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ABSTRACT Early detection of lung cancer is crucial in reducing mortality. Magnetic resonance imag-
ing (MRI) may be a viable imaging technique for lung cancer detection. Numerous lung nodule detection
methods have been studied for computed tomography (CT) images. However, to the best of our knowledge,
no detection methods have been carried out for the MR images. In this paper, a lung nodule detection method
based on deep learning is proposed for thoracicMR images.With parameter optimizing, spatial three-channel
input construction, and transfer learning, a faster R-convolution neural network (CNN) is designed to locate
the lung nodule region. Then, a false positive (FP) reduction scheme based on anatomical characteristics is
designed to reduce FPs and preserve the true nodule. The proposed method is tested on 142 T2-weightedMR
scans from the First Affiliated Hospital of Guangzhou Medical University. The sensitivity of the proposed
method is 85.2% with 3.47 FPs per scan. The experimental results demonstrate that the designed faster
R-CNN network and the FP reduction scheme are effective in the lung nodule detection and the FP reduction
for MR images.

INDEX TERMS Lung nodule detection, T2-weighted MR images, faster R-CNN, FP reduction.

I. INTRODUCTION
Lung cancer has the highest rate of mortality among all type
of cancers [1]. The 5-year survival rate for all stages of
lung cancer is only 16%. When lung cancer is detected at
a localized stage, the 5-year survival rate will increase to
52% [2]. At present, early detection of lung cancer is the
cornerstone to reduce mortality [3]. At present, computed
tomography (CT) is a widely used technique for lung nodule
detection. Recently, with the development of magnetic reso-
nance imaging (MRI) technique, MRI has also been used in
lung disease diagnosis [4]. Though CT is superior to MRI in
small nodule detection, MRI has its own advantages. Com-
pared with CT, MRI is a non-radiation examination. There
were no significant differences in malignant nodule detection
between these two techniques [5]. MRI might be a valuable
tool in malignant nodule detection and lung cancer screen-
ing [6]. Moreover, MRI can provide not only morphologi-
cal, but also functional information, such as physiological,
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pathophysiological, and molecular information. Thus MRI
plays an important role in lung disease diagnosis.

MRI has multiple modalities and each MRI scan has many
slices, making the dataset of each case very huge. More-
over, the diagnosis sensitivity is affected by radiologist’s
experience and visual fatigue. Thus computer-aided detec-
tion (CAD) for MR images is demanding [7]. Pulmonary
nodule detection is the basis for nodule measurement and
classification. The study on automatic pulmonary nodule
detection is vital.

In general, nodule detection methods consist of four
steps: preprocessing, lung parenchyma segmentation, nod-
ule detection and false positive (FP) reduction [8]. Sousa
et al. [9] first extracted the thorax and lung parenchyma
based on region growing. Then a lung reconstruction method
using rolling-ball algorithm was designed in order to refine
the parenchyma contour. After that, dense structures inside
the lung parenchyma were selected. Finally a support vec-
tor machine (SVM) classifier was trained to classify the
dense structure as nodule or FP. This method was tested on
33 CT exams and obtained 0.42 FPs/scan with 0.15 false
negative (FN) rate. Cascio et al. [10] developed a detec-
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tion method for internal and juxta pleural nodules. First
nodule candidate was detected and segmented based on
3D mass–spring model. Then seven features described by
shape, size and intensity were extracted. Finally an FP
reduction algorithm was designed. This method was tested
on a set of 84 scans. The detection sensitivity is 88%
at 2.5 FPs/scan. Choi and Choi [11] proposed a 3D shape-
based feature descriptor to detect pulmonary nodules in CT
scans. First lung volume was segmented combining thresh-
olding with 3D connected component labeling. Then nodule
candidates were detected through multi-scale dot enhance-
ment filtering. Finally 3D shape-based feature descriptors
were extracted and an SVM classifier was trained. This
method achieved 97.5% sensitivity with 6.76 FPs/scan.
Santos et al. [12] developed a detection method for small
lung nodule. Region growing technique was first used to
segment the pulmonary parenchyma. Then the Gaussian
mixture models and the Hessian matrix were combined to
get the nodule candidate. Finally Tsallis’s and Shannon’s
entropy measurements were extracted, and SVM was trained
to classify each candidate as nodule or non-nodule. This
method was tested on 28 CT scans. The detection sensitivity
was 90.6% and the specificity was 85%. Filho et al. [13]
first extracted and reconstructed the pulmonary parenchyma.
Then nodule candidates were detected. Finally, shape and
texture features were extracted and an SVM classifier was
trained. Javaid et al. [14] developed a detection method for
juxta vascular and juxta pleural nodules. 110 CT scans were
selected to test the detection performance. The sensitivity of
this method was 91.65% with 3.19 FPs/scan.

Most previous nodule detection methods require hand-
crafted feature extraction. Recently convolution neural net-
work (CNN) which automatically discovers features, shows
promising results in many pattern recognition tasks. This
inspired the application of CNN in automated pulmonary
nodule detection [15]–[21]. Jiang et al. [15] first detected the
nodule candidate through traditional method. Then a patch
was cropped for each candidate and CNNwas used to classify
it as normal or nodule. The sensitivity of this method was
80.06% with 4.7 FPs/scan. Huang et al. [18] gave a nodule
detection method based on 3D CNN. This method has two
steps: nodule candidate detection through local geometric-
model based filtering and candidate classifying using 3D
CNN. Li et al. [20] constructed a shallow CNN to classify
each suspicious region as normal or nodule for CT scans.
Li et al. [21] employed three CNNs with different input sizes
and different depths to classify image patches as nodule or
normal.

Numerous lung nodule detection methods have been stud-
ied for CT images. For MR images, few detection methods
have been carried out. CT has better image contrast and less
air artifacts. Due to the image differences between CT and
MR, nodule detection methods for CT images may be not
suitable for MR images. In this paper, we propose a lung
nodule detection method for thoracic MR images based on
deep learning. For CT nodule detection, most deep learning

based methods consist of two steps. First nodule candidate
was extracted and cropped. Then a deep learning network was
designed to classify the candidate as nodule or normal. As the
size of lung nodule differs a lot, cropping each region with
a fixed size may be not reasonable. To solve this problem,
Faster R-CNN is designed for lung nodule detection in this
paper. Faster R-CNN takes the whole image as input and
no candidate extraction is needed. Moreover, it can detect
objects with different sizes as multiple anchors are intro-
duced. To add spatial information in the input image, a spatial
three-channel input is constructed. To overcome the prob-
lem of overfitting, transfer learning is applied in parameter
optimization. As Faster R-CNN does not consider anatomical
characteristics, many FP regions exist in the detection results.
To reduce FPs and preserve true nodule, a FP reduction
scheme is designed based on the anatomical characteristics
of lung nodule.

The rest of this paper is organized as follows:
Section 2 presents the dataset. Section 3 describes the pro-
posed method. Experimental setup is explained in Section 4.
Results and discussions are given in Section 5. Conclusions
are summarized in Section 6.

II. DATASET
The data used in this paper is T2-weightedMR scans from the
First Affiliated Hospital of Guangzhou Medical University.
All MR scans were performed on a 3T MR imager. Subjects
were placed in the supine position. This dataset includes
142 T2W-MR scans. Each scan consists of 13 to 33 slices,
with a 7.7mm spatial resolution along the axial direction. The
total number of slices is 3403. In one scan, the size of each
slice is 576 × 576. In the other scans, the size of each slice
is 640× 640. The spatial resolution within each slice ranges
from 0.6597mm to 0.6719mm. For the 3403 slices, 800 slices
are with lung nodule. Some slices contain more than one
lung nodule region, resulting in a total number of 862 nod-
ule regions. According to the position, lung nodules can
be divided into isolated nodule, juxta vascular nodule and
juxta pleural nodule. Examples of these nodules are shown
in Fig. 1.

III. METHOD
To avoid candidate extraction and be less dependent on scale,
Faster R-CNN is designed for lung nodule detection. Then
an FP reduction scheme is proposed based on the anatomical
characters of lung nodule.

A. LUNG NODULE DETECTION
1) FASTER R-CNN
Faster R-CNN is composed of two modules [22]. The first
module is a Region Proposal Network (RPN), which can gen-
erate proposed regions for each image. The second module is
the Fast R-CNN detector, which classifies the region propos-
als. To save time, RPN and Fast R-CNN share convolutional
layers.
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FIGURE 1. Example of lung nodules in T2W-MR. (a) is an isolated lung nodule. (b) is a juxta vascular nodule.
(c) is a juxta pleural nodule.

In RPN, the convolution layers of a pre-trained network
are first followed by a 3 × 3 convolutional layer. Then two
1 × 1 convolutional layers are added for classification and
regression, respectively. To deal with different scales and
aspect ratios of objects, anchors are introduced in the RPN.
Each anchor is associated with a scale and an aspect ratio. The
default setting of anchors are 3 scales (128× 128, 256× 256
and 512 × 512 pixels) and 3 aspect ratios (1: 1, 1: 2, and
2: 1), leading to k = 9 anchors at each location. From Fig.1,
a nodule generally occupies a small portion in the image.
Thus the anchor scale should be adjusted.

2) FEATURE EXTRACTION MODELS
Different feature extraction models can be used in Faster
R-CNN. In this paper, three of the most impressive CNN
models are tested. One is VGG16 [23]. The other two are
residual network (ResNet) [24] with different architectures.
ResNet uses a residual learning framework to ease the train-
ing of deep networks. It takes a standard deep CNN and add
shortcut connections which bypass few convolutional layers
at a time.

VGG16: VGG16 is composed of 13 convolutional layers
and 4 pooling layers. For each convolutional layer, the kernel
size is 3 × 3 and the stride is 1. For each pooling layer,
the kernel size is 2× 2 and the stride is 2.
ResNet50: ResNet50 is one of the residual models.

The architecture of ResNet50 is shown in Table 1. When
ResNet50 is used as the feature extraction model in Faster
R-CNN, the output of Conv4_x is the feature map.

ResNet101: ResNet101 is another architecture of ResNet,
shown in Table 1. It is the same with ResNet50, except the
Conv4_x layer. We also use the output of Conv4_x as the
feature map in Faster R-CNN.

3) DETECTION USING FASTER R-CNN
Directly using MR images to train the parameters of feature
extraction model will get overfitting. To solve this problem,
transfer learning is employed. First a pre-trained model from
natural images is employed as the initial parameters. Then
fine-tuning is performed to get the final parameters value.

Natural image is a three-channel image, including R, G and
B channels. A T2W-MR slice is one channel gray level image.
To fine-tune the existing trained models, we should construct

TABLE 1. The architectures of ResNet50 and ResNet 101.

a three-channel input for each MR slice. One construction
manner is using the gray level image in each channel and the
three channels are the same. In this construction, each slice in
one MR scan is separately treated and the spatial information
is discarded. When spatial information is discarded, air arti-
factsmay be easily detected as lung nodule, shown in Fig. 2(a)
and 2(d).

Compared with lung nodule, air artifacts show different
characteristics. In one situation, air artifact can only be seen
in one slice. The consecutive slices for image in Fig. 2(a) are
shown in Fig. 2(b) and (c). It can be seen that air artifact can
only be seen in Fig. 2(a). In the other situation, air artifacts in
consecutive slices show different shapes at the same position,
shown in Fig. 2(e) and (f). Based on the difference between
air artifact and nodule, a three-channel input adding spatial
information is designed. In the spatial three-channel input,
one channel is the gray level image. The other two channels
are its two consecutive slices. For the top or the bottom slice,
the two consecutive slices are the following two slices or the
upper two slices. For the other slices, the two consecutive
slices are one following slice and one upper slice. Thus spatial
information is added in the input image.
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FIGURE 2. Examples of air artifacts. For (a) and (d), region in the red rectangle is the air artifact region. (b) and (c) are
two consecutive slices for (a). For air artifact in (a), (b) and (c) do not display air artifact region indicated by the red
rectangle. (e) and (f) are two consecutive slices for (d). Air artifact in (d), (e) and (f) display different shapes indicated by
the red rectangle.

When training the RPN, two labels should be assigned to
each anchor. The positive label denotes the nodule region.
The negative label denotes the normal region. Anchor that has
no overlap with any ground-truth box is assigned to negative
label. Two kinds of anchors are assigned to positive label.

1. The anchor with the highest Intersection-over-Union
(IoU) overlap with a ground truth box.

2. The anchor that has an IoU overlap higher than 0.6 with
any ground-truth box.

The loss function of RPN for an image consists of two
parts: classification loss Lcls and regression loss Lreg. It is
defined as

L({pi}, {ti}) =
1
Ncls

∑
i

Lcls(pi, p∗i )+λ
1
Nreg

∑
i

p∗i Lreg(ti, t
∗
i )

(1)

In (1), i is the index of the anchor. pi is the predicted
probability of anchor i being an object. p∗i is the ground truth
label for anchor i. If anchor i is positive, p∗i = 1. If anchor
i is negative, p∗i = 0. ti is the predicted bounding box,
represented by [tx, ty, tw, th]. t∗i is the ground truth bounding
box associated with a positive anchor, represented by [t∗x , t

∗
y ,

t∗w, t
∗

h ].
Lcls is the loss function of classification for two classes,

defined as:

Lcls(pi, p∗i ) = − log[pip∗i + (1− p∗i )(1− pi)] (2)

Lreg is the loss function for regression, defined as:

Lreg(ti, t∗i ) =
∑
i

smoothL1(ti − t∗i ) (3)

smooth L1 is defined in (4).

smoothL1(x) =

{
0.5x2, if |x| < 1;
|x| − 0.5, otherwise.

(4)

The classification loss and the regression loss are normal-
ized by Ncls and Nreg and weighted by parameter λ.
The four coordinates for ti and t∗i are as follows:

tx =
x − xa
wa

, ty =
y− ya
ha

,

tw = log(w/wa), th = log(h/ha),

t∗x =
x∗ − xa
wa

, ty =
y∗ − ya
ha

,

t∗w = log(w∗/wa), t∗h = log(h∗/ha). (5)

In (5), x, y,w, and h denote the box’s center coordinates and
its width and height. x, xa, and x∗ are for the predicted box,
anchor box, and ground-truth box respectively (likewise for
y; w; h). The output of Faster R-CNN is the predicted nodule
position and the probability of being a nodule.

B. FP REDUCTION
Though spatial three-channel input is constructed for Faster
R-CNN, many false positives (FPs) still exist. One type of FP
is the tissue outside the lung parenchyma, indicated by the
rectangle regions in Fig. 3(a). The other type of FP is the air
artifact region inside the lung parenchyma, indicated by the
rectangle region in Fig. 3(b). An FP reduction scheme based
on the anatomical characters of lung nodule is proposed.

Lung nodules has two common characteristics:
1. Larger lung nodules can be seen in consecutive slices.
2. Lung nodules are inside the lung parenchyma.
For the first characteristic, two elements are important. The

first element is deciding each region Rj belong to large or
small. The second element is how to judge one large region is
consecutive or not. For the first element, a fix threshold Ts is
used to justify Rj belong to large or small. For the second ele-
ment, the area overlap ratios betweenRj and its corresponding
regions in the two consecutive slices are used. If these two
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FIGURE 3. Examples of FP regions detected by Faster R-CNN.

area overlap ratios are both less than Tr, then Rj is regarded
as large isolated region and should be removed. Thus the first
criterion can be defined below.
Criterion One: If a detected region with an area larger

than Ts does not show larger area overlap ratios with its two
consecutive slices, this region should be removed.

For the second characteristic, the criterion to remove FP is
to justify if the detected region is inside the lung parenchyma
or not. However for lung with a juxta heart nodule or a juxta
pleural nodule, the lung parenchyma may not be segmented
as a whole. In this situation, the nodule is not inside the lung
parenchyma and will be removed. For a balance, the second
criterion is defined below.
Criterion Two: If a detected region displays in a slice

without lung parenchyma, this region should be removed.

1) LUNG PARENCHYMA SEGMENTATION
For each MR slice, testing lung parenchyma exist or not is
enough. Thus a rough lung parenchyma segmentationmethod
is implemented. First the thorax is segmented. Then the lung
parenchyma candidate is extracted in each slice. Finally, the
non-lung parenchyma tissues are removed by 3D connected
component labeling.

The region outside the thorax usually has very low inten-
sity, which makes thresholding effective to segment the tho-
rax. 3D Otsu threshold and shape analysis are combined to
get the thorax region [25]. First, 3D Otsu is used to find the
optimal threshold for an MR scan. Then, the 2D hole-filling
operator is applied slice by slice. Finally, slice with incor-
rect segmentation is found based on Hausdorff distance and
re-segmented using iterative thresholding. For the MR slices
in Fig. 4(a), the thorax segmentation results are indicated as
red boundary shown in Fig. 4(b).

To get the lung parenchyma candidate, each MR slice is
segmented by a low threshold T . The segmented result is
denoted as BW and expressed by (6).

BWi,j =

{
1, if Ii,j < T .
0, otherwise.

(6)

In (6), Ii,j is the gray value of pixel (i, j). T is the threshold.
Based on the gray value of lung parenchyma, a suitable value
for T is 10. To remove the influence of the background, BW
is multiplied with the thorax segmentation result and BC is
obtained. The lung parenchyma candidate results are shown
in Fig. 4(c). In the parenchyma candidate, some non-lung
tissues (indexed by the arrow in Fig. 4(c)) still remain.

FIGURE 4. Lung parenchyma segmentation. (a) is the MR slice. (b) is the
thorax segmentation result. (c) is the lung parenchyma candidate result.
(d) is the final lung parenchyma result.

We employ 3D connected component analysis to remove
these tissues. Treating the MR scan as a whole, 3D connected
component labeling is applied. Then the lung volume V ,
is selected from the labeled volumes depending on the volume
size, expressed by (7).

V =

{
V1 ∪ V2, if V2 > 0.5V1;
V1, otherwise;.

(7)

In (7), V1 and V2 are the largest and second largest volumes
among the labeled volumes.

As testing lung parenchyma exist or not in each slice is
enough, V is used as the final segmentation result. Fig. 4(d)
shows the parenchyma segmentation for two slices. In can be
seen that non-lung parenchyma tissues are removed.

2) FP REDUCTION PROCEDURE
The whole FP reduction scheme is detailed as follows.
Step 1: If no lung parenchyma exist in slice i, then the

detected regions in slice i are regarded as FPs and removed.
If slice i contains lung parenchyma, then go to Step 2. This
procedure can remove FPs in Fig. 3(a).

37826 VOLUME 7, 2019



Y. Li et al.: Lung Nodule Detection With Deep Learning in 3D Thoracic MR Images

.

.

.

.

.

.

Three-channel
Construction Faster R-CNN 0.97

0.9

Three-channel
Construction

Three-channel
Construction

Faster R-CNN

0.95

0.65

Faster R-CNN

FP
Reduction

0.97

MR Scan MR Scan MR Scan

FIGURE 5. The whole nodule detection procedure for an MR scan.

Step 2: For each regionRj in slice i, if its area is less than Ts,
Rj will be reserved. If its area is larger than Ts, then go to Step
3. In this experiment, Ts = 500.
Step 3:Get the detection result in slice i−1 and slice i+1,

Si−1 and Si+1. Compute the area overlap ratios between Rj
and Si−1, and Rj and Si+1. If these two area overlap ratios
are both less than Tr, then Rj is regarded as FP and removed.
In this experiment, Tr = 0.2. This procedure can remove FPs
in Fig. 3(b).

An example of the whole nodule detection procedure for
an MR scan is shown in Fig. 5.

IV. EXPERIMENTAL SETUP
For the 142 T2W-MR scans, 97 scans are randomly selected
as training set and 45 scans are used as testing set. For the
training set, the total number of slices is 2332. The number
of slices with at least one nodule is 549 and the number of
nodules is 604. When training the Faster R-CNN, just the
slices with lung nodule are used. Thus the image number for
training Faster R-CNN is 549. In this experiment, a transfer
learning method is used to train the network. For the testing
set, the total number of slices is 1071. The number of slices
with at least one nodule is 251 and the number of nodules is
258. All the testing images are used to test the performance.

The typical anchor sizes for Faster R-CNN are 128× 128,
256×256 and 512×512. Lung nodule occupies a small part in
one slice image. Thus the typical anchor sizes are not suitable
for lung nodule detection. In this experiment, the nodule size
in the training images are used to optimize the anchor sizes.
Based on analyzing the longer side length of nodules in the
training images, the optimized anchor size are set as 32× 32,
64 × 64 and 128 × 128 in order to cover all nodules. The
typical number of anchors for computing the loss function
of a mini-batch is 256. As most images contain one nodule,
the number of positive anchors is small for each image. Thus

the number of anchors of a mini-batch is adjusted to 128.
Other parameters are set as follows: batch size (1), number
of training iterations (12000), learning rate (10e-3), weight
decay (10e-4) and momentum (0.9).

To evaluate the performance of nodule detection, free
receiver operating characteristic (FROC) curve is used. The
FROC curve shows the relationship between the true positive
rate (TPR) and the false positives per images (FPs/I) as the
decision threshold varies.

V. RESULTS AND DISCUSSION
A. PERFORMANCE OF FEATURE EXTRACTION MODEL
Different feature extraction models can be used in Faster
R-CNN. In order to test which model is more suitable,
VGG16 [23], ResNet50 [24] and ResNet101 [24] are com-
pared. We divide the training set into two parts. One part is
used for training Faster R-CNN and the scan size is 68. The
other part is used to get the validation result and the scan
size is 29. The FROC curves for different feature extraction
models under the validation dataset are shown in Fig. 6. It can
be seen that ResNet101 module gets the best performance
compared with the other two modules. ResNet101 is the

FIGURE 6. FROC curves for different feature extraction models.
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deepest model among the three feature extraction models.
A deeper feature extraction model can get deeper features and
has larger receptive field. Larger receptive field may lead to
better detection performance.

B. PERFORMANCE OF LUNG NODULE DETECTION
1) ADDING SPATIAL INFORMATION
To eliminate the influence of air artifacts, the spatial three-
channel input is designed for Faster R-CNN. To validate the
effectiveness of spatial three-channel, another input using
gray level image in each of the three channels is compared.
This three-channel input is called gray three-channel. For
these two inputs, separate Faster R-CNN networks under
ResNet101 are trained using the whole training set. The
image-based FROC curves are drawn in Fig. 7. It can be
seen that spatial three-channel designed in this paper gets
better lung nodule detection performance comparedwith gray
three-channel. At 75%, 80% and 85% sensitivity, FPs/I for
spatial three-channel are 0.17, 0.19 and 0.28. For gray three-
channel, the corresponding FPs/I are 0.19, 0.23 and 0.31. The
performance difference between the two inputs is statistically
significant (p = 0.017 < 0.05) by t-test analysis.

FIGURE 7. FROC curves for different input constructions.

Some detection examples between these two inputs are
shown in Fig. 8. In Fig. 8(b), Faster R-CNN with gray
three-channel detect both the lung nodule and an FP region.
When using Faster R-CNN with spatial three-channel, this
FP region is not detected and the true nodule is preserved,
shown in Fig. 8(c). In Fig. 8(e), the organ tissue is detected
as lung nodule using Faster R-CNN with gray three-channel.
For Faster R-CNN with spatial three-channel, this FP region
is not detected, shown in Fig. 8(f). It may be concluded that
adding spatial information in Faster R-CNN input can remove
some FP regions without eliminating true nodules. As each
MR scan is 7.7mm spatial resolution along the axial direction,
spatial three-channel can not increase small nodule detection
rate.

2) FP REDUCTION COMPARISON
Secondly, the performance of the proposed FP reduction
scheme is tested. Two criteria are proposed to remove FPs. Let
C1 represent Criterion one and C2 represent Criterion two.

The image-based FROC curves for Faster R-CNN, Faster
R-CNN with C1 and Faster R-CNN with C1+C2 are drawn
in Fig. 9. It can be seen that the designed FP reduction scheme
gets better lung nodule detection performance compared with
Faster R-CNN. Using t-test analysis, the performance differ-
ence between Faster R-CNNwith C1+C2 and Faster R-CNN
is statistically significant (p < 0.05).

We also test the performance difference between C1 and
C1+C2. From Fig. 9, C1+C2 shows better detection result
and the improvement is statistically significant (p < 0.05).
It may be concluded that different FP regions are separately
removed by C1 and C2 criterion.

What’s more, FP reduction methods based on handcrafted
features are implemented for a comparison. Three popular
texture features: anchor graph hashing (AGH), local ternary
patterns (LTP) and histogram of gradient (HOG) are selected.
FP reduction methods based on handcrafted features are as
follows.
Step 1: For the training dataset, two sets containing both

normal and nodule regions are cropped. One set of normal
and nodule regions is with 64 × 64 size and denoted as D1.
The other set of normal and nodule regions is with 128×128
size and denoted as D2.
Step 2: For each regions in D1, use AGH (or LTP or HOG)

to extract features. All the features compose F1. For each
regions in D2, use AGH (or LTP or HOG) to extract features.
All the features composeF2.
Step 3: For the detected regions by Faster R-CNN, if the

region size is smaller than 64×64, a 64×64 region is cropped
based on the detected centroid. Otherwise, a 128×128 region
is cropped based on the detected centroid. The cropped region
is denoted as Rq.
Step 4: For Rq, use AGH (or LTP or HOG) to extract

features and fq is obtained.
Step 5: If Rq is with 64× 64 size, compute the L2 distance

between fq and each element in F1. Otherwise, compute the
L2 distance between fq and each element in F2.
Step 6: Regions with the Num minimum distances are

similar regions with Rq. If there are less than 0.3Num nodule
regions in the similar regions, Rq is regarded as normal and
will be removed. In this experiment, Num= 25.
The image-based FROC curves for the proposed FP reduc-

tion schemes and FP reduction methods based on AGH,
LTP and HOG are drawn in Fig. 10. It can be seen that
the proposed scheme is better in FP reduction compared
with handcrafted features. And the performance differences
are statistically significant (p < 0.05). For handcrafted
features, the discriminating performance orders are LTP,
HOG and AGH. However, their performance differences are
not statistically significant (p > 0.05). From the results,
we can conclude that using handcrafted features to remove
normal regions detected by Faster R-CNN may be not suit-
able. The reason may be that the normal regions detected
by Faster R-CNN show similar image characteristics with
nodule regions. The handcrafted features are extracted from
the image gray value, which has already involved in Faster
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FIGURE 8. Nodule detection results comparison between different input constructions. (a) and (d) are
the ground truth images. (b) and (e) are the detection results with gray three-channel input. (c) and
(f) are the detection results with spatial three-channel input. Regions in the rectangle are the true
nodule regions. Regions in the dashed rectangle are the detected nodule regions.

FIGURE 9. FROC curves for FP reduction schemes.

FIGURE 10. FROC curves between the proposed FP reduction scheme and
schemes based on handcrafted features.

R-CNN. Thus no obvious improvement is obtained. The
proposed FP reduction scheme employ anatomical charac-
teristics, which is not used in Faster R-CNN. Thus the
improvement is statistically significant.

3) COMPARISON WITH EXISTING METHODS
Finally, a comparison between the proposed method and
existing nodule detection methods is shown. As no methods

have been carried out on MR images, some handcrafted
feature based methods [8], [14] and deep learning based
methods [20], [21] for CT or chest radiographs (CXRs) nod-
ule detection are selected. As the image characteristics of
CT, CXRs and T2W-MR are different, the comparison is
implemented from two patterns.

The first pattern is implementing existing methods and
comparing the results on our MRI dataset. For existing
methods, nodule candidate was first detected then features
were extracted to classify the candidate as normal or nod-
ule. As candidate boundary should be segmented for feature
extraction in [8] and [14], two texture features (LTP and
HOG) are also tested for lung nodule detection. The compar-
ison results are shown in Table 2. From Table 2, the proposed
method gets better detection results compared with existing
nodule detection methods on T2W-MR modality.

TABLE 2. Comparison with existing methods on nodule detection under
our dataset.

The second pattern is comparing the results of differ-
ent methods on their own dataset. The comparison results
are shown in Table 3. From Table 3, nodule detection for
T2W-MR modality is slightly lower than the best perfor-
mance using CT modality. The reason may be the lower
resolution of T2W-MR. From the difference between Table 2
and Table 3, it may be concluded that candidate detection
and feature extraction methods for CT (or CXRs) images are
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FIGURE 11. Examples of Lung nodule detection. Ground truth is indicated by the green boundary. Region in the yellow rectangle is the detected
result.

FIGURE 12. Examples of the detected FP. Region in the red rectangle is the detected FP region.

FIGURE 13. Examples of incorrect detection. Ground truth is indicated by the green boundary. Region in the dashed rectangle is the detected
result. In (a) and (b), true nodule is not detected. In (c) and (d), region in red rectangle is the FP region. Region in yellow rectangle is the true
positive region.

TABLE 3. Comparison with existing methods on nodule detection under
different datasets.

not suitable for MR images. The reason may be the image
differences between different modalities.

C. DISCUSSION
We present a novel deep learning based method for lung
nodule detection in 3D thoracic T2W-MR images. To the best
of our knowledge, it is the first attempt to detect lung nod-
ules in thoracic MR images. Different from nodule detection
methods in CT, the proposed method takes the whole image
as input and no candidate extraction is needed. Moreover,

it can detect nodules with different sizes and types. For iso-
lated nodule, juxta heart nodule and juxta pleural nodule, the
proposed method can get correct detection results, shown in
Fig. 11(a)-(c). Besides, some challenging nodules can also be
detected. For nodule connectedwith the organ tissue shown in
Fig. 11(d), the designed Faster R-CNNmethod can get correct
detection result.

Though Faster R-CNN can detect most of the lung nod-
ules, many FP regions are also detected, shown in Fig. 12.
To reduce FPs and preserve true nodule, an FP reduction
scheme using the anatomical characters of lung nodule is
designed. For air artifacts displaying in less than two slices
(shown in Fig. 12(a)) and regions detected in a slice without
lung parenchyma (shown in Fig. 12(b) and (c)), it can be
removed by the FP reduction scheme.

Some problems also exist in the detection result. Firstly,
some small and low contrast nodules are not detected by
Faster R-CNN. For nodules indicated by the green boundary
in Fig. 13(a) and (b), the proposed method misses these
nodules. Second some air artifacts and juxta heart tissues
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may be falsely detected as nodules. For regions in the red
rectangle shown in Fig. 13(c) and (d), the proposed method
falsely detect them as nodules. To alleviate these problems,
one manner is to design a filter method to improve the image
quality and remove air artifacts. The second manner is adding
multi-scale in the whole detection system to increase the
detection rate of small and low contrast nodules.

VI. CONCLUSION
In this paper, a lung nodule detection method for thoracic MR
images is proposed based on deep learning. With optimized
parameter, spatial three-channel input and transfer learning,
Faster R-CNN is designed for lung nodule detection. This
detection scheme can avoid candidate extraction and be less
dependent on scale. As Faster R-CNN does not consider
anatomical characteristics, many FP regions exist in the
detection results. To reduce FPs and preserve true nodule,
an FP reduction scheme based on the anatomical charac-
teristics of lung nodule is designed. Experimental results
show that the designed Faster R-CNN can detect most of the
nodules and the proposed FP reduction scheme can obviously
reduce FP regions. Two observations can be concluded. First,
adding spatial information in input image can remove some
FP regions without eliminating true nodules for 3D medical
images. Second, FP reduction scheme based on anatomical
characteristics may be better than image features in Faster
R-CNN detection.
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