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ABSTRACT In recent years, large-scale computing systems have been widely used as an important
part of the computing infrastructure. Resource management based on systems workload prediction is
an effective way to improve application efficiency. However, accuracy and real-time functionalities are
always the key challenges that perplex the systems workload prediction model. In this paper, we first
investigate the dependence on historical workload in large-scale computing systems and build a day and
time two-dimensional time-series workload model. We then design a two-dimensional long short-term
memory (LSTM) neural network cell structure. Based on this, we propose an improved LSTM prediction
model providing its mathematical description and an error back propagationmethod. Furthermore, to achieve
systems resource management real-time requirement, we provide a parallel improved LSTM algorithm
that uses a hidden layer week-based dependence and weights parallelization algorithm. The comparative
studies, based on the actual workload of the Shanghai Supercomputer Center, demonstrate that our proposed
improved LSTM neural network prediction model can achieve higher accuracy and real-time performance
in large-scale computing systems.

INDEX TERMS Workload prediction, computing systems, LSTM, neural network, parallel.

I. INTRODUCTION
With the advent of electronic and computing technology,
large-scale computing systems have received substan-
tial attention from the business, industry, and academic
communities [1], [2]. Supercomputers ranked in the TOP500
list, such as Summit, Sierra, Tianhe-2A [3], have played
key roles in large-scale data mining, astronomy, fractal cal-
culations and simulations, civil engineering, seismic data
process, and weather prediction. The large-scale computabil-
ity, multidomain characteristic, and highly dynamic nature
of these applications inevitably lead to complex systems
resource management [4]. Moreover, the large-scale comput-
ing systems consume an ever greater amount of more elec-
trical power and suffer high operational costs. For example,
Supercomputers Tianhe-2A has a maximum operating power
consumption of 18.482MW [3], which is equivalent to the
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total energy consumption of 5 universities. These problems
have created significant incentive to improve application effi-
ciency in supercomputing systems.

An effective way to deal with these challenges is resource
management based on systems workload prediction [5]–[7].
The method can estimate future resource demands in comput-
ing systems through identification of historical usage patterns
and systems current state. Furthermore, this information on
workload is helpful to improve the automatic allocation strat-
egy for resources and save systems operating cost [8], [25].
For low workload, the systems resource management can
dynamically power off resources to save energy and costs
like network, cooling, andmaintenance. The systems can also
scale up resources to meet user application requirements as
the prediction of workload increases. Therefore, the waste
in systems resources and operational cost are minimized
while user Service Level Agreements (SLA) and Quality of
Service (QoS) are maintained.
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The most important metric on systems workload pre-
diction models is accuracy, which is evaluated by the dif-
ference between predicted results and actual values [9].
Generally, the closer the predicted value is to the actual value,
the better the model is. There are many techniques and meth-
ods applied in the prediction of computing systems workload,
such as, Online Ensemble Learning Approach [10], Auto
Regressive and Moving Average models (ARIMAR) [11],
Recurrent Neural Network (RNN) [12], Long Short-Term
Memory (LSTM) Networks [13]. However, workload predic-
tion is a complex social and economic endeavor involving
computing systems characteristics, user problems, and appli-
cation requirements. Accuracy has always been a difficult and
challenging item. There is still room to improve the accuracy
of systems workload prediction.

The other important metric for systems workload predic-
tion models is real-time effectiveness. This measures the abil-
ity of the systems resource management to carve out enough
time to optimize its resources according to future workload
prediction, which should be produced in a reasonable and
effective time frame [9]. For instance, in 5minutes, the Super-
computers Tianhe-2A will perform financial Big data analy-
sis and processing systems requiring 12400 computing nodes.
The prediction model should complete the computation in
a minute. This way, the systems resource management will
have sufficient time to prepare these resources. However,
regarding current workload prediction models, especially in
the context of machine learning [6], [8], [12], [13], [31],
most techniques require considerable time for training and
learning time, which leads to difficulty in meeting systems
resource management real-time demands. One of the effec-
tive methods to reduce execution time for prediction models
is parallelization technology.

Most workload prediction models, such as ARIMAR [11],
RNN [12], LSTM [13], assume that training data is a
one-dimensional time series. That is to say, the future
systems workload is dependent solely on the preceding one-
dimensional information. However, in large-scale computing
centers, systems workload has a periodicity in time, date, and
season. For each day, the workload may be higher during
traditional working hours, and relatively low at other times.
There may be similarities in workload across weeks, as well
as considerable variations on a seasonable basis. Therefore,
we believe that the large-scale computing systems work-
load has the characteristics of a two-dimensional time series,
which is missed by most existing methods.

Motivated by these observations, this paper proposes an
improved LSTM neural network prediction method based
on a two-dimensional time series workload model. In order
to meet real-time requirements, we also design a parallel
algorithm. The major contributions of this work are multifold
and can be summarized as follows:
• First, this study analyzes the correlation and dependence
in historical workload data for large-scale computing
systems, and constructs a two-dimensional time series
workload model.

• Second, we build a two-dimensional LSTM neural net-
work cell structure and propose an improved LSTM
prediction model.

• Third, a parallel improved LSTM algorithm is imple-
mented by using the hidden layer week-based depen-
dence and a weights parallelization algorithm.

• Finally, the evaluation of performance is conducted
and experimental results indicate that our proposed
Improved LSTM algorithm outperforms traditional
LSTM in terms of the prediction accuracy. The paral-
lel improved LSTM can also meet computing systems
real-time requirements satisfactorily.

The remainder of the paper is organized as follows:
In Section 2, we review related studies. We define the
two-dimensional time series workload model in Section 3.
In Section 4, an improved LSTM prediction model is pro-
posed. Section 5 provides a parallel improved LSTM algo-
rithm. In Section 6, we evaluate the proposed prediction
model and analyze experimental results. Finally, we conclude
the paper and offer some comments on further research in
Section 7.

II. RELATED WORK
Prediction technology is a traditional science, widely used
in traffic flow [14], power network load [15], tourism man-
agement [16], network flow control [17], and many social,
economic, natural science fields. The most popularly used
time series model is ARIMA [11], [18], and extensions such
as seasonal ARIMA models [19] and wavelet ARIMA [20].
Several standard prediction methods are available, including
support vector regression (SVR), Bayesian networks, support
vector machine (SVM), and others [8].

In recent years, many prediction models have been applied
to forecast computing systems workload. Di et al. [21]
investigated the correlations among Google host work-
load features, and designed a Bayesian networks prediction
model to forecast fluctuation patterns in the host workload.
Yang et al. [22] used the a linear regression model to predict
workload for cloud services. Parameters for this prediction
method can adjust dynamically based on fluctuations in ser-
vice workload. Rahmanian et al. [5] combined existing pre-
dictionmodels and proposed an ensemble resource prediction
method based on Learning Automata (LA) and clouds theory.
Cetinski and Juric [25] combined statistical and learning
techniques to improve accuracy in cloud computing workload
prediction. In practice, these methods rely on stable histori-
cal data to determine model parameters. However, in large-
scale computing systems, historical workloads are unstable
and nonlinear with regards to their underlying distribution.
Therefore, the time series models based on empirical data are
not suitable for workload prediction.

To deal with these challenges, many prediction tech-
niques based on machine learning are widely used and
have proven to be superior to the mathematical algo-
rithms above [6], [8], [9], [23], [24]. Most of them require
a training phase based on large-scale historical data.
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Amiri et al. [9] in work proposed an online server work-
load prediction model based on ensemble learning. A feed-
forward artificial neural network predictor was provided
by Duy et al. [23] to forecast the workload in a com-
putational grids host. Qazi and Aizenberg [24] proposed a
complex-valued neural network datacenter workload predic-
tion approach. Kumar and Singh [8] combined a self-adaptive
differential evolution method and an artificial neural network
to predict workload in cloud computing systems. In previous
work, we proposed a cloud data center workload prediction
model (MLWNN), which is the combination of a wavelet
neural network and linear regression [6]. This work yielded an
efficient job scheduling strategy based on workload predic-
tion. Neural network-based approaches perform better than
classical prediction methods. However, these methods cannot
effectively extract features due to the workload long-term
spatial and temporal dependency.

Recently, with the Deep learning reporting success by
Hinton [26]. RNNs have received increasing attention for
their deep structure that connects basic neural units in chrono-
logical order. Zhang et al. [12] proposed an RNN to pre-
dict workload in cloud computing systems. This model uses
an orthogonal experimental design to yield the most sig-
nificant parameters. An LSTM is a specific type of RNN
that can effectively learn long-term dependency information.
Li and Cao [16] used LSTMneural network to predict tourism
flow. Gupta and Dinesh [13] applied a multivariate LSTM
model to forecast cloud workload future trends. Their experi-
mental results show that the LSTMpredictionmodel achieves
satisfactory performance. However, none of these predic-
tion models fully exploit the two-dimensional characteristics
of date and time in the workload of computing systems.
Moreover, the handling of real-time constraints for systems
resource management is not supported by these methods.

III. DATA PREPROCESSING
The workload in large-scale computing systems such as
Supercomputer centers is defined as the ratio of the actual
number of computing cores executing various tasks to the
aggregate number of such computing resources. The num-
ber of aggregate computing resources is usually known in
advance. For example, the Shanghai Supercomputer Center
has 9000 computing cores available, with an additional 960
reserved for China National Grid [27], [28]. Assessing the
number of active cores can be achieved through systems
management log files analysis [29]. Using this approach,
we can retrieve applications execution information, such as
user, application, task, computing cores, start time, finish
time, computing nodes. Examples of information are listed
in Table 1.

This way, we can ascertain large-scale computing systems
active cores within a certain time interval, such as 1 hour,
30 minutes, 10 minutes. Fig. 1 reports Shanghai Supercom-
puter Center active cores from 7/7/2017 to 7/24/2017, with
the time interval set as 1 hour. Here, we retrieved and obtained
data for 7200 active cores at the Shanghai Supercomputer

TABLE 1. Applications execution information.

FIGURE 1. Shanghai supercomputer center execution cores.

Center over 300 days. From this workload dataset, we can
conclude that high workloads occur between the times of
8 : 00 and 20 : 00 during the working day, and workload is
relatively light during weekends. The workload for a certain
working day period is actually likely to be similar to the
same period in the previous days or weeks. Following this
observation, we believe that the workload in the Shanghai
Supercomputer Center has two-dimensional time series char-
acteristics based on day and time.

These two-dimensional time series data are used to train
our improved LSTMmodel and predict future systems work-
load. Before this, we should smooth out some noisy data
related to various uncertainty factors, such as from 7/15/2017
10:00 to 7/15/2017 17:00, when Shanghai Supercomputer
Center happened to close for overhaul. Then, we normalize
the number of active cores into computing systems work-
load x, which is defined as following

x =
execution cores
total cores

. (1)

This value is within the range (0, 1) as the number of
active cores is usually less than the total number of cores in
the system. Due to the two-dimensional characteristic of the
workload in the computing system, we label the information
as a d day and t time xd,t two-dimensional time series data.

IV. THE IMPROVED LSTM NEURAL NETWORK
The LSTM overcomes the vanishing gradient problem
in RNNs and has been proven effective in dealing with
long range dependency data, such as computing systems
workload [13], [16], [30]. Most importantly, LSTM neural
networks introduce three gates: input gate, forget gate, output
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FIGURE 2. The structure of LSTM neural network cells.

gate, and a memory in its cell structure, which is depicted
in Fig. 2. Unlike a typical LSTM, each gate in our proposed
improved model has a two-dimensional time series d day and
t time xd,t workload as input. The previous hidden layer also
has two-dimensional hidden information regarding time and
day that is transmitted to the next layer.

The main objective of our proposed improved LSTM pre-
diction model is to forecast d day, t + 1 time workload
in large-scale computing systems. Therefore, our proposed
improved LSTM uses the previous two-dimensional d day
and t time workload xd,t to produce an LSTM neural network
input X t , which is expressed as

X t= [xd−n,t , · · · , xd−1,t , xd,t ]3[xd,t−m, · · · , xd,t−1, xd,t ].

(2)

where X t are n+m+2 input nodes that combined by previous
n+ 1 days at time t and m+ 1 computing systems workload
time series. This input data is fed into the three gates and
the memory of the LSTM neural network cells. Regarding
the input gate, forget gate, output gate, and the memory,
the implementation includes the following functions:

I t = W (i)X t + h(d−1,t)UD(i)
+ h(d,t−1)UH (i). (3)

F t = W (f )X t + h(d−1,t)UD(f )
+ h(d,t−1)UH (f ). (4)

Ot = W (o)X t + h(d−1,t)UD(o)
+ h(d,t−1)UH (o). (5)

Gt = W (c)X t + h(d−1,t)UD(c)
+ h(d,t−1)UH (c). (6)

C t
= σ (I t ) ∗ tanh(Gt )+ σ (F t ) ∗ C t−1. (7)

ht = σ (Ot ) ∗ tanh(C t ). (8)

where we use the notations i, f , o, and c to denote the input
gate, forget gate, output gate, and memory, respectively. The
notations I t , F t , Ot , and Gt are the outputs of these gates at
time t and are regulated by the activation functions. In this
improved LSTM, the activation function of input, forget, and
output gates is a standard sigmoid function σ , defined as

σ (x) =
1

1+ e−x
. (9)

The other activation function is tanh. TheW ,UD,UH are the
corresponding weights for the input training data, previous
hidden layer day-dimensional and time-dimensional value.

The notations C and h are the LSTM cell state and hidden
layer value, respectively. Finally, the output layer produces a
prediction value yt , which is expressed as

yt = σ (W (out)ht ). (10)

For t time-step, the standard prediction error E(t) is the
actual value ŷt at time t and t − 1 with prediction value yt

and yt−1, which is

E(t) =
1
2
[(ŷt − yt )2 + (ŷt−1 − yt−1)2]. (11)

Then, the improved LSTM leverages this error E(t) to
determine the gradient of each weight in the subsequent error
back propagation phase. In this study, error back propagation
is achieved using the magnitudes of partial derivatives, which
allows a determination of the weight after every training iter-
ation. As the partial derivative tied to the hidden layer value
ht is more prevalent in the determination of other weights,
we provide it first as

∂E
∂ht
= W (out)

|ŷt − yt |σ ′(W (out)ht ). (12)

This ht partial derivative is core to other weights calcula-
tion. Here, the LSTM cell state C t partial derivative can be
defined as

∂E
∂C t =

∂E
∂ht

∂ht

∂C t

=
∂E
∂ht
∗ σ (Ot ) ∗ (1− tanh2(C t )). (13)

In addition, C t−1 receives gradients from ht−1 as well
as the next cell state C t . Therefore, back propagation to
the hidden layer C t−1 partial derivative in an LSTM neural
network error is also updated as

∂E
∂C t−1 =

∂E
∂ht−1

∂ht−1

∂C t−1 +
∂E
∂C t

∂C t

∂C t−1

=
∂E
∂ht−1

∗ σ (Ot−1) ∗ (1− tanh2(C t−1))

+
∂E
∂C t σ (F

t ). (14)

This way, the output layer weight W (out) can be com-
puted as

1W (out)
= α

∂E
∂W (out)

= α
[ ∂E
∂yt

∂yt

∂W out +
∂E
∂yt−1

∂yt−1

∂W out

]
= α

[
|ŷt − yt |σ ′(W (out)ht )ht

+ |ŷt−1 − yt−1|σ ′(W (out)ht−1)ht−1
]
. (15)

where α is the learning rate, which denotes the step length of
each training iteration. With regard to the subsequent calcu-
lations for other weights in the error back propagation phase,
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the learning rate α is included as well and further explanation
on this step is probably unnecessary in this paper. Concerning
the three gates and memory in the LSTM neural network cell,
their weights W ,UD,UH can be then calculated using the
following partial derivatives:

1W (i)
=

∂E
∂W (i)

=
∂E
∂C t

∂C t

∂I t
∂I t

∂W (i) +
∂E
∂C t−1

∂C t−1

∂I t−1
∂I t−1

∂W (i)

=
∂E
∂C t σ

′(I t )tanh(Gt )X t

+
∂E
∂C t−1 σ

′(I t−1)tanh(Gt−1)X t−1. (16)

1UD(i)
=

∂E
∂UD(i)

=
∂E
∂C t

∂C t

∂I t
∂I t

∂UD(i) +
∂E
∂C t−1

∂C t−1

∂I t−1
∂I t−1

∂UD(i)

=
∂E
∂C t σ

′(I t )tanh(Gt )hd−1,t

+
∂E
∂C t−1 σ

′(I t−1)tanh(Gt−1)hd−1,t−1. (17)

1UH (i)
=

∂E
∂UH (i)

=
∂E
∂C t

∂C t

∂I t
∂I t

∂UH (i) +
∂E
∂C t−1

∂C t−1

∂I t−1
∂I t−1

∂UH (i)

=
∂E
∂C t σ

′(I t )tanh(Gt )hd,t−1

+
∂E
∂C t−1 σ

′(I t−1)tanh(Gt−1)hd,t−2. (18)

1W (f )
=

∂E
∂W (f )

=
∂E
∂C t

∂C t

∂F t
∂F t

∂W (f ) +
∂E
∂C t−1

∂C t−1

∂F t−1
∂F t−1

∂W (f )

=
∂E
∂C t σ

′(F t )C t−1X t

+
∂E
∂C t−1 σ

′(F t−1)C t−2X t−1. (19)

1UD(f )
=

∂E
∂UD(f )

=
∂E
∂C t

∂C t

∂F t
∂F t

∂UD(f ) +
∂E
∂C t−1

∂C t−1

∂F t−1
∂F t−1

∂UD(f )

=
∂E
∂C t σ

′(F t )C t−1hd−1,t

+
∂E
∂C t−1 σ

′(F t−1)C t−2hd−1,t−1. (20)

1UH (f )
=

∂E
∂UH (f )

=
∂E
∂C t

∂C t

∂F t
∂F t

∂UH (f ) +
∂E
∂C t−1

∂C t−1

∂F t−1
∂F t−1

∂UH (f )

=
∂E
∂C t σ

′(F t )C t−1hd,t−1

+
∂E
∂C t−1 σ

′(F t−1)C t−2hd,t−2. (21)

1W (o)
=

∂E
∂W (o)

=
∂E
∂ht

∂ht

∂Ot
∂Ot

∂W (o) +
∂E
∂ht−1

∂ht−1

∂Ot−1
∂Ot−1

∂W (o)

=
∂E
∂ht

σ ′(Ot )tanh(C t )X t

+
∂E
∂ht−1

σ ′(Ot−1)tanh(C t−1)X t−1. (22)

1UD(o)
=

∂E
∂UD(o)

=
∂E
∂ht

∂ht

∂Ot
∂Ot

∂UD(o) +
∂E
∂ht−1

∂ht−1

∂Ot−1
∂Ot−1

∂UD(o)

=
∂E
∂ht

σ ′(Ot )tanh(C t )hd−1,t

+
∂E
∂ht−1

σ ′(Ot−1)tanh(C t−1)hd−1,t−1. (23)

1UH (o)
=

∂E
∂UH (o)

=
∂E
∂ht

∂ht

∂Ot
∂Ot

∂UH (o) +
∂E
∂ht−1

∂ht−1

∂Ot−1
∂Ot−1

∂UH (o)

=
∂E
∂ht

σ ′(Ot )tanh(C t )hd,t−1

+
∂E
∂ht−1

σ ′(Ot−1)tanh(C t−1)hd,t−2. (24)

1W (c)
=

∂E
∂W (c)

=
∂E
∂C t

∂C t

∂Gt
∂Gt

∂W (c) +
∂E
∂C t−1

∂C t−1

∂Gt−1
∂Gt−1

∂W (c)

=
∂E
∂C t tanh

′(Gt )σ (I t )X t

+
∂E
∂C t−1 tanh

′(Gt−1)σ (I t−1)X t−1. (25)

1UD(c)
=

∂E
∂UD(c)

=
∂E
∂C t

∂C t

∂I t
∂I t

∂UD(c) +
∂E
∂C t−1

∂C t−1

∂I t−1
∂I t−1

∂UD(c)

=
∂E
∂C t tanh

′(Gt )σ (I t )hd−1,t

+
∂E
∂C t−1 tanh

′(Gt−1)σ (I t−1)hd−1,t−1. (26)

1UH (c)
=

∂E
∂UH (c)

=
∂E
∂C t

∂C t

∂I t
∂I t

∂UH (c) +
∂E
∂C t−1

∂C t−1

∂I t−1
∂I t−1

∂UH (c)

=
∂E
∂C t tanh

′(Gt )σ (I t )hd,t−1

+
∂E
∂C t−1 tanh

′(Gt−1)σ (I t−1)hd,t−2. (27)

V. IMPROVED LSTM PARALLELIZATION
The workload prediction model real-time feature is key
to resource management in large-scale computing systems.
However, traditional LSTM neural networks exhibit inherent
computational seriality and require a great deal of processing
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time for large-scale data training [31]. Therefore, we propose
a parallel improved LSTM algorithm based on shared mem-
ory multi-core systems to reduce workload prediction time.

In our proposed improved LSTM neural network model,
each training step of the serial algorithm relies on the hidden
layer value of the previous day and the directly preceding
moment. Furthermore, we test and analyze the improved
LSTM serial algorithm data training time, using a process-
ing time of one day as the basic parallel unit. As a result,
we only need to break through the improved LSTM day-
dimensional dependency to realize the parallelization of the
algorithm. In practice, day-dimensional workloads in com-
puting systems exhibit weekly or seasonal periodicity. There-
fore, the LSTM cell from a previous hidden layer value
h(d−1,t) is changed according to the observation from a week
before, h(d−8,t). Fig. 3 indicates this weekly data dependence
between 7-7-2017 and 7-14-2017 from the perspective of
a day-dimensional workload. Based on this, with each day
LSTM training as a parallel unit, we can implement a 7 days
processing time parallelization.

FIGURE 3. The example of week data dependence.

To achieve this parallelization strategy, the Eq. (3), (4),
(5), (6) are modified as follows

I t = W (i)X t + h(d−8,t)UD(i)
+ h(d,t−1)UH (i). (28)

F t = W (f )X t + h(d−8,t)UD(f )
+ h(d,t−1)UH (f ). (29)

Ot = W (o)X t + h(d−8,t)UD(o)
+ h(d,t−1)UH (o). (30)

Gt = W (c)X t + h(d−8,t)UD(c)
+ h(d,t−1)UH (c). (31)

In the error back propagation phase, the corresponding pre-
vious hidden layer day-dimensional weights UD calculation
are modified as well as follows

1UD(i)
=

∂E
∂UD(i)

=
∂E
∂C t

∂C t

∂I t
∂I t

∂UD(i) +
∂E
∂C t−1

∂C t−1

∂I t−1
∂I t−1

∂UD(i)

=
∂E
∂C t σ

′(I t )tanh(Gt )hd−8,t

+
∂E
∂C t−1 σ

′(I t−1)tanh(Gt−1)hd−8,t−1. (32)

Algorithm 1 The Pseudocode of Improved LSTM
Weights W , UD, UH Parallelization Algorithm

1 Initialize parallel sections;
2 Set private list weights W , UD, UH ;
3 while the training data are not empty do
4 for each parallel unit parallel do
5 Copy private list weights W , UD, UH from

Master;
6 LSTM training and compute weights iteratively;
7 Use Eq. (33) to compute parallel unit error;
8 Barrier;
9 Copy the weights W , UD, UH of parallel unit

with minimum pe to Master;
10 end
11 end

The other parallelization constraints in this improved
LSTMare the trainingweightsW ,UD,UH , which are shared
by all training procedures. Here, we propose an improved
LSTMweights parallelization algorithm, which is formalized
inAlgorithm 1. To achieve this goal, we define a parallel unit
error pe, which is expressed as

pe =
∑

Ed (t). (33)

where pe is the aggregate improved training error of par-
allel units in the LSTM neural network. The Algorithm 1
first copies master LSTM weights into parallel unit private
variables. Each parallel unit then completes LSTM training
and iteratively ascertains weights. Finally, this algorithm uses
Eq.(33) to compute the parallel unit error pe, and find parallel
unit weights with a minimum pe as master weights.

VI. PERFORMANCE EVALUATION
To assess the performance of our proposed improved LSTM
neural network prediction model, we conducted experi-
ments on a SuperMicro 8046B-TRF with an eight-core Xeon
X7550. The training and evaluation workload data came from
the Shanghai Supercomputer Center actual active cores over
300 days [27]. This large-scale computing system has 9000
cores [27]. We used the first 290 days sample for training
the improved LSTM neural network prediction model and its
parallel algorithm, and time series data for the next 10 days
was directed toward evaluation.

This work compares the improved LSTM neural network
prediction model with traditional LSTM [13] to evaluate its
effectiveness in large-scale computing systems. Mean square
error (MSE) is used as a loss function to evaluate these
models [12], [13], which is given as:

MSE =

∑T
t=1(ŷ

t
− yt )2

T
. (34)

where T is the number of time series in evaluation phase.
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FIGURE 4. Various learning rate experimental results.

A. VARIOUS LEARNING RATE
In the first set of experiments, we evaluated the performance
for various learning rates α with our proposed improved
LSTM prediction model. Fig. 4 indicates the experimental
results for computing systems when varying the learning
rate α from 20 to 240, using steps of 20. We observe from
Fig. 4 that the mean square error (MSE) decreases as the
learning rate α increases from 20 to 160. However, as α con-
tinues to increase, the performance of our proposed prediction
model deteriorates (MSE increases). Therefore, we think that
the optimal learning rate α is 160. In the subsequent exper-
iments, we used the learning rate of α = 160 to compare
performance.

B. THE IMPROVED LSTM PERFORMANCE RESULTS
The second set of experiments attempted to compare the
improved LSTM prediction model with traditional LSTM,
with the results shown in Fig. 5. The performance evaluation

TABLE 2. Parallel improved LSTM experimental results.

data was the actual workload within the Shanghai Supercom-
puter Center from 2/11/2018 to 2/20/2018.

From Fig. 5, we can conclude that our proposed improved
LSTM neural network prediction model performs better than
a traditional LSTM. In fact, the average error for the improved
LSTM compared with real-world workload is 6.26%, while
the corresponding metric for a traditional LSTM is 19.25%.
Therefore, our proposed improved LSTM outperforms tradi-
tional LSTMby 67.5%. The performancemetric mean square
error (MSE) also supports this conclusion. Indeed, the MSE
of the improved LSTM prediction model is 0.019 and while
the corresponding value for a traditional LSTM is 0.042.
Therefore, our proposed improved LSTM outperforms a tra-
ditional LSTM by 54.8% in terms of mean square error. This
improvement is mainly attributable to the adoption in the
improved LSTM of a two-dimensional time series LSTM
neural network cell structure, which is very suitable to the
workload characteristics in large-scale computing systems.

C. THE PARALLEL MODEL PERFORMANCE COMPARISON
This Section attempts a comparative analysis of our proposed
parallel improved LSTM prediction model. We conducted
these experiments on a multi-core processor and varied cores
from 2 to 8, in steps of 2. Table 2 lists the Speedup in the par-
allel improved LSTM. The Speedup is computed by dividing
the serial algorithm execution time by the parallel algorithm
execution time, which is a standard performance evaluation

FIGURE 5. The improved LSTM performance comparisons.
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metric for parallel algorithms. From Table 2, we observe that
the proposed parallel improved LSTM prediction model can
yield an improvement in Speedup of 4.76 times over a serial
algorithm as the number of cores reaches 8.

FIGURE 6. The experimental results of parallel and serial improved LSTM.

The other performance comparison focuses on the accu-
racy of these two algorithms. The experimental results are
shown in Fig. 6, with as plot of the daily mean square error for
30 days of evaluation. We observe from Fig. 6 that the MSE
for parallel and serial improved LSTM prediction models
are also similar. In fact, the total MSE for serial algorithms
is 0.574802, while it reaches 0.5963 for the parallel algo-
rithm. It appears that the parallel improved LSTM prediction
model is inferior to the serial algorithm by a narrow margin
of 3.6%. We believe achieving a higher workload prediction
speed while only suffering amoderate loss in prediction accu-
racy is very valuable in the context of resource management
for large-scale computing systems.

VII. CONCLUSIONS AND FUTURE WORK
Resource management and workload prediction have always
been challenges in large-scale computing systems. In this
study, we attempted to improve the effectiveness of resource
management by enhancing the precision of workload pre-
diction. To achieve this goal, we first analyzed the interde-
pendence in historical workload information for large-scale
computing systems and built a day and time two-dimensional
time series workload model. We then proposed an improved
LSTM neural network prediction model using an LSTM cell
structure aimed at a two-dimensional time series and its
corresponding mathematical description. Finally, a parallel
improved LSTM algorithm was proposed using a hidden
layer based on weekly dependence and weights W , UD, UH
for the parallelization algorithm.

The performance of the improved LSTM workload pre-
diction model was evaluated with the actual workload of the
Shanghai Supercomputer Center over 300 days. The exper-
imental results clearly confirmed the superior performance
of the proposed improved LSTM over a traditional LSTM.

In particular, the parallel improved LSTM can yield better
workload prediction accuracy and faster prediction speed on
large-scale computing systems.

This work is one of the first attempts to use neural networks
to forecast computing systems workload. It will be interest-
ing in future studies to explore managing system resources,
energy, and user jobs based on workload prediction.
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