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ABSTRACT Semi-supervised self-training method can train an effective classifier by exploiting labeled
and unlabeled samples. Recently, a self-training method based on density peaks of data (STDP) is proposed.
However, it still suffers from some shortcomings to be addressed. For example, STDP is affected by cut-off
distance dc. As a result, it is tricky for STDP to select an optimal parameter dc on each data set. Furthermore,
STDP has a poor performance on data sets with some variations in density because of cut-off distance dc.
In order to solve these problems, we present a new self-training method which connects unlabeled and
labeled samples as vertexes of an optimum path forest to discover the underlying structure of feature space.
Furthermore, the underlying structure of the feature space is used to guide the self-training method to train
a classifier. Compared with STDP, our algorithm is free of parameters and can work better on data sets with
some variations in density. Moreover, we are surprised to find that our algorithm also has some advantages
in dealing with overlapping data sets. The experimental results on real data sets clearly demonstrate that our
algorithm has better performance than some previous works in improving the performance of base classifiers
of k-nearest neighbor, support vector machine and cart.

INDEX TERMS Self-trainingmethod, semi-supervised classification, optimum-path forest, semi-supervised
learning.

I. INTRODUCTION
A common task of classification requires not only a powerful
classifier, but also sufficient labeled samples. In applications,
experts are usually required to manually mark unlabeled
samples in order to obtain enough labeled samples. But it’s
not realistic to get a lot of labeled samples in this way. As a
result, it is often the case that a small number of labeled
samples and a large number of unlabeled samples are avail-
able. Semi-supervised classification (SSC) [1], a learning
paradigm aiming to find a solution to promote performance
of classification by exploiting unlabeled data, can solve this
problem.

There are many methods for SSC. Main methods include
graph-based method [2], [3], generating model [4], transduc-
tive support vector machine [5], co-training method [6], [7]
and self-training method [8], [9]. One of the relatively suc-
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cessful methodologies is self-training method. Compared
with other methods of SSC, self-training method which
doesn’t need special assumptions and only teaches itself
with self-predicted samples has been successfully applied
to cross-lingual sentiment classification [10], text classifica-
tion [11], image detection and segmentation [12], informa-
tion extraction [13], automatic sentence segmentation [14],
etc.

The self-training method can generally be regarded as
a wrapped algorithm. Various classifiers, such as k-nearest
neighbor (KNN) [15], support vector machine (SVM) [16],
naive bayes (NB) [17], cart (Cart) [18], etc., are well trained
by the self-training method. In addition, self-training method
can also be seen as a self-taught algorithm. It iteratively pre-
dicts unlabeled samples, and then selects unlabeled samples
with high confidence to expand the training set. However, the
main problem of the self-training method is that it may mis-
label unlabeled samples. If incorrectly marked samples are
added to the training set, the predictive ability of the trained
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classifier will be deteriorated. Therefore, many scholars have
proposed using ensemble learning [9], [19], [20], [21] or the
technology of noise filters [8], [15], [22], [23] to improve the
predictive ability of classifiers.

In fact, there is an important reason for mislabeling that
self-training method is limited by distribution and the num-
ber of labeled samples [18]. When labeled samples doesn’t
represent the structure of feature space, a result of mislabeling
may occur by using the self-trainingmethod based on strategy
of confidence. To solve this problem, lots of improved algo-
rithms based on self-training method have been proposed.
Help-training, a new framework for self-trainingmethod, was
proposed by Adankon and Cherie [16], where a supervised
classifier of NB is used to help train a supervised classifier of
SVM. Although NB can help train a good SVM, NB just uses
labeled samples as the training set without considering infor-
mation of a large number of unlabeled samples. Therefore,
Gan et al. [24] proposed that using semi-supervised fuzzy C
means (SFCM) [25] to help self-training method (STSFCM),
where the structure of feature space revealed by SFCM is used
to guide self-trainingmethod. But STSFCMcan’t train a good
supervised classifier when the distribution of data is non-
spherical. To solve this problem, Wu et al. [18] propose using
density peak cluster (DPC) [26] to help self-training method
(STDP), where the structure of feature space discovered by
DPC rather than SFCM is used to guide self-training method.
Although STDP can train an effective classifier on data sets
with distribution of arbitrary shapes (non spherical or spheri-
cal), it is also limited by some shortcomings of DPC, such as
the parameter dc. Therefore, it’s tricky for STDP to select an
optimal parameter dc on each data set. Moreover, STDP have
poor performance on data sets with some variations in density
because it is difficult for DPC to discover the real structure of
feature space on multi-scale data [27], [28].

Recently, a robust model of graph, optimum path forest
(OPF) [29]–[31] is proposed and further studied, where all
samples are interconnected as vertexes of an optimum path
forest. Compared with DPC, OPF is free of parameters and
can also discover the real structure of feature space on data
sets with distribution of arbitrary shapes. Main advantages
of OPF are that (a) Parameters free; (b) It can work well
without considering shapes and distribution of data sets; (c) It
can deal data sets with some overlapping between classes
as long as the roots of forests can protect their respective
classes well; (d) It canwork in a natural way undermulti-class
circumstances.

In order to solve the problem of STDP, inspired by OPF,
we propose a new self-training method based on an optimum
path forest (STOPF) in this paper. Overall, STOPF consists
of three main steps. The first step is that we construct an OPF
over the entire data set to reveal the structure and distribution
of feature space. At the second step, the structure and distribu-
tion of feature space is used to help self-training methodmark
unlabeled samples. Then these samples are used to expand
the labeled data. At the third step, a given supervised classi-
fier can be trained with extended labeled data. The results

of contrasted experiments on real data sets clearly certify
that STOPF works better than some previous algorithms and
is effective in enhancing the ability of some base classi-
fiers including KNN, SVM and Cart. Compared to previous
algorithms, chief strengths of STOPF are that (a) STOPF
does not require any user-defined parameters; (b) STOPF
can train an effective supervised classifier without consider-
ing assumptions about distribution and shapes of data sets;
(c) STOPF has a better result than previous works on data sets
with some variations in density; (f) STOPF doesn’t require
the measurement of confidence; (e) Furthermore, we are
surprised to find that STOPF also has a good performance
on overlapping data sets as long as initial labeled samples
can protect their respective classes. Chief contributions of this
paper are as following:

(a) We propose a new self-training method named STOPF.
It can use OPF to discover the spatial structure of feature
space, and then use this information of spatial structure to
improve the performance of the self-training method.

(b) Theoretical analysis and detailed design for STOPF.
(c) Concrete empirical conclusions conduct on real data

sets.
To the author’s best knowledge, such efforts have never

been seen in any prior work.
The rest of the paper is organized as follows. In Section 2,

we describe how OPF reveals the structure of feature space.
In Section 3, we describe our algorithmic framework; In
Section 4, we conduct contrasted experiments to prove the
effectiveness of our algorithm on real data sets. In Section 5,
we conclude this paper and make some plans for the
future.

II. REVEALING STRUCTURE OF FEATURE SPACE BY THE
OPTIMUM PATH FOREST
A. BACKGROUND
The X = {xi}ni=1 is the training set of n d-dimensional
samples. In SSC, few samples are marked, and a large number
of samples are unmarked. Let L = (x1, x2, . . . , xl) be labeled
samples inX , while letU = (xl+1, xl+2, . . . , xn) be unlabeled
samples in X (X = L + U ). At the same time, The Y is the
class label set and m is the number of class labels in Y . Let
l : X → Y be the function mapping each instance xi to its
class label l(xi).

B. OPTIMUM PATH FOREST
OPF is a graph structure of forests consisting of several
trees, and has the ability to reveal the underlying structure
of feature space. Moreover, it has been developed to the
design of semi-supervised, unsupervised and supervised pat-
tern classifiers [29], [31], [32]. First of all, we define an
adjacency relation G = X × X regarded as a complete
and weighted graph (X , G, d), where the d usually calcu-
lated by Euclidean distance is the weight between any two
samples. Next, we turn the G into an OPF by minimizing
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FIGURE 1. Illustration of discovering feature space: (a) distribution of data; (b) real structure of feature space
revealed by an OPF.

the fmax .

fmax(〈s〉) =

{
0 if s ∈ L,
+∞ otherwise

(1)

fmax(πs · 〈s, t〉) = max{fmax(πs), d(s, t)}.

C(t) = min
∀πt∈(X ,G)

{fmax(πt )} (2)

The whole process of path’s transition is similar to
Dijskra’s algorithm, where the path relationship is defined
as πt = 〈s1, s2, . . . , sk−1, t〉 with terminus t = sk and
(si, si+1) ∈ G for 1 ≤ i ≤ k − 1. A path is said trivial if
πt = 〈t〉. Note that a path πt is considered to optimum if
f (πt ) ≤ f (τt ) for any other path τt with the same terminus t .
In addition, we write πs ·〈s, t〉 to indicate the concatenation of
a path πs and arc (s, t). Usually, roots of OPF can be revealed
by exploiting the neighbor relationship between Minimum
Spanning Tree (MST) [33]. In this paper, we set all labeled
samples as roots of OPF because of the environment of
SSC [29]. Algorithm 1 shows the pseudo code of the OPF.
The OPF’s algorithm assigns a map P of optimum path from
every sample xi ∈ L to some samples in U , forming an
optimum path forest. The map P is a matrix with n rows
and 1 column. If sample xi is the predecessor node of xj,
P(xj)← xi.
The time complexity of OPF’s algorithm is O(n2), where n

is the number of samples in X . Fig. 1 show an illustration of
discovering the structure and distribution of feature space.

Fig. 1 (a) shows non spherical data with some varia-
tions in densities, where 4 labeled samples come from two
classes. Then, an OPF is constructed on entire data, as shown
in Fig. 1 (b). Note that each sample xi points to its corre-
sponding successor nodes xj. For example, the sequenced
relationships of samples x1, x2, x3, x4 are interconnected.
By constructing an OPF on X , the real structure of feature
space can be discovered, regardless of spherical distribution
or non-spherical distribution of data. Even the structure and
distribution of data sets with some variations in density can
also be revealed, as shown in Fig. 1 (b). Although STDP can
also use DPC to reveal the real structure of feature space with
distribution of arbitrary shapes, DPC is limited by parameter

Algorithm 1 OPF
Input: L, U
Output: a map P of optimum path forest
Auxiliary: a priority queue Q
Method:
1. For each sample xi ∈ X
2. set C(xi)←+∞.
3. If xi ∈ L, then
4. C(xi)← 0, P(xi)← nil and Insert t in Q.
5.While Q is not empty, do
6. Remove from Q a sample s such that C(s) is mini-
mum.
7. For each t ∈ X such that C(t) > C(s), do
8. Compute cst ← max{C(s), d(s, t)}.
9. If cst < C(t), then
10. If C(t) 6= +∞, then remove t from Q.
11. P(t)← s, C(t)← cst . Insert t in Q.
12. Return P.

dc. Compared to DPC, OPF is free of parameters. In addition,
it’s difficult for DPC to discover real spatial structure on data
sets with some variations in density because DPC calculates
density by cut-off distance dc [27], [28], [34]. However, OPF
doesn’t have this limitation. Therefore, our algorithm com-
bined with OPF has obvious theoretical advantages. In the
next section, we will explain these advantages with toy exam-
ples and introduce how STOPF uses this the structure and
distribution of feature space revealed by the OPF to train a
satisfactory classifier.

III. PROPOSED ALGORITHM
In this section, we propose a framework for our algo-
rithm. Like STDP, our proposed algorithms uses OPF to
discover real distribution and structure of feature space to
guide self-training method. However, the differences are that
(a) The process of revealing the structure of feature space is
free of parameters in our algorithm; (b) Our algorithm can
use OPF to discover more real structure and distribution of
feature space to help train an effective supervised classifier.
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FIGURE 2. A flowchart of our algorithm.

In practice, we have also found that the given classifier
trained by STOPF is more accurate than that trained by STDP.
Fig. 2 shows the flowchart of our algorithm, which consists
of three parts. At the first step, we build an OPF on the X to
discover this structure of feature space. At the second step,
we use the structure of feature space to guide self-training
method to mark unlabeled samples, where successor nodes of
each samples xi ∈ L in U are chose to be iteratively marked
by a classifier Cl. Then, we extend L with the new labeled
samples and updateU . At the final step, we retrain a classifier
Cl with the extended L. After that, a good classifier Cl can
be trained. Note that (a) Any classifier, such as KNN, SVM
and Cart, can be trained well; (b) Although the measurement
of confidence is not clearly given, successor nodes of L
are actually samples with high confidence because they are
relatively close to L.

The pseudo-code of STOPF is described as follows:
Fig. 3 shows two toy examples of label propagation

of STOPF and STDP, where their associated base clas-
sifier is KNN with k = 3. Note that label propaga-
tion refers to that using self-training method iteratively
mark unlabeled samples. In SSC, only if unlabeled sam-
ples are marked correctly, a given classifier will be trained
satisfactorily.

Fig. 3 (a) shows an artificial data set with some variations
in density, and the corresponding result of label propagation
in Fig 3 (b)-(c) shows that STOPF is better than STDP. This
result isn’t so surprising because STOPF can use OPF to find
a better spatial structure on data sets with some variations in
density. According to previous knowledge, OPF can handle
with data with some overlapping between classes as long
as roots of forests can protect their respective classes well.
We are also surprised to find STOPF can also work well

Algorithm 2 Self-Training Method Based on an Optimum
Path Forest (STOPF)
Input: L, U
Output: a classifier Cl
Method:
1. P=OPF (L, U ).
2. Train a classifier Cl using L.
3. Repeat until all the successor nodes of L are selected
from U.
4. Select a dataset T from U , where each sample xi in
T is the successor node of L.
5. Label the samples of T using the trained classifier
Cl.
6. Update the current labeled dataset L = L ∪ T .
7. Update the current unlabeled dataset U = U − T .
8. Retrain classifier Cl using L.
9. A classifier Cl is trained using L.
10. Output Cl.

on overlapping data sets as long as initial labeled samples
can protect their respective classes because STOPF inherits
some characteristics of OPF. Fig. 3 (d) shows an artificial
data set with some overlapping, where labeled samples of
two classes are in boundary area and protect their respective
classes well. As Wu et al. [19] mentioned, it’s difficult for
STDP to deal with overlapping data sets. So, In Fig. 3 (e)-(f),
label propagation of STOPF is better than STDP on the toy
data set with some overlapping.

In the next section, we will use specific experiments
to prove that our proposed algorithm performs better than
previous works.
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FIGURE 3. Two toy examples of label propagation.

IV. EXPERIMENTAL RESULTS AND DISCUSS
A. DATA SETS
All experiments are run on a PC with a 64-bit operating
system and 8Gmemory. The code for all algorithms is written
with MATLAB2015.

In order to illustrate the practical superiority of our
algorithm, we select 12 benchmark data sets from
the University of California Irvine (UCI) repositories
(http://archive.ics.uci.edu/ml/datasets.html), as shown in
Table 1.

B. COMPARISONS BETWEEN OUR ALGORITHM AND
SOME PREVIOUS WORKS
In order to prove the effectiveness of our algorithm, we run
an experiment to compare our algorithm with previous
works. Some representative algorithms we select are shown
in Table 2. Moreover, specific descriptions can be described
as follows:

(1) The tri-training (TT) proposed by Zhou and Li [35]
is an extension of self-training method, which combines
three classifiers to accomplish the self-taught process of

self-training method. Three classifiers play a synergistic
role.

(2) The self-training with SFCM (STSFCM) is proposed
by Gan et al. [24], where SFCM, a clustering algorithm,
is used to guide self-training method to train an effective
classifier.

(3) The self-training with DPC (STDP) is proposed by
Wu et al. [18]. A desirable classifier can be trained by the
STDP,where the structure of feature space revealed byDPC is
integrated into the self-training iterative process to help train
an effective classifier.

(4) Base classifiers of contrasted algorithms are 3NN,
SVM and Cart. In other words, contrasted algorithms are
used to train supervised classifiers of 3NN, SVM and Cart.
In addition, we also use supervised algorithms (3NN, SVM
and Cart) as contrasted algorithms in our experiments, where
supervised algorithms use only original labeled samples as
the training set.

At the experimental stage, the 10-fold cross-validation
strategy is adopted. Firstly, each data set is randomly divided
into 10 folds. Secondly, The training set contains 9 folds
while the testing set contains one fold. Thirdly, we use
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TABLE 1. Description of experimental data sets.

TABLE 2. Contrasted algorithms and parameters.

TABLE 3. Experimental results (MAR, Wilcoxon test and STD) of contrasted algorithms with a base classifier 3NN.

random stratified selection to divide training set into labeled
part L and unlabeled part U , which means that the selected
number of samples for each class is proportional to the num-
ber of them in the training set. Especially, in the training
set, the percentage of labeled samples is 10%, and the rest
is unlabeled samples. Fourthly, the experiment is repeated
10 times on each data set. The mean accuracy rate (MAR)
and standard deviation (STD) on test set are used to evaluate
the performance of contrasted algorithms on each data set.
Tables 3-5 shows some experimental results to demonstrate
that our proposed algorithm, compared with representative
algorithms, can better training some classifiers including
3NN, SVM and Cart.

AR

=
The number of samples correctly classified in test set

The number of samples in test set
×100% (3)

MAR

=
1
n

n∑
i=1

ARi (n = 10) (4)

STD

=

√√√√1
n

n∑
i

(ARi −MAR)2 (n = 10) (5)

In order to further analyze the results in the Tables 3-5,
we also carry out theWilcoxon test with the significance level
α = 0.05 to conduct the statistical analysis. Symbol ‘‘+’’
denotes that STOPF outperforms the given algorithm, while
‘‘−’’ denotes that the given algorithm is significantly better
than STOPF, and finally ‘‘=’’ denotes that there is no statis-
tically significant difference between the STOPF and given
algorithm. Those results are also concluded as ‘‘win/lose/tie’’
at the bottom of Tables 3-5.
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TABLE 4. Experimental results (MAR, Wilcoxon test and STD) of contrasted algorithms with a base classifier SVM.

TABLE 5. Experimental results (MAR, Wilcoxon test and STD) of contrasted algorithms with a base classifier Cart.

Results shown in Tables 3-5 demonstrate that STOPF,
in general, can train a better classifier of 3NN, SVM and
Cart, comparedwith contrasted algorithms. By taking a closer
look, our proposed algorithm achieves the highest MAR for
8 of 12 data sets in Table 3 and also achieves the highestMAR
for 9 of 12 data sets in Table 4. Moreover, the average MAR
of STOPF on all data sets is also the highest in Tables 3-4.
Although the average MAR of STOPF on all data sets is not
the highest in Table 5, STOPF achieves the highest MAR for
7 of 12 data sets in Table 5. All these prove that STOPF has
some superiority.

In addition, the Wilcoxon test in Tables 3-5 shows that
STOPF statistical outperforms other algorithms on some data
sets. It’s another clear evidence that the STOPF works better
than others, when the trained classifier is 3NN or SVM
or Cart. Furthermore, we have found that TT, STDP and
STSFCM, in some cases, have the worse MAR than the
supervised classifier 3NN or SVM or Cart. We think that
some unlabeled samples are marked incorrectly during the
iterative self-labeling process. As a result, a trained classifier
(3NN or SVM or Cart) will be deteriorated. On the contrary,
this situation less occurs in our algorithm. We believe this
reason is that our proposed algorithm can use the structure
of feature space revealed by OPF to improve self-training
method.

C. DISCUSSING THE EFFECT OF RATIO OF LABELED
SAMPLES
In this section, we will further discuss the percentage of
labeled samples in our experiments, and compare some
representative algorithms listed in Table 2 on 6 data sets,
in which base classifiers are 3NN, SVM and Cart. In experi-
ments, we increase the percentage of labeled samples from
10% to 90%. Similarly, we use a 10-fold cross-validation
to evaluate our results. Figs. 4-6 shows the mean accuracy
rate (MAR) of different algorithms with respect to different
percentages of labeled samples on 6 data sets (WEP, LON,
QUB, IRIS, VEH and TTE).

As shown in Figs. 4-6, MAR of 5 algorithms increases
with the increase of percentage of labeled data. Furthermore,
we can also conclude that STOPF can generally train better
classifiers including 3NN, SVM and Cart than other algo-
rithms. In detail, we have found from Figs. 4-6 that when the
percentage of labeled samples is relatively low, our algorithm
works better than others in most cases. In addition, when the
percentage of labeled samples is relatively high, our algo-
rithm achieves similar results with contrasted algorithms. The
reason may be that when the proportion of labeled samples is
relatively low, the real structure of feature space discovered
by OPF can help our algorithm work better than contrasted
algorithms. As the proportion of labeled samples increased,
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FIGURE 4. Contrasted algorithms with a base classifier 3NN with respect to different percentages of labeled samples on 6 data sets.

labeled samples can gradually represent the distribution of
the entire data set. So, advantages of the structure revealed

by OPF in our algorithm gradually narrow with the increase
of labeled samples.
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FIGURE 5. Contrasted algorithms with a base classifier SVM with respect to different percentages of labeled samples on 6 data sets.

D. COMPUTATIONAL EFFCIENCY
We also illustrate the computational efficiency of STOPF by
comparing running time of the central processing unit (CPU)
among all self-labeled algorithms on 6 data sets. Note that

each algorithm is only executed once, where initial labeled
ratio is 10%. Likewise, settings of parameters we use in this
experiment are set as Table 2. The corresponding results are
depicted in Fig. 7. Not surprisingly, STOPF consumes the
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FIGURE 6. Contrasted algorithms with a base classifier Cart with respect to different percentages of labeled samples on 6 data sets.

most running time. The reason for this is that constructing
OPF on the entire data set X is a relatively time-consuming
and complex process. In detail, we have found that
when building OPF, we need to consider all samples at

each iteration. In fact, some relatively distant samples should
not be considered, which increases the consumption of
time. Therefore, we plan to overcome this shortcoming in
the future. But STOPF has the advantage of improving
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FIGURE 7. Computational efficiency of contrasted algorithms on 6 data sets.

classification accuracy of the trained classifier. Weighing the
pros and cons of STOPF, the computational efficiency of
STOPF is acceptable.

V. CONCLUSIONS
In this paper, we introduce a new self-training method based
an optimum path forest containing three main parts. First
of all, we propose to construct an optimum path forest to
discover the potential spatial structure of feature space. Sec-
ondly, we use the structure to guide self-training method to
iteratively mark unlabeled samples. Then, these samples are
used to expand the labeled data. Thirdly, a desirable classifier
can be trained with extended labeled data. In order to check
the performance of our algorithm, we run some experiments,
where 3 self-taught algorithms, 12 UCI data sets and 3 base
classifiers including 3NN, SVM and Cart are adopted. The
experimental results clearly demonstrate that our algorithm is
more effective than previous works in improving the classifi-
cation accuracy of base classifiers of 3NN, SVM and Cart.
In our experiments, the effect of the proportion of labeled
samples is also discussed. We have found that when the
percentage of labeled samples is relatively low, our algorithm
usually works better than others. From experiments of com-
putational efficiency, we have also found that our algorithm
is relatively time-consuming. The reason is that all samples

have to be considered at each iteration, when constructing
an OPF. In fact, some relatively distant samples should not
be considered, which wastes time. In the future, we intend
to solve this problem by adopting the technique of natural
neighbors [36], [37].

In addition, we also find some characteristics of our pro-
posed algorithm. First of all, our algorithm can train a good
classifier without considering shapes and distribution of data
sets. Especially, our algorithm can also train a more effi-
cient classifier on data sets with some variations in density
than previous algorithms. Secondly, in addition to param-
eters of the base classifier, our algorithm doesn’t consider
the selection of any parameters. Thirdly, our algorithm does
not require the measurement of confidence. Fourthly, our
proposed algorithm has a better performance than previous
works on overlapping data sets to some extent, as long as
initial labeled samples can protect their respective classes.
But it is difficult to find such labeled samples by random
selection. Therefore, we intend to overcome this shortcoming
by using some technologies of border detection [38] and
active learning [39] in future works.
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