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ABSTRACT Data centers have become a prevalent infrastructure to host a large number of services, such
as social networking and Web search, which generally have rigorous delay requirements. Even a slight
increase in delay can seriously affect the performance of applications. Therefore, there have been several
efforts focusing on minimizing the flow completion time (FCT) to meet the delay requirements, such as
ICTCP, which adjusts the receive window according to the available bandwidth and DCTCP that uses ECN
to provide the feedback to end hosts in mixing workloads. However, both approaches are only for a specific
scene and cannot effectively solve the problem that packets losses lead to timeouts due to TCP incast.
Moreover, they all use the fair-share mechanism, which causes the increasing of the FCT for small flows,
when background flows pour into the network. For example, background flows cause the increasing(≈ 5ms)
of the FCT for the ICTCP in an incast experiment. To solve these problems, we propose a priority-driven
congestion control algorithm, PTCP, which can effectively avoid the incast problem and improve the FCT
in mixing workloads. The PTCP leverages the priority to adjust the receive window and control the interval
time of ACK. To evaluate the PTCP, we conduct extensive experiments in NS-2. The simulation results show
that the PTCP outperforms greatly previous schemes both in the incast scenario and mixing workloads.

INDEX TERMS Congestion, TCP incast, ACK control, data centers, priority.

I. INTRODUCTION
In recent years, the intensive development of information
services has led to the migration of applications in the Inter-
net to data centers. Modern data centers support a variety
of cloud services and applications, such as distributed file
system [1], web search, social networking, etc., which typ-
ically have soft real-time constraints [2], [3] and employ the
Partition/Aggregate pattern as showed in Figure 1. Though
TCP plays an important role in the data center applica-
tions, its design is still Internet-centric and is not suitable
for high-bandwidth, low-latency environments such as data
center networks [4]. A lot of recent work [5]–[7] try to
minimize the flow completion time (FCT) by achieving a
low queue occupancy. For example, DCTCP [5] reduces the
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FIGURE 1. Example of the partition/aggregate pattern with different
deadlines.

queue length of switch buffer by an adaptive congestion con-
trol. pFabric [6] estimates the remaining flow size to achieve
an approximate short-remaining-size first scheduling and the
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best performance in theory. PIAS [7] uses multiple priority
queues and leverages a multi-level feedback queue mecha-
nism to schedule flows. PIAS is closed to the shortest job
first (SJF) scheduling because the small flow often finishes
in the first few high priority queues. However, these methods
cannot effectively solve the problem when the data packet
losses lead to timeouts due to TCP incast [8]. TCP timeouts
can cause delays of hundreds of milliseconds and throughput
reductions of up to 90% [9]. This would result in performance
degradation of cloud services and applications.

Due to the adverse effects of TCP incast, many researchers
tried to solve it in terms of hardware or software.
Depending on the strategy, the existingmethod can be divided
into three categories. The first is window-based solutions
such as ICTCP [10] and M21TCP [11]. These methods
avoid the switch buffer overflow by adjusting the receive
window. The second is fast recovery-based solutions, which
mainly focus on fast return to the normal state when conges-
tion occurs. They aim to reduce the value of retransmission
timer and fast retransmission, such as reducing RTOmin [12],
CP [13] and GIP [14]. Finally, solutions based on ACK
control, such as IATCP [15] and PAC [16], reasonably delay
the transmission of the ACK to adjust the sending rate of
workers. They can support more concurrent connections and
achieve high throughput, especially PAC whose maximum
number of supported connections is about 1600. However,
They do not take into account the impact of background
traffic on the throughput of small traffic. In addition, they
cannot adapt to the real data center environment for soft
real-time applications such as MapReduce [17] and social
networking.

This paper proposes a novel priority-driven congestion
control algorithm called PTCP to address the incast problem
and reduce the FCT in mixing workloads. PTCP adjusts the
receive window in terms of the priority to control the sending
rate of workers. Furthermore, we use an active ACK control
to support more connections. The delay requirements can
be well met in the face of soft real-time applications even
with background flows. In addition, PTCP only makes minor
modifications at the receiver, which does not affect the work
of traditional TCP, and shows good compatibility. Simulation
results show that PTCP can effectively avoid incast conges-
tion as the number of worker increases. What’s more, PTCP
greatly outperforms previous schemes for TCP incast and
realistic mixing workloads.

The rest of the paper is organized as follows. We introduce
the related work in Section II. Section III provides the moti-
vation for PTCP. Then we propose PTCP congestion control
algorithm in Section IV. Section V describes the experimental
setup and simulation results with the NS-2 simulator. Finally,
the conclusion is presented in Section VI.

II. RELATED WORK
This section will firstly reveal the incast problem. Then we
analyze the existing solutions especially about how to mini-
mize the FCT in realistic mixing workloads.

A. INCAST PROBLEM
TCP incast problem was first discovered by Nagle et al. [18]
in a scalable storage architecture. They increase the band-
width of a cluster of small files accessed in parallel and
observe that the throughput decreases when multiple senders
send data to the same single client. This phenomenon, called
TCP incast, has been observed empirically in data cen-
ters, which is inseparable from its two key features. First,
themany-to-one pattern is widely applied in data center appli-
cations such as MapReduce, web search and cluster-based
storage workload [19]. Second, shallow buffer switches are
commonly used in data centers to achieve high bandwidth and
low latency. Figure 2 shows an example of the incast scenario.
When such bursts from multiple senders are aggregated to
the same switch port, it will cause the switch buffer over-
flow quickly, resulting in packet losses which lead to TCP
timeouts, which causes the performance degradation of cloud
services and applications.

B. EXISTING CONGESTION CONTROL ALGORITHM
As mentioned above, there are many protocols for incast
and congestion control in data centers nowadays. This sub-
section mainly focuses on introducing their principles and
deficiencies.

ICTCP [10] only dynamically adjusts the size of the receive
window. It only increases the receive window when the link
has enough available bandwidth and the measured bandwidth
is close enough to the expected bandwidth. M21TCP [7]
calculates the maximum congestion window in every RTT
at the switch. M21TCP informs all parallel senders to send
the maximum rate of packets, which will not cause the buffer
overflow. IATCP [15] is a congestion avoidance algorithm
that controls the number of packets in the network pipe to
achieve high throughput. IATCP adjusts the ACK interval to
control the sending rate of the workers. PAC [16] uses the
switch buffer size as the threshold. When the in_flight traffic
reaches the threshold, the receiver delays the transmission
of the ACK to reduce the amount of data packets in the
network. However, both IATCP and PAC need to accurately
estimate the in_flight traffic. The CP [13] protocol is based
on accurate packet loss notifications. When the switch is
overloaded, the sender of the lost message will be accurately
informed through amethod similar to TCP SACK. The sender
retransmits the lost message and adjusts the transmission rate.
The GIP [14] protocol detects the boundary of the stripe units.
It uses the boundary information adjusting the congestion
window to avoid timeouts caused by the window message
loss and ACK missing. However, both GIP and CP need to
modify the TCP/IP stack. What’s more, the CP even needs to
modify the switch hardware.

To minimize the flow completion time, lots of prior work
assume the flow information is knowable, e.g., flow size.
For example, PDQ [20] and pFabric [6], all assume the flow
size is a priori and use the approximate SJF scheduling to
minimize the average FCT. However, the flow size is difficult
to be obtained in practice. DCTCP [5] uses ECN [21] to
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perceive the congestion information. It adjusts the congestion
window at the sender according to the congestion signal, thus
achieve high burst tolerance and throughput under commod-
ity switches. It also effectively reduces the FCT in mixing
workloads.

III. MOTIVATING EXPERIMENTS
Our primary goal is to design an effective congestion con-
trol mechanism for both incast scenario and realistic mixing
workloads.

Some solutions for incast perform inefficiently with back-
ground flows, e.g., ICTCP and IATCP. There are two essential
reasons accounting for this. First, they are only for incast
scenario other than mixing workloads. Second, they mainly
use the fair-share mechanism at the receiver to allocate the
window size, which is not friendly to small flows. To demon-
strate this conflict, in the experiment, we use the many-to-
one communication pattern with background flows similar
to Figure 2. Each sender sends 64KB data to the same
receiver. We measure the FCT for small flows with different
connections and the behaviors are shown in Figure 3. The
experiment result shows that the background flows cause
the increasing(≈ 5ms) of the FCT of ICTCP in the scenario
without incast.

FIGURE 2. The classical scenario showing multiple senders
communicating with a single receiver through a bottleneck Link.

FIGURE 3. The impact of background flow on FCT.

In data centers, some schemes focus on minimizing the
FCT such asDCTCP. Even thoughDCTCP ordinarily achieve

FIGURE 4. FCT with TCP incast under per server volume 64KB.

the low average FCT in mixing workloads, the performance
is not so good in the TCP incast scenario. DCTCP is prone to
produce timeouts in the many-to-one communication pattern,
because of shallow switch buffer. To verify this, we design
an incast experiment that each sender sends 64KB data to a
receiver and the link bandwidth is 1Gbps. We increase the
number of connection and the result is shown in Figure 4.
We observe that the FCT ofDCTCP increases rapidly because
of TCP incast when the number of connection is greater
than 36. For TCP incast flows, the number of connections
supported by DCTCP is limited. Suppose that there are N
incast flows in an RTT interval, the capacity of bottleneck
link is Lc and the buffer size isBs. We definewi as the window
size of flow i. The queue length Q is given by:

Q =
n∑
i=1

wi − Lc ∗ RTT (1)

Assume that the window size of each flow is equal,
i.e., w1 = w2 = · · · = wN = w. Therefore we can simplify
the equation (1) as follows:

Q = N ∗ w− Lc ∗ RTT (2)

To avoid the incast congestion, we must guarantee the value
ofQ is smaller than Bs. Therefore, the number of connections
supported by DCTCP can be given by:

N ≤ (Bs + Lc ∗ RTT )/w (3)

When w achieves a minimum, the number of connection
reaches its maximum. In the incast experiment, the switch
buffer size is about 150KB, the RTT is 100µs, and the
minimum w for DCTCP is 4.5KB. Therefore, its theoretical
maximum number of connection is only about 36.

IV. DESIGN OF PTCP
This section will introduce how to address the TCP
incast congestion and minimize the FCT. In SectionIV-A,
we describe how to compute the priority based on the flow
size and deadline. SectionIV-B analyzes how to adjust the
receive window according to the priority. SectionIV-C will
introduce how to reasonably regulate the ACK intervals at
the receiver among multiple flows.
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A. PRIORITY CALCULATION
Many schemes [3], [22] have shown that it is a good choice to
control the network congestion by the flow size or deadline.
However, they follow the fair-share manner which causes the
increasing of FCT for small flows. Thus, to well react to the
rigorous delay requirements for applications, it is meaningful
to set the priority for each flow to tame TCP incast. In this
paper, the priority is defined based on the flow size and
deadline. However, the flow size is usually agnostic in data
centers. To calculate the priority of each flow, we need to
estimate the current flow size and detect the deadline. Note
that we want to estimate the flow size and detect the dead-
line without additional overheads. Thus, we do not consider
complex prediction algorithms and measurement algorithms
to estimate the flow size and obtain the deadline in this paper.

1) ESTIMATING THE FLOW SIZE
The DCTCP [5] states that the typical traffic size of Par-
tition/Aggregation pattern is between 2KB and 20KB, and
the background flow size is more than 10MB. In data cen-
ters, more than 80% of the flows less than 10KB follow
heavy-tailed distribution. Therefore, we use the number of
bytes sent to distinguish between small flows and large flows
without the flow size information, and it is easy to count
the number of bytes sent at the receiver when packets are
delivered.

2) CALCULATING THE PRIORITY OF THE FLOW SIZE
We classify the flow size <= 10KB small, > 10KB and
<= 10MB medium and >= 10MB large. We expect the
small flows can get the higher priority compared to medium
flows and large flows. Therefore, the priority of small flows
is set to 1. We simply set the priority of the large flows to
0.1 rather than 0. On one hand, we prevent the throughput of
the large flows from being too small, and on the other hand,
large flows reserve the room for small flows. For the priority
of the medium flows, we expect to choose a curve that well
matches the following features:

• The curve should be monotonically decreasing and the
range is 0.1 to 1.

• We expect the flow whose size is close to 10KB to
get a priority which approximates the priority of small
flows.

• We hope the medium flow can quickly lower the priority
to match the short flow size first strategy.

• The flow whose size approaches to 10MB can avoid
throughput underflow caused by low priority.

To avoid the largeness of the curve definition domain, we sim-
ply divide both sides by 1MB. Then, the range of flow size
is 0 to 10. Therefore, we define the curve S as follows:

S(x) =
1

15.5− 14.5 ∗ e−x
x ∈ (0, 10) (4)

Analysis: To prove the monotonicity of curve S.
We take the derivative of the variable x in Equation 4.

We have:

dS
dx
=

−14.5 ∗ e−x

(15.5− 14.5 ∗ e−x)2
≤ 0 x ∈ (0, 10) (5)

Therefore, the monotonic decreasing of the curve S is con-
stant. We can obtain the maximum and minimum value
at 0 and 10, respectively, with values of approximately 1, 0.1.
Thus, we set the priority of flow size called P1 as follows:

P1 =


1 if n = 0

1
15.5− 14.5 ∗ e−x

if n ∈ (0, 10)

0.1 if n = 10

(6)

3) CALCULATING THE PRIORITY OF THE DEADLINE
Deadline is generated by the application. We assume that the
deadline can be obtained before the data deliver begins. Our
basic strategy is to give higher priority to the tight deadline
flows compared to non-deadline flowswhich have no require-
ments for the deadline in flow completion time. Supposing
that the flow which misses the deadline is pointless. Thus,
we drop the flow that nearly misses its deadline. We expect
that the flow also completes within the deadline by the pri-
ority of deadline P2 when the network congestion occurs.
We find that much recent work such as D2TCP and DIATCP,
all adjust the window size by the remaining time of a flow
until its deadline expires. It is easy to measure the remaining
time because the start time of a flow can be obtained at
the TCP sender. Therefore, we set the priority based on the
deadline as follows:

P2 = 1.58 ∗ e−Tc/D − 0.58 (7)

Tc is the remaining time for a flow until its deadline expires,
and D is the value of the deadline for a flow. In equation (7),
we can see that the value of P2 decreases monotonously with
the increasing of Tc and its range is between 0 and 1. Now if
the flow can just meet its deadline, thenP2 > 0 is appropriate.
If the value of Tc approaches to 0, it means that the flow
needs to be completed as soon as possible to avoid missing
the deadline, then we increase the value of P2 to complete the
flow transmission quickly. If Tc = 0, it means the flow can
not finish transmission within the deadline, we drop the flow.

Now we obtain the priority of the flow size and the priority
of the deadline. Our basic strategy is the higher-priority first.
And the total priority called Psum is as follows:

Psum = max(P1,P2) (8)

If the value of Psum approaches to 1, then senders should
send packets as many as possible. If the value of Psum
approaches to 0.1, senders need to reduce the number of
packets sent so that higher-priority connections can allocate
more bandwidth.

B. RECEIVE WINDOW SIZE SETTING
Much recent work [22]–[24] have shown that the queuing
delay is an important characteristic that reflects the state of
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network congestion. They focus on minimizing the queu-
ing delay according to the accurate feedback such as ECN.
Therefore, we use the queuing delay to estimate the current
network congestion. When the receiver detects the queuing
delay increasing, the receiver notifies senders decreasing its
sending rate by ACK.

1) MEASURING THE QUEUING DELAY
The queuing delay is estimated as the difference between
the instantaneous delay and base delay. The measurement of
delay is the one-way delay instead of the round-trip time.
The reason is that the one-way delay can prevent uncorre-
lated traffic on the reverse path from interfering with data
transmission. The measurement of the queuing delay can be
summarized in the pseudocode in Algorithm 1.

Algorithm 1 Measuring the Queuing Delay
1: Parameters:
2: base_delay: an initial one-way delay value
3: current_delay: current measured one-way delay value
4: current_time: current time the packet is received at the

receiver
5: send_time: the time packet is sent
6:

7: Calculating the queuing delay at the receiver:
8: if timestamp == True then
9: current_delay← current_time− send_time
10: base_delay← min(base_delay, current_delay)
11: queuing_delay← current_delay− base_delay
12: else
13: timestamp← True
14: end if

2) ESTIMATING THE NETWORK CONGESTION
Majority of existingwork use congestion signals to reduce the
sending rate of workers, e.g., DCTCP, D2TCP, and D-SRTF.
They all leverage ECN which has been well supported in
switches, to deliver the congestion information. If the queue
length is larger than the threshold, packets in the switch will
be marked by ECN. When a receiver receives the marked
packet, the ACK will also be marked. Then if senders receive
the ACK, they will calculate the proportion of ACK packets
marked in the previous window, and estimate the network
congestion. Different from the ECN scheme, we use the
queuing delay, as mentioned above, to estimate the network
congestion. When the queuing delay exceeds the threshold,
the network is in a state of congestion. Algorithm 2 presents
the steps of the network congestion estimation performed
at the receiver. First, we set the Target as the threshold for
the queuing delay. Second, we count the number of packet
only when the queuing delay exceeds the threshold (12-14).
Finally, we calculate the network congestion and smooth it
using the exponential filter (16-22). And the g is the sliding
average coefficient (set value 0.0625). We set the Target
and interval to 120µs, 20 in 1G network, and 100µs,65 in

Algorithm 2 Estimating Network Congestion α
1: Parameters:
2: Target: an threshold for the queuing delay
3: packet_count: number of packets received by the receiver

4: packet_num: number of packets exceeding the threshold
5: interval: calculate α every few packets
6:

7: Initialization for global variable:
8: packet_count ← 0
9: packet_num← 0
10:

11: Receive a packet at the receiver:
12: if queuing_delay ≥ Target then
13: packet_num← packet_num+ 1
14: end if
15:

16: if packet_count mod interval == 0 then
17: F ← packet_num/interval
18: α← (1− g) ∗ α + F ∗ g
19: Reset global information:
20: packet_num← 0
21: packet_count ← 0
22: end if
23:

24: send the ACK packet

10G network, respectively. Here the interval, 20 and 65,
means the threshold for the number of packets received per
round.

3) CALCULATING THE RECEIVE WINDOW
PTCP controls the receive window and informs the sender
howmany packets should be sent, which can be inferred from
the ACK. Our strategy is to allocate the large window size for
small flows or tight-deadline flows. The window size is only
adjusted at the receiver by the priority. Inspired by DCTCP,
we set the receive window called rwnd as follows:

rwnd =

{
(1− αPsum/2) ∗ rwnd α > 0
rwnd + 1 α = 0

(9)

In the case of α = 0, the window size adds a segment similar
to TCP. And when the queuing delay of all packet feedback
exceed the threshold, α = 1, the window size is reduced to
half. Similarly, if 0 < α < 1, the window size is modulated
by Psum.

C. ACK REGULATION
The receiver uses the ACK control to adjust their ACK
interval. Our goal is to avoid the switch buffer overflow
through the ACK adjustment when the network encoun-
ters congestion. To some extent, the queuing delay reflects
the data of the switch buffer backlog, which represents the
mismatching between the congestion window size and the
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pipeline capacity. So we use the queuing delay as the indi-
cator of ACK delay. However, it is obviously unreasonable
to delay the entire queuing delay at any time, because it may
cause the buffer underflow and under-utilization of the link
capacity [25]. Thus, we use α and Psum to determine the
degree of ACK delay. The receiver ACK adjustment can be
defined by ACKdelay as follows:

ACKdelay = αPsum ∗ Queuedelay (10)

where Queuedelay represents the queuing delay, which is
given by Algorithm 1. In the case of α = 0, there is no
congestion in the network, the value of ACK delay is 0.
If α = 1, the network is in serious congestion and then we
extend entire queuing delay by Eq. (5). And for α between
0 and 1, the value of ACK delay is modulated by α and
Psum, which can ensure that the switch queue length is always
greater than 0.

V. SIMULATION RESULTS
We use NS-2(v2.35) [26] to evaluate the proposed PTCP by
comparing its performance with DCTCP, IATCP, ICTCP, and
M21TCP. The simulations are performed in both 1G and 10G
network. We use the traffic generator described in Figure 5,
to run the experiments with realistic traffic workloads.

FIGURE 5. Traffic distributions used for evaluation.

All parameters of the simulations are listed in Table 1. For
PTCP, the threshold Target is set to 120µs in 1G network, and
100µs in 10G network, respectively. For DCTCP, we set the
marking threshold equal to the base BDP. For ICTCP, IATCP

TABLE 1. Simulation settings.

FIGURE 6. The FCT of different schemes in many-to-one scenario without
background traffic.

FIGURE 7. The ACK delay of PTCP, IATCP in many-to-one scenario without
background traffic.

and M21TCP, the best parameters are set according to the
simulation. The value of RTOmin is all set to 200ms.
We evaluate the performance of the PTCP in the following

three aspects:

• The Many-to-one scenario without background traffic
and with background traffic, respectively.

• The background traffic scenario without incast.
• The all-to-all scenario.

A. MANY-TO-ONE SCENARIO WITHOUT
BACKGROUND TRAFFIC
We evaluate the performance of PTCP compared to IATCP,
ICTCP, DCTCP and M21TCP under fixed volume per server
workload. The network topology is similar to Figure 2. One
receiver and multiple senders are connected to the same ToR
switch. We measure the FCT by setting the fixed volume
to 64KB per round. The experiment results are the average
of 20 rounds.

The FCT of DCTCP, IATCP, ICTCP, M21TCP, and PTCP
are shown in Figure 6. When the number of connection is
small, all algorithms perform well. However, the FCT of
DCTCP, ICTCP, andM21TCP increase rapidly as the number
of connection increases. Especially DCTCP shows the good
performance in mixing workloads [5] and achieves the low
average FCT. However, the performance of DCTCP is not
very satisfactory in the many-to-one scenario because of TCP
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FIGURE 8. [Websearch Load]: The FCT of different schemes in many-to-one scenario with background traffic. (a) Small flow:Average.
(b) Small flow:99th Percentile. (c) All flows: Average.

FIGURE 9. [Datamining Load]: The FCT of different schemes in many-to-one scenario with background traffic. (a) Small flow: average.
(b) Small flow: 99th percentile. (c) All flows: average.

incast when the number of connection is more than 36. TCP
incast causes delays of hundreds of milliseconds, which will
dramatically increase the flow completion time. IATCP and
PTCP show better performance in this scenario compared to
several other schemes. They both leverage ACK control to
avoid incast. However, the performance of PTCP is slightly
better than IATCP because IATCP does not reasonably esti-
mate the capacity of the network link, which causes excessive
ACK delay. The unreasonable ACK delay will result in low
link utilization [16].

To verify this, we conduct a small-scale simulation con-
sisting of 96 senders. Each sender sends 64KB data to the
same receiver. Figure 7 shows the ACK delay over time. The
result shows that the delay time of IATCP is almost twice that
of PTCP. Our algorithm uses conservative ACK delay, which
can avoid the increasing of FCT.

B. MANY-TO-ONE SECNARIO WITH
BACKGROUND TRAFFIC
We set one receiver and 96 senders connected to the same
ToR switch and run 1000 flows in each setting. We evaluate
the performance of the 99th percentile FCT for small flows,
average FCT for small flows and average FCT for all flows,
respectively. We apply two realistic workloads, a websearch
workload and a datamining workload, based on measure-
ments from production data centers.

Figure 8 and Figure 9 show the average FCT for small
flows, 99th percentile FCT for small flows, and average
FCT for all flows, respectively; for the websearch and

FIGURE 10. The scenario for no incast with background traffic.

dataminingworkloads, respectively. Three characteristics can
be observed from Figure 8 and 9. First, PTCP achieves
the best performace for small flows. Compared to DCTCP,
ICTCP,M21TCP, and IATCP, PTCP reduces the average FCT
of small flows by ∼ (0.5-46%, 30-76%, 1-48%, 25-63%)
for websearch workload and ∼ (12-15%, 78-83%, 14-17%,
54-81%) for datamining workload. Second, the performance
improvement of PTCP on the 99th percentile FCT of small
flows is also obvious: ∼ ( 0.2-10%, 23-61%, 10-16%,
40-60%) for websearch workload and ∼ (30-34%, 62-65%,
29-39%, 38-65%) for datamining workload. Third, from
Figure 8(c), we observe that the performance of PTCP is
slightly better than DCTCP and M21TCP, while it is worse
than ICTCP and IATCP when the network load is less than
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FIGURE 11. [Websearch Load]: The FCT of different schemes in the background traffic scenario without incast. (a) Small flow: average.
(b) Small flow: 50th percentile. (c) Small flow: 99th percentile.

FIGURE 12. [Datamining load]: The FCT of different schemes in the background traffic scenario without incast. (a) Small flow: average.
(b) Small flow: 50th percentile. (c) Small flow: 99th percentile.

0.7. In Figure 9(c), the overall FCT of PTCP is only slightly
worse than ICTCP in datamining workload. This is because
PTCP prioritizes small flows over long flows. Since small
flows in data centers are more sensitive to delay, it is mean-
ingful to appropriately reduce the priority of large flows.

C. THE BACKGROUND TRAFFIC SCENARIO
WITHOUT INCAST
To verify the influence of background traffic on the Par-
tition/Aggregate pattern, we conduct a test experiment in
the background traffic scenario without incast. The network
topology is similar to Figure 10. The sender2 and sender3
send small data to the receiver2 and receiver1, respectively.
And sender1 sends large data to receiver1. The traffic genera-
tor is described in Figure 5 and comparison results are shown
in Figure 11 and Figure 12.

The experiment results show that PTCP performs better
than DCTCP, and greatly outperforms ICTCP, IATCP and
M21TCP for small flows. PTCP improves the average FCT
of small flows by ∼ (2-8%, 8-19%, 6-16%) for websearch
workload, and ∼ (21-29%, 32-44%, 21-30%) for datamining
workload when compared to ICTCP, IATCP, and M21TCP.
In addition, the performance of PTCP over ICTCP, IATCP,
and M21TCP in the 50th percentile FCT, and 99th per-
centile FCT of small flows is also obvious. For example,
from Figure 11(c) and Figure 12(c), we can see that PTCP
improves the 99th percentile FCT by ∼ (14-21%, 16-43%,
17-33%) for websearch workload and ∼ (20-29%, 37-40%,
21-27%) for datamining workload. The reason is that ICTCP,

FIGURE 13. DCN architecture: leaf-spine topology.

IATCP, and M21TCP cannot react to the background traffic
when it pours into the link. The background traffic continues
to occupy the link bandwidth causing the increasing of the
completion time for small flows. However, for websearch
and datamining workloads, the performance improvement is
less significant when compared to DCTCP. For example, for
the websearch workload, PTCP improves the average FCT
for small flows by 3-4%, the 50th percentile FCT by 2-4%,
and the 99th percentile FCT by only 1%. Because PTCP and
DCTCP both estimate the network congestion to control the
sending rate of workers. DCTCP uses ECN to maintain a
low queue occupancy for improving the FCT. Therefore, they
show similar performance in small flows.

D. ALL-TO-ALL SCENARIO
To estimate the performance of PTCP in today’s data centers,
we setup a leaf-spine topology with 9 leaves, 4 spines [27].
Each leaf is connected to 16 hosts using 10Gbps links and

VOLUME 7, 2019 38887



J. Zhuang et al.: PTCP: A Priority-Driven Congestion Control Algorithm to Tame TCP Incast in Data Centers

FIGURE 14. [Websearch Load]: The FCT of different schemes in all-to-all scenario. (a) Small flow: average. (b) Small flow:99th
percentile. (c) All flows: average.

FIGURE 15. [Datamining Load]: The FCT of different schemes in all-to-all scenario. (a) Small flow: average. (b) Small flow: 99th
percentile. (c) All flows: average.

4 spine switches using 40Gbps links. The default parameters
are listed in Table 1 and the network topology is shown
in Figure 13. The flow size comes from websearch and
datamining distribution in Figure 5. We run 10,000 flows for
each simulation. Figure 14 and Figure 15 show the average
FCT for small flows, 99th percentile FCT for small flows, and
average FCT for all flows, respectively; for thewebsearch and
datamining workloads, respectively. The experiment results
show that PTCP still keeps its superiority both for websearch
workload and datamining workload when compared to previ-
ous schemes.

VI. CONCLUSION
This paper has proposed a priority-driven congestion control
algorithm called PTCP to improve TCP performance both
for TCP incast scenario and mixing workloads in data center
networks. Differing from the previous approaches, PTCP
leverages priority to achieve thewindow adjustment andACK
controls to prevent packet drops which lead to timeouts. The
previous schemes focus on addressing problems in a specific
scenario such as incast scenario ormixingworkloads, but they
perform inefficiently in other scenarios. Simulation results
show that PTCP achieves lower flow completion time and
can support more connections in the incast scenario, when
it is compared with previous schemes. What’s more, our
algorithm shows better performance in flow completion time
in mixing workloads. In addition, PTCP requires little system
modification, making it readily deployable in production data
centers.
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