
RT

ηact

)]
, (13)

where i0 is the equilibrium exchange current density (A/m3)
and ηact is the activation overpotential (V).
The electric potential of the difference between the two

solid phases are regarded as the sum of the activation over-
potential ηact and the concentration overpotential ηcon, and
therefore the activation overpotential is derived as follows:

ηact = φele − φion − ηcon, (14)

where the electric potentials φele and φion are obtained by
solving Equations (7) and (8) and the concentration overpo-
tential is described by the following formula:

ηconc =
RT
2 F

ln

(
PbulkH2

PH2

PH2O

PbulkH2O

)
, (15)

where PbulkH2
and PbulkH2O

are the hydrogen and gaseous water
partial pressure (Pa) at the anode surface and PH2 and PH2O
are the hydrogen and water vapor partial pressure (Pa) at the
TPB region.

The equilibrium exchange current density i0 (A/m3) in the
Butler-Volmer equation (Eq. (13)) depends on themicrostruc-
ture of the anode and is a linear function of the TPB length
density `TPB (m/m3). It is written as follows:

i0 = i0,TPB`TPB, (16)

where i0,TPB is the equilibrium exchange current per unit
TPB length (A/m). In this study, the anode exchange cur-
rent density is described by the following empirical equation
obtained by fitting to the data obtained by de Boer [29]:

i0,TPB = 31.4 P−0.03H2
P0.4H2O exp

(
−1.52 · 105

RT

)
. (17)

III. ESTIMATING AN ANODE’S MICROSTRUCTURE
PARAMETERS CORRELATIONS
The anode’s microstructure shows a great diversity of com-
plex morphologies. Studying the origins of such complex-
ity allows establishing the relation between microstructural
parameters and consequently enables trustful microstructure
optimization.

A. MICROSTRUCTURAL PARAMETERS
There are sixteen microstructural parameters describing an
anode, connected with a grid of dependencies. For each of the
three phases, the following parameters can be distinguished:
1) the phase volume fraction, describing the amount of a
given phase, 2) connectivity, defining the fraction of the phase
that contributes to the transport phenomena, 3) the tortuos-
ity factor, which indicates the complexity of the phase and
4) the mean particle diameter and its standard deviation,

which determine the grain size and how it differs from the
average. An important parameter that directly affects the cur-
rent density is a triple-phase boundary length density, which
describes an amount of possible reaction domains.

B. MICROSTRUCTURE PARAMETERS EVALUATION
From the three-dimensional digital representation of
microstructure, it is possible to estimate various microstruc-
tural parameters. For the quantification of the microstructural
parameters, we employed the methodology developed by
Iwai et al. [30], Vivet et al. [31], Kishimoto et al. [32], and
Kishimoto [33]. Here, we present just a brief introduction to
each of the used methods of quantification. For more details,
please see the original papers [30]–[33].

The volume fraction of each phase was estimated based on
voxel counts [30]. The algorithm checks the cross sections
of the 3D reconstruction voxel by voxel and associates them
with one of the three phases [30].

For the connectivity calculation, we have used the cluster
neighborhood rule [31]. The voxels connected to the other
voxels that represent the same phase form a cluster. Clusters
are defined as percolated if they are connected to the bound-
ary faces perpendicular to the x-axis. This is because of the
directionality of the transport phenomena.

The average grain size was evaluated using a three-
dimensional version of the intercept method applied to the
digital representation of the microstructure [33]. In this
method, a voxel is chosen [33]. Three lines along orthogonal
coordinates are drawn in such way that they contain only
voxels of the same phase [33]. The average length of these
lines is a local particle size [33]. Average from all local
particle sizes defines average grain size [33].

The tortuosity factor which directly describes the reduction
rate of the diffusion coefficient in the porous media was
estimated by the random walking procedure [32]. In this
method, many walkers are stochastically distributed in the
investigated phase. Each walker allots a neighbor voxel for
the next movement [32]. From the rate of the reduction of the
walkers’ mean square displacement in the porous channels,
compared to the displacement in the free space, the tortuosity
factor is estimated [32].

The reaction sites (TPBs) were estimated using the vol-
ume expansion method [30] and Avizo software (Thermo
ScientificTMAvizoTM). In this approach, each phase is virtu-
ally expanded.When all three phases overlap, the created vol-
ume contains the triple phase boundary that can be extracted
by a centroid method [30].

1) GENERATING SYNTHETIC MICROSTRUCTURES
Mathematical models called cellular automata can artificially
generate the variety of complex microstructures [13], [14].
By analyzing microstructures, one may establish the relation-
ships between the microstructural parameters for the consid-
ered electrode.

In the presented approach, an empty cuboid of wanted
geometrical dimension is formed, the obtained volume is
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interpreted as a pore phase. In this volume, the cellular
automata start from generating two types of seeds that after
growing will constitute the nickel and yttria-stabilized zir-
conia phases. The seeds generation is subjected to the local
rules that prevent generating one phase being encompassed
by the other which are rather unlikely to occur in the real
anode. These rules are based on the geometrical relations
between seeds. Every time a new seed is generated, a position
in space in which it can be put is searched and analyzed.
If there are too many seeds of the same phase or any seed of a
different phase that are too close to the candidate position for
a seed, this position is not accepted. The number of possible
neighboring seeds with similar space is arbitrary. The area
around the candidate space position is searched two times
with a different volume and rules. The analyzed space is
defined by a fraction of the grow radius of the generated
seed’s phase in the first search and by a fraction of the biggest
grow radius of all phases in the second search. The second
search detects only seeds representing a different phase than
considered in the iteration. Fractions of the grow radius are
chosen arbitrarily. The order of the seed drawing impact on
the final microstructure shape should be analyzed. We gen-
erated the Ni seeds before the YSZ seeds, as the Ni phase
seeds have a higher tendency to agglomerate. In the next
step, the states of the voxel neighboring seeds are updated
according to a deterministic function to create a sphere-like
shape. For each seed, the grow radius is determined from
the Gauss normal distribution with the mean and standard
deviation values being the input parameters. The number of
seeds is a function of the desired average grain size and the
volume of the generated microstructure and is adjusted itera-
tively repeating initial generation and growth with a different
number of seeds. The procedure is continued until the volume
fraction discrepancies of around 4% from the desired are
obtained.

As a next step, the new generation of seeds is distributed
in each phase. Each phase can host only seeds of the same
phase. One seed is generated in a given distance from the
phase surface. The seed is growing until the created radius
violates the space of the competitive phase or its radius
becomes greater than the arbitrary maximum value. The
new voxels are adopted and the growth stops. Because each
seed disturbs the existing volume only by a few voxels,
a large number of around 300 000 (200 000 - 500 000)
seeds is required to mimic the natural microstructure for
the resolution of 280x280x280 voxels. The grow radius
and its standard deviation of seeds were calibrated by the
comparison with the real microstructures observed using
FIB-SEM electron tomography. At this stage, the obtained
microstructure can reproduce the desired volume fraction
with the precision of a few voxels difference per million
voxels. The comparison between the cross sections of a real
SOFC’s anodemicrostructure from the FIB-SEMobservation
after the ternarization of original SEM image and a pic-
ture of a synthetically generated microstructure is presented
in Fig. 3.

FIGURE 3. An example of the segmented microstructure cross sections,
a) real microstructure obtained by FIB-SEM electron tomography and
b) synthetic microstructure generated by CA algorithm. White is Ni, gray is
YSZ and black is pore.

The typical characteristics of an anode’s microstructure
are preserved - the nickel phase is agglomerated more than
the YSZ phase, the solid phases are in contact with each
other. The microstructure generation algorithm is represented
in a flowchart in Fig. 4. An example of different three-
dimensional digital representations of synthetically generated
microstructures is presented in Fig. 5.

2) RESULTS FROM SYNTHETIC MICROSTRUCTURES
ANALYSIS
To investigate the relationship between microstructural
parameters we generated numerous three-dimensional syn-
thetic microstructures with a size of 10 µm × 10 µm ×
10 µm, which are typical dimensions of FIB-SEM sam-
ples [34]. All of the obtained digital representations of
the microstructures were quantitatively analyzed using the
methodology described in section III-B. An example of the
obtained 3D reconstructions is presented in Fig. 5. As can be
seen, we could successfully cover a wide range of anode com-
positions from low to high content of nickel, pores and YSZ.
When the microstructure is homogeneous and particle size
does not differ significantly, the reaction domain can be
treated as a function of particle diameter [35], [36].
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FIGURE 4. Flowchart for the microstructure generation algorithm.

The triple-phase boundary length density for highly per-
colated anode versus the maximum mean particle diam-
eter dependency is presented in Fig. 6. The maximum
mean particle diameter is the biggest particle size from Ni,
YSZ or pore. The results include the estimation based on the
synthetic microstructures as well as the data taken from the
literature (Fig. 6).
Figure 7 shows a loss of reaction domain in the case when

one phase loses its percolation. By defining the reaction
domain as `TPB = ˆ̀TPBζNiζYSZζpore, we assure that the
connectivity loss of all phases is included. Figure 8 contains
information about the dependence between connectivity and
the volume fraction obtained by several synthetic microstruc-
tures analysis. The connectivity threshold seems to be exactly
at the volume fraction of 20%. In comparison to the data
taken from the literature [39] marked as red squares at Fig. 8,
the connectivity values from the synthetic microstructures are
in good agreement with the experiment.

FIGURE 5. Examples of synthetic microstructures generated in this study.
Yellow is YSZ, green is nickel and void represents pores. a) 5% Ni, 40%
YSZ, Particle diameters: dp,Ni = 0.63 µm, dp,YSZ = 0.78 µm, dp,pore =
1.3 µm, b) 20% Ni, 40% YSZ, Particle diameters: dp,Ni = 0.73 µm, dp,YSZ =
0.87 µm, dp,pore = 1.04, µm c) 25% Ni, 40% YSZ, Particle diameters:
dp,Ni = 0.46 µm, dp,YSZ = 0.55 µm, dp,pore = 0.62 µm, d) 33% Ni, 33%
YSZ, Particle diameters: dp,Ni = 0.95 µm, dp,YSZ = 0.97 µm,
dp,pore = 1.04 µm.

The tortuosity factors of all phases were estimated using
the approximation to the experimental data from [33] and the
data from the synthetic microstructures. The results of the
fitting are presented in Fig. 9. As can be seen in the figure,
the tortuosity factors obtained for the synthetic microstruc-
tures follow the trend established by the experimental data.
This observation holds for all investigated phases. The
approximation equations take the following form:

τNi = 681.70e−13.025εNi + 1, (18)

τYSZ = 171.76e−9.9202εYSZ + 1, (19)

τpore = 37.119e−7.5246εpore + 1. (20)

IV. EVOLUTIONARY ALGORITHMS
The three primary parts of every optimization algorithm
decide if it falls into the category of evolutionary computing.
The first part is the process of initialization where the initial
population of individuals is randomly generated according to
a solution representation. Each individual within the popula-
tion represents a possible solution to the considered optimiza-
tion problem. During the second part, all individuals in the
population are evaluated using the so-called fitness function.
The obtained fitness values determine the direction of the
population evolution. The third process is the generation of a
new population by the interactions of solutions in the existing
population. In the presented work two basic evolutionary
algorithms have been used: genetic algorithm (GA) and
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FIGURE 6. The available reaction sites ( ˆ̀TPB) for a highly percolated
anode as a function of a mean particle diameter (dp). The blue circles are
the values obtained from the quantitative analysis of the synthetic
microstructures, and the red squares represent the real TPB densities
obtained from the experiments [15]–[17], [37], [38].

FIGURE 7. The decay of the electrochemical reaction domain as a
function of connectivity of least percolated phase with full percolation of
two other phases.

FIGURE 8. Phase connectivity as a function of phase fraction. Literature
data from [39].

particle swarm optimization (PSO). Both are shortly
addressed here [40].

A. PROBLEM REPRESENTATION AND FITNESS FUNCTION
Every anode was assumed to be described by three inde-
pendent microstructural parameters: the volume fraction of
Ni, the volume fraction of YSZ and the average pore diam-
eter. The phase volume fraction was selected in the range

FIGURE 9. The tortuosity factor as a function of the phase fraction.
Experimental data from [33].

from 0.2 to 0.6 and the average particle size in the range
from 1 µm to 3 µm. These parameters were randomly chosen
for the first generation of solutions. Other microstructural
parameters such as the tortuosity factors, the connectivities
of the phases and the triple phase boundary length densities
were treated as dependent variables and they were calculated
afterward, using the relations derived from the analysis of the
synthetic microstructures, presented in Section III.

Additional parameters and system conditions were fixed.
The fixed parameters are: the thickness of an anode which
has a value of 50 µm, the system temperatures, of which we
performed optimization, were 800 ◦C, 900 ◦C and 1000 ◦C,
the system pressure with a value of 101300 Pa, the total
overpotential with a value of 0.05 V and the inlet gas com-
position - 97% H2, 3% H2O. These parameters were chosen
to mimic the real SOFC operating conditions. The parameters
mentioned above were employed in the mathematical model
described in Section II. The model was used to calculate
the distribution of volume-specific exchange current density
(see Eq. (13)). Then, the distribution of iTPB is utilized to
compute the fitness function as it is presented below:

j =
∫ La

0
iTPBdx, (21)

where La is an anode thickness. Therefore, the returned value
j of the fitness function is the current density generated by the
anode (A/cm2), which needs to be maximized.

B. GENETIC ALGORITHM
A genetic algorithm can be summarized as follows: firstly,
the population of chromosomes is randomly generated [41],
[42]. Each chromosome represents a set of microstructural
parameters which represents a possible microstructure of a
SOFC anode [41]. These parameters are the volume fraction
of Ni and YSZ and the particle size of pores. A chromosome
is generated as a string of binary values, that can be mapped
onto a physical range of values with precision dependent
from the chromosome length [41], [42]. A multiple number
of variables can be represented as one chromosome. Each
variable is assigned to a fragment of the chromosome [42].
For part of the chromosome of the length l representing a
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variable x, this string can be treated as an integral number in
the range from 0 to 2l in binary form that is mapped linearly
to a specified interval [xmin, xmax] [42].

In the case of anode encoding precisions were 10−9 for the
volume fraction and 10−6µm for the particle size. Then, all
individuals are evaluated using the fitness function, described
by Eq. (21), which requires the solution of the mathematical
model, described in Section II.

The evaluation procedure assesses the relationship
between the microstructure and produced current. Individ-
uals with good fitness have a higher possibility to pass
their chromosomes to the offspring generation [41], [42].
Based on the fitness function, the parent chromosomes are
selected [41], [42]. The selection was performed using the
stochastic remainder selection without replacement [42].
In this method the expected number of each individual in
parents pool is estimated as an individual’s fitness divided
by a mean fitness of the current population and multiplied by
the parents pool population size:

E(k) =
jk∑
k jk

N̄ , (22)

where k is the id number of an individual, E(k) is the expected
number of k individual in the parents pool, jk is the fitness of
k individual according to Eq. 21 and N̄ is the parents pool
population size. A number of copies equal to the integer part
of E(k) of individual k is put into the parents pool. After this
step, the draw takes place until all the parents are selected.
One by one, individuals have a chance equal to the fractional
part of the expected number E(k) to get a copy in parents
pool [42]. After this step, the parents are matched randomly.
The crossover and mutation operators make the offspring
population [41], [42]. As a crossover operator, we used a one-
point crossover. In this basic crossover two offspring arise
from the two parents. The random point of the crossover is
selected, then the first child has its chromosome made up
from the first part of the first parent and the second part from
the second parent. The second child takes the first part from
the second parent and the second part from the first parent.
Mutation - sporadic small modification of a chromosome -
is performed with the constant probability of one percent
for each gene in the chromosome during the whole opti-
mization process [41], [42]. The new population is created
from the new offspring population and two best individuals
from the old population (elitism) [41], [42]. These operations
lead towards the optimal solution, which is obtained after
several generations [41], [42]. As a result, the anode with
the microstructure, which leads to a high current production,
is obtained. The block scheme of the GA algorithm is shown
in Fig. 10.

C. PARTICLE SWARM OPTIMIZATION
The particle swarm optimization is an algorithm that opti-
mizes a problem iteratively in a similar fashion as the genetic
algorithm [40]. PSO improves a candidate solution concern-
ing a given measure of quality. Here, the measure of quality is

FIGURE 10. Flowchart for the genetic algorithm.

the amount of the current generated by the anode, evaluated
by the mathematical model (see Section II) and previously
proposed fitness function (see Eq. 21).

The PSO method optimizes the problem with a random
population of candidate solutions, which are represented by
particles. Each particle is a set of microstructural parameters,
which represents the potential anode of an SOFC. These
parameters are the same as in GA - the Ni and YSZ volume
fractions andmean pore particle diameter in the same range of
possible values. Unlike the GA, the PSO operates on the real
representation of the optimized parameters. These particles
are moved in the search space according to the particle’s
actual position and velocity [43]. The position represents
a vector of the optimized microstructure parameters. The
velocity is a direction of change of these parameters [43].
Each particle’s movement is influenced by its best-known
location as well as by the position of the particle with the best
fitness in the population, which move the swarm towards the
best solutions [43]. Every particle k in the population is char-
acterized by its position Xk , the best previous position Pk ,
velocity V k and fitness, which is the value returned by the
fitness function [43], given here by Eq. 21. The particle posi-
tion in the next generation is computed using the following
formula [43]:

Xn+1
k = Xn

k + V
n
k , (23)

where n is the generation number.
Particle velocity is computed in every generation and is

given by [44]:

Vn+1
k =ωVn

k+c1rand ()
(
Pk−Xn

k
)
+c2rand ()

(
Png−X

n
k

)
.

(24)

The value of inertia weightω is proposed in [44] as a function
of time. Pg is the position of the best particle from a whole
population in the current generation [43], rand is a function,
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FIGURE 11. Flowchart for particle swarm optimization algorithm.

FIGURE 12. Overpotential calculated by the fitness function versus the
experimental data [37].

which generates random numbers in the range [0, 1) [43].
Constants c1 and c2 are equal to 2 [43]. The inertia weight
ω is changing linearly with time according to the given
formula:

ω(n) = 0.4+ 0.8
N − n
N

, (25)

where N is a maximum possible number of generations. The
block scheme of the PSO algorithm is shown in Fig. 11.

V. VERIFICATION OF THE ALGORITHMS
A. VERIFICATION OF THE FITNESS FUNCTION
Before conducting an optimization process, the fitness func-
tion was verified using the empirical data from the open liter-
ature [37]. Figure 12 presents the experimental data from [37]
versus the computation from the present studies. The results
shown in Fig. 12 represents the anode overpotential as a
function of the current density. The results of the simulation
are in good agreement with the empirical data taken from the
literature [37]. It can be concluded that the fitness function
can successfully predict anode polarization and therefore it
can be applied to the optimization process.

FIGURE 13. The improvement of the anode microstructure through the
PSO and GA algorithms progress for the operating
temperature 1000 ◦C.

B. VERIFICATION OF THE EVOLUTIONARY ALGORITHMS
For the performance evaluation, the Rastrigin and Shaffer
functions have been used for their multimodal and
deceptive character [45], [46]. Both functions are the primary
benchmarking functions used for the testing of evolutionary
algorithms [45], [46]. Tests of both algorithms ensured that
the algorithms were correctly implemented and can be used
for complex optimizations. Furthermore, the conducted tests
provided information on how to set and correct parameters
using data from a population evolution.

VI. ANODE MICROSTRUCTURE OPTIMIZATION RESULTS
After successful verification of the fitness function and the
evolutionary algorithms, we conducted the optimization of
the solid oxide fuel cell anode’s microstructure parameters.
The microstructural parameters are related by the network
of dependencies typical for a conventional anode. As a con-
sequence, we look after only for those settings that can
be decided independently during the manufacturing process.
Those parameters are the anode composition and particle size.
The rest of the parameters are estimated afterward from the
correlations collected from the literature and the analysis of
the synthetic microstructures (see Section III for details). It is
worth to mention that during optimization we do not differ-
entiate between the particle size of different phases. Here we
assume homogeneous and uniform particle size distribution
for all phases. This is because the phase with the biggest
particle size will have the highest impact on the maximum
possible reaction domain (`TPB). The optimization process
was performed until one of the converge criteria was met.
As a stop conditions, we have used the maximum number
of iterations and lack of the improvement of the best solu-
tion for ten generations. The maximum number of iterations
was selected to ensure that the average value of the fitness
function in the last generation was close to the best solution.
The temperature range of the optimization was chosen from
800 ◦C to 1000 ◦C, as it is conventional SOFC operating a
range of temperatures. Additionally, the verification of the
physical model was performed in this temperature range.
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TABLE 1. The best microstructure parameters obtained using the
GA and PSO.

FIGURE 14. Visualization of the optimal synthetic microstructure
described by the parameters obtained by the evolutionary algorithms.

The objective is to find the anode microstructure composi-
tion, for which the maximum current value can be obtained.
The example of the best anode performance and a mean
value through the PSO and GA algorithms progress is shown
in Fig. 13. The figure indicates that even though both algo-
rithms lead to the same anode composition, the PSO algo-
rithm converges to the global optimum five times faster than
the genetic algorithm in the investigated case.

The summary of the obtained results are presented
in Table 1. The results suggest the lowest possible values

TABLE 2. Optimal microstructure.

FIGURE 15. SOFC current density versus the operating temperature for
the optimized and conventional anodes operating with overpotential
of 0.05 V.

of the particle diameter. The algorithm minimizes the nickel
content until the phase is sufficiently percolated.

The optimal fractions of Ni, YSZ and the pores obtained
from the evolutionary algorithms have been rounded to take
into account the possibilities of the anode manufacturing
process. This microstructure was then digitally generated and
analyzed using the methods described in Section III-B. The
visualization of the optimal synthetic microstructure is shown
in Fig. 14 and the parameters are juxtaposed in Table 2.
The comparison between the conventional anode (data

from [37]) and the optimized anodes are presented in the form
of the relation between the overpotential and current density
in Fig. 15 and in the form of the polarization curves in Fig. 16.
The optimized microstructure provides twice as much current
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FIGURE 16. Polarization curves of the conventional and optimal anodes.

density in all the investigated range of potential operating
conditions.

VII. CONCLUSION
In this paper, we presented a new approach to the optimiza-
tion of a solid oxide fuel cell anode’s microstructure. The
optimization was conducted by the combination of numerical
modeling of transport phenomena, cellular automata, and the
evolutionary algorithms. The biggest challenge lied in the
unknown relations between microstructural parameters that
are crucial for reliable optimization. The complex description
of such a problem was not available in the literature due
to the extensive time needed for the quantitative analysis of
microstructures’ tomographic data. We addressed this issue
by the quantitative study of the 3D digital representations
of microstructures generated by the cellular automata sim-
ulation. Those synthetic microstructures were proved to be a
valid representation of a real microstructure by a number of
comparisons to empirical data which was obtained from the
FIB-SEM electron tomography. The presented algorithm for
generating synthetic microstructures can be used as a basis
for applications in various fields of materials science.

Moreover, the genetic algorithm, which was convention-
ally used before in the field of SOFC optimization was
replaced by much faster particle swarm optimization. This
approach opens the possibility for the optimization of more
complex electrodes or the entire cells in the future.

Presumably, the presented optimization results favor the
volume fraction of the ion conductor as the ion diffusion is
the slowest process. The volume fractions of pores and nickel,
responsible for gas diffusion and electron flow respectively,
follow the trend. The simulation gives the quantitative value
of the optimal anode’s composition and shows microstruc-
ture dependency on temperature and fuel composition which
allows tailoring the microstructure for the particular appli-
cation. Most importantly, the presented methodology can be
extended to unconventional anodes, where the set of opti-
mized parameters can be larger.
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