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ABSTRACT In this paper, an improved extended state observer (ESO) based on sigmoid function and a
finite-time convergence attitude controller are designed for reusable launch vehicle (RLV) in the re-entry
phase. First, a control-oriented model (COM) of the RLV is established. According to the singular pertur-
bation theory, the RLV control system is divided into an outer-loop and inner-loop subsystems. Second,
a sigmoid function ESO (SESO) is proposed to estimate the model uncertainties and external disturbance
caused by the large attitude maneuver and complicated external environment during the RLV re-entry
phase. The continuous differentiable sigmoid function has the significant ability in noise suppression.
By selecting the proper Lyapunov function, the stability of the SESO is proved. Then, based on the sliding
mode control (SMC) theory, an improved multivariable super-twisting high-order sliding mode controller is
designed. The finite-time convergence for the whole system is proven by the Lyapunov function technology.
Finally, a 6-degree-of-freedom (6-DOF) RLV model is utilized to simulate to verify the effectiveness and
robustness of the proposed control scheme.

INDEX TERMS Reusable launch vehicle, extended state observer, sliding mode control, super-twisting,
re-entry phase.

I. INTRODUCTION
The research on reusable launch vehicle has received much
attention because of its cost-efficient and reliable as an acces-
sible approach to aerospace for both military and civilian
application during the last few decades. During the re-entry
phase, the RLV’s velocity varies from Mach 20 to Mach 3,
and it turns back with large attitude maneuver [1]. Therefore,
a novel controller, which can be robust to the disturbance
and uncertainty caused by bad flight condition, should be
designed [2]. To sum up, the purpose of the RLV controller
during the re-entry phase is to track the guidance command
fast and accurately with the disturbance and model uncer-
tainty.

During the past several years, many control algorithms
have been applied to the RLV controller design during
the re-entry phase, such as gain scheduling [3], nonlin-
ear dynamic inversion [4], back-stepping control [5], and
linear parameter varying [6], neural control [7], H-infinity
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control [8]. Although these control methods above can track
the guidance command, the control ability is insufficient
when the system exists severe uncertainty and external dis-
turbance. Sliding mode control (SMC) has the significant
advantage of dealing with the problems [9]. For the SMC,
chattering is a problem need to be solved. Some techniques
have been applied into SMC to fill the gap, such as adaptive
law, disturbance observer and so on. In order to overcome
the disadvantages of the conventional sliding mode reaching
law, such as the large chattering and the slow convergence
rate, an improved quick reaching law based on the global
terminal sliding mode control is proposed for the unmanned
surface vehicle in [10]. For solving the unsatisfactory con-
trol capability of a bearingless induction motor (BIM) under
parameter variations, external disturbance, and load muta-
tion, an adaptive exponential sliding mode controller and
an extended sliding mode disturbance observer for on-line
identification of system disturbance variables are designed
in [11]. The stabilization is investigated about fuzzy stochas-
tic singular systems by the use of sliding-mode control (SMC)
in [12]. A sliding mode controller is developed in [13]
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to assure tracking of guidance commands, and the interval
type-2 fuzzy logic systems combined with adaptive tech-
nique are employed to approximate the nonlinear parts to
improve the reentry attitude tracking performance. In [14],
a novel controller called adaptive iterative learning sliding
mode (AILSM) is developed to control linear and nonlin-
ear fractional-order systems. Finite-time convergence control
strategies based on adaptive non-singular fast terminal sliding
mode are proposed for spacecraft attitude tracking subject
to actuator faults, actuator saturation, external disturbances
and inertia uncertainties [15]. To deal with the adaptive
sliding-mode control problem for nonlinear active suspension
systems via the Takagi-Sugeno (T-S) fuzzy approach [16].
A sliding mode control scheme in the framework of the back-
stepping technique is designed in [17]. A novel finite-time
controller which is derived using the bi-limit homogeneous
technique for a system with both matched and mismatched
disturbances is designed in [18]. In [19], a neural network
(NN)-based multivariable fixed-time terminal sliding mode
control (MFTTSMC) strategy for re-entry vehicles (RVs)
with uncertainties is developed.

Recently, the high-order sliding mode (HOSM) control
algorithm is carried out as a solution to attenuate the chat-
tering [20]. One of the most widely used in HOSM method
is the super-twisting algorithm (STA) [21]. Compared with
other HOSM algorithm, STA does not employ sliding surface
derivatives. A multivariable STA is proposed based on the
STA, which has better feature [22]. A novel estimation for
the upper bound of the super-twisting algorithm’s reach-
ing time the presence of perturbations is presented [23].
A gain-adaption mechanism of a dual level to the super-
twisting algorithm (STA) for adaptive sliding mode design
is studied in [24]. The development of two nonlinear robust
higher-order flight control laws, a discontinuous sliding
mode (DSM) control and super-twisting continuous con-
trol law, for roll-coupled maneuvers of fighter aircraft with
uncertain parameters is discussed in [25]. Nagesh, Indira,
and C. Edwards propose a multivariable super-twisting slid-
ing mode structure which represents an extension of the
well-known single input case [26]. The STA is also applied
in the hypersonic vehicle in [27] and [28]. An adaptive
super-twisting algorithm is incorporated with its observer
counterpart on the system under consideration to get reliable
attitude and vibration control in the presence of sensor noise
and momentum coupling [29]. An adaptive twisting algo-
rithm is proposed for systems subject to disturbances with
unknown bounds and it can also avoid the aggressive chatter-
ing [30]. The RLV attitude model during the re-entry shows
the obvious multivariable characteristic. A multivariable STA
is well suited to solve the problem.

Disturbance observer based control is another impor-
tant way to improve the disturbance suppression perfor-
mance [31]. There are many nonlinear disturbance observers,
such as slidingmode disturbance observer [11], high gain dis-
turbance observer [32]. A uniform robust exact disturbance
observer (UREDO) and a fixed-time controller for reusable

launch vehicles are investigated in [33]. Extended state
observer (ESO) as an important part of active disturbances
rejection control proposed by Prof. Han, can estimate the
state variables [34]. Combined with the reduced-order ESO,
the approach of back-stepping and linear matrix inequality,
an anti-disturbance controller is designed in [35]. Because of
the sign function is used in the ESO, the output of ESO may
not be smooth. In response to this issue, a sigmoid function
is applied instead of sign function.

The key contributions of this paper are summarized as
follows:

1) A sigmoid extended state observer (SESO) is designed.
By using the sigmoid function instead of the sign function,
the SESO has better application in the engineering;

2) A finite-time attitude controller based on multivariable
super-twisting sliding mode is proposed. By using a fast
terminal sliding mode manifold and a fast continuous super-
twisting law, the controller can track the guidance attitude
command accurately and efficiently, meanwhile attenuate the
chattering.

The paper is organized as follows: the 6-DOF control-
oriented model of RLV during the re-entry phase is estab-
lished in Section II. Then the sigmoid extended state observer
of the inner-loop and outer-loop subsystem is designed in
Section III, and its estimation error is proved to converge
to zero. Then, the multivariable super-twisting sliding mode
controller of the inner-loop and outer-loop subsystem is pro-
posed in Section IV, and it is proved to converge in finite
time. Afterward, the simulation results are analyzed to verify
the effectiveness of the control scheme in Section V. Finally,
the conclusion is drawn in Section VI.

II. ATTITUDE MODELING OF RLV
During the re-entry flight phase, the RLV control system
should track the attitude command accurately. The launch
coordinate and the body coordinate are shown in Fig. 1.The
origin o of the launch coordinate is selected as the launch
position. ox points to the launch direction, oy points to the
upwards vertical local level, and oz constitute the right hand
system with ox, oy. The origin o1 of the body coordinate is
selected as the centroid of the RLV. o1x1 points to the forward
direction of the body axis, o1y1 is in the symmetry plane
of the RLV, and o1z1 constitute the right hand system with
o1x1, o1y1. The RLV dynamics and kinematics model in the

FIGURE 1. 6-DOF model of the rigid-body RLV.
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re-entry phase is as follows, where the RLV is considered as
a rigid body [1], [36]:

α̇ = (cos θ cos γvG− qSCαy α)/mV cosβ

− tanβ cosαωx + tanβ sinαωy + ωz
β̇ = −(qSCβz β + cos θ sin γvG)/mV

+ sinαωx + cosαωy
γ̇ = ωx + tanψ sin γωy + tanψ cos γωz (1)

ω̇x = [qSb(mβx + b(m
ωy
x ωy + mωxx ωx)/2V )

− (Jz − Jy)ωyωz]/Jx +Mcx/Jx
ω̇y = [qSb(mβy + b(m

ωy
y ωy + mωxy ωx)/2V )

− (Jx − Jz)ωxωz]/Jy +Mcy/Jy
ω̇z = [qSb(mωzz ωz + m

α
z α)/2V − (Jy − Jx)ωxωy]/Jz

+Mcz/Jz (2)

where α is the angle of attack(AOA); β is the sideslip angle;
γ is the roll angle; θ is the trajectory inclination angle;
γv is the bank angle; G represents the gravity of RLV;
q = 1

2ρV
2 is the dynamic pressure; ρ is the air density; S

is the reference area; m is the mass of RLV; V is the velocity
of RLV; ωx , ωy, ωz are the angular velocities of RLV’s body
coordinate rotation from launch coordinate respectively; ψ
is the yaw angle; b is the reference length; Mcx ,Mcy,Mcz
are the control torques of the roll, yaw and pitch chan-
nel; Cαy ,C

β
z are the corresponding aerodynamic coefficients;

mβx ,m
ωy
x ,m

ωx
x ,m

β
y ,m

ωy
y ,m

ωx
y ,m

ωz
z ,mαz are the aerodynamic

moment coefficients; J = diag(Jx , Jy, Jz) is the mass inertia
matrix of the vehicle.

In equation (1) and (2), there are strong nonlinearity and
coupling between different channels, that bring difficulties
for the attitude controller design. Thus, a control-oriented
model (COM) [1] is established based on the following
assumptions: 1) since the translational motion is much slower
than the rotational motion of the RLV, the translational terms
in the rotational equations can be set to zero; 2) since the
RLV is much faster than Earth in rotational motion, the
angular velocity of Earth can be neglected. Based on the two
assumptions, the COM can be obtained as follows:

�̇ = Rω +1f

ω̇ = J−10 8J0ω + J−10 M +1d (3)

where � = [α, β, γ ]T is the attitude angular vector,
ω = [ωx , ωy, ωz]T is the angular velocity vector, M =

[Mcx ,Mcy,Mcz]T is the control torque vector,1f is the model
uncertainty vector caused by the simplification and the influ-
ence of channel coupling, and1d is the external disturbance
torque vector. The matrix R, J0, and 8 are as follows:

R =

− tanβ cosα tanβ sinα 1
sinα cosα 0
1 tanψ sin γ tanψ cos γ


J0 =

 Jx 0 0
0 Jy 0
0 0 Jz

, 8 =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

.

III. SIGMOID EXTENDED STATE OBSERVER
According to singular perturbation theory, RLV control sys-
tem is divided into outer-loop and inner-loop subsystems. The
control system scheme is shown in Fig. 2:

FIGURE 2. The finite-time control scheme for RLV.

A. OUTER-LOOP SESO DESIGN
Considering the COM of the RLV during the re-entry phase
in equation (3), the sigmoid extended state observer (SESO)
is designed to estimate the model uncertainties and external
disturbance.

It is assumed that the derivative of the model uncertainty
vector is bounded, i.e.

∥∥1ḟ ∥∥ ≤ $1,$1 > 0. Define the error
variables: {

z1 = �−�d

z2 = ω − ωd
(4)

Then the SESO of the outer-loop subsystem is designed as
follows:{
˙̄z11 = Rω − �̇d + z̄12 − βs1sigm(E11;E11a,E11b)
˙̄z12 = −βs2sigm(E11;E11a,E11b)

(5)

where E11 = z̄11 − z1, E11 ∈ R3×1, z̄11 ∈ R3×1, βs1
and βs2 are parameters to be designed, sigm(E11;E11a,E11b)
is the sigmoid function. The sigmoid function is defined as
sigm(x) = sigm(x; a, b) = a[(1+e−bx)−1−0.5]. To simplify,
the sigm(E11;E11a,E11b) is recorded as sigm(E11) in the
following derivation process.

By selecting the observer parameters βs1 and βs2 appropri-
ately, the extended state z̄12 will approach1f . The parameters
need to design is shown in Table 1.

TABLE 1. Range of parameters.
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Theorem 1: Considering the SESO of equation (5), if the
extended state ˙̄z12 is unknown but bounded, the parameters

E11a > 2

√√√√
(
4$ 1

√
4I + β2

s1

βs2λmin(QSESO)
)2 − sigm2(E11),

E11b = βs2/ε, 0 < βs1 <
√
8
√
2+ 12I, ε > 0,βs2 > 0,

the observation vector error will converge to zero.
Proof: Define E12 = z̄12 − 1f , combine equation (4)

and equation (5), the error dynamic system can be written as:Ė11 = E12 − βs1sigm(E11)

Ė12 = −βs2sigm(E11)−1ḟ
(6)

Selecting the Lyapunov function as:

L11 = sigm2(E11)+ (
βs1

2
sigm(E11)− E12)2

= (
β2
s1

4
+ 1)sigm2(E11)+ E2

12 − βs1sigm(E11)E12

= κTPSESOκ (7)

where κ = [sigm(E11;E11a,E11b),E12]T ,

PSESO =
1
2

 β2
s1

2
+ 2 −βs1

−βs1 2

 .
The derivative of the sigmoid function is:

d[sigm(E11)]
dt

= [
E11b

E11a
(
1
4
E2
11a − sigm2(E11))]Ė11 (8)

The derivative of equation (7) is:

L̇11 = 2(
β2
s1

4
+ 1)sigm(E11)

E11b

E11a
(
1
4
E2
11a

−sigm2(E11))Ė11 + 2E12Ė12 − βs1
E11b

E11a
(
1
4
E2
11a

−sigm2(E11))Ė11E12 − βs1 sigm(E11)Ė12 (9)

It can be obtained by substituting equation (6) into equa-
tion (9) that:

L̇11 = (−
ε

4
E11bβ

3
s1 − εE11bβs1 + βs1βs2)sigm

2(E11)

+(
ε

2
E11bβ

2
s1 − 2β2 +

ε

4
β2
s1E11b

+εE11b)sigm(E11)E12 − βs1
ε

2
E11bE2

12 − 2E12$ 1

+βs1sigm(E11)$ 1 (10)

where ε = −
β2s1+4I−E

2
11a

2E11a
, and E11b = βs2ε

−1, then:

L̇11 = −
1
4
βs2κ

TQSESOκ +$ 1B̄κ (11)

where QSESO =
1
2

[
2β3

s1 4I − 3β2
s1

4I − 3β2
s1 4βs1

]
, B̄ =

[
βs1
−2I

]T
.

To ensure that QSESO > 0, then

0 < βs1 <
√
8
√
2+ 12I . Then:

L̇11 = −
1
4
βs2κ

TQSESOκ +$ 1

√
4I + β2

s1κ

≤ −(
1
4
βs2λmin(QSESO) ‖κ‖2 −$

√
4I + β2

s1) ‖κ‖
2

(12)

If βs2λmin(QSESO) ‖κ‖2 /4I > $ 1

√
4I + β2

s1, then
L̇11 < 0, which shows that the error converges. For ‖κ‖22 =
sigm2(E11)+ E2

12, sigm
2(E11) ≤ E2

11a/4I , then:

|E12| =

√
‖κ‖22 − sigm2(E11)

≤

√√√√
(
4$ 1

√
4I + β2

s1

βs2λmin(QSESO)
)2 − sigm2(E11) (13)

Choosing the Lyapunov function as L12 = 1
2E11ET11, its

derivative is as follow:

L̇12 = E11Ė11 = −βs1E11 sigm(E11)+ E11E12

≤ −βs1E11sigm(E11)

+ |E11|

√√√√
(
4$ 1

√
4I + β2

s1

βs2λmin(QSESO)
)2 − sigm2(E11)

(14)

For sigm(E11) ∈ (−0.5E11a, 0.5E11a), then select proper
βs1 that makes:

∥∥βs1sigm(E11)
∥∥ >

√√√√
(
4$ 1

√
4I + β2

s1

βs2λmin(QSESO)
)2 − sigm2(E11)

Then L̇12 < 0, i.e. L̇12 is negative definite.

B. INNER-LOOP SESO DESIGN
According to the similar design method above, suppose that
‖1d‖ ≤ $ 2, $ 2 > 0, then the SESO of the inner-loop can
be obtained as:{

˙̄z21 = J−10 8J0ω − ωd + z̄22 − β f 1sigm(E21)
˙̄z22 = −β f 2sigm(E21)

(15)

where E21 = z̄21 − z2 is the estimation error. According to
Theorem 1, if the parameters β f 1,β f 2 are selected properly,
the extended state z̄22 will converge to 1d .

IV. MULTIVARIABLE SUPER-TWISTING SLIDING MODE
CONTROLLER DESIGN
The attitude guidance command is�d , and the angular veloc-
ity guidance command is ωd , the attitude tracking error is:

e� = �−�d (16)

The derivative of (16) is:

ė� = �̇− �̇d = Rω +1f − �̇d (17)

The derivative of (17) is:

ë� = �̈− �̈d = RJ−10 8J0ω − �̈d + RJ−10 M + D (18)

where D = Ṙω + R1d +1ḟ .
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The angular velocity tracking error is:

eω = ω − ωd (19)

The derivative of (19) is:

ėω = ω̇ − ω̇d = J−10 8J0ω + J−10 M +1d − ω̇d (20)

A. OUTER-LOOP CONTROLLER DESIGN
Choosing the super-twisting sliding mode surface as:

s� = e� + k�

∫ t

0
snγ� (e�)dτ (21)

where snγ (e) = [|e1|γ sat(e1), |e2|γ sat(e2), |e3|γ sat(e3)]T ,
k� > 0, 0 < γ� < 1. Define the saturation function as
follows:

sat(s) =


1, s > ε

s/ε, |s| < ε

−1, s < −ε.

Differentiating equation(21), we can get:

ṡ� = ė� + k�snγ� (e�)

= Rω −�d +1f + k�snγ� (e�) (22)

To weaken the chattering and reach the sliding mode man-
ifold fast, a novel multivariable super-twisting control law is
designed as follows [9], [26]:

ṡ� = −k�1
s�
‖s�‖1/2

− k�2s� + χ�

χ̇� = −k�3
s�
‖s�‖

− k�4s� (23)

where χ� is an auxiliary variable vector. Substituting equa-
tion (23) into equation (22), the control law can be obtained
as:

ωc = R−1[−�̇d − k�snγ� (e�)− k�1
s�
‖s�‖1/2

−k�2s� −1f̂ + χ�]

χ̇� = −k�3
s�
‖s�‖

− k�4s� (24)

Theorem 2: Considering the nonlinear system (3), assume
that ν = Ṙeω + ėf satisfies ‖ν‖ ≤ δ1 ‖s‖, δ1 > 0. If the
control law is designed as equation (24), there exist certain
values for k, k�1, . . . , k�4 and γ� that makes the tracking
error e� converge to zero in finite time.

Proof: Substituting equation (24) to (22), it can be
obtained that:

ṡ� = −k�1
s�
‖s�‖1/2

− k�2s� + χ� + ν

χ̇� = −k�3
s�
‖s�‖

− k�4s� (25)

Selecting the Lyapunov function as:

V s = 2k�3 ‖s�‖ + k�4sT�s� +
1
2
χT�χ� +

1
2
ζ T ζ (26)

where ζ = k�1
s�

‖s�‖1/2
+ k�2s� − χ�.

Differentiating equation (26):

V̇ s =

(
1
2
k2�1 + 2k�3

)
sT�ṡ�
‖s�‖

+

(
k2�2 + 2k�4

)
sT�

+2χT�χ̇� +
3
2
k�1k�2

sT�ṡ�
‖s�‖1/2

− k�2(ṡT�χ�

+sT�χ̇�)− k�1

[
χ̇T�s� + χ

T
�ṡ�

‖s�‖1/2
−

1
2
(sT�ṡ�)(χ

T
�s�)

‖s�‖5/2

]
(27)

Substituting χ�, ζ� into equation (27):

V̇ s

=−

(
k�1k�3+

1
2
k31

)
‖s�‖1/2−

(
k�2k�3+2k2�1k�2

)
‖s�‖

−

(
k3�2+k�2k�4

)
‖s�‖2−

(
5
2
k�1k2�2+k�1k�4

)
‖s�‖3/2

+ k2�1
sT�χ�
‖s�‖

+ 2k2�2s
T
�χ� + 3k�1k�2

sT�χ�
‖s�‖1/2

− k�2
∥∥χ�∥∥2 + 1

2
k�1

(sT�χ�)(χ
T
�s�)

‖s�‖5/2
− k�1

χT�χ�

‖s�‖1/2

+

(
1
2
k2�1 + 2k�3

)
sT�υ
‖s�‖

+

(
k2�2 + 2k�4

)
sT�υ

+
3
2
k�1k�2

sT�υ

‖s�‖1/2
+

1
2
k�1

(sT�υ)(χ
T
�s�)

‖s�‖5/2

− k�1
χT�υ

‖s�‖1/2
− k�2υTχ� (28)

According to the Cauchy-Schwarz inequality, the equa-
tion (28) can be transformed to:

V̇ s≤−

(
k�1k�3+

1
2
k31

)
‖s�‖1/2−

(
k�2k�3+2k2�1k�2

)
‖s�‖

−

(
k3�2+k�2k�4

)
‖s�‖2−

(
5
2
k�1k2�2+k�1k�4

)
‖s�‖3/2

+ k2�1

∣∣sT�χ�∣∣
‖s�‖

+2k2�2
∣∣∣sT�χ�∣∣∣+ 3k�1k�2

∣∣sT�χ�∣∣
‖s�‖1/2

−k�2
∥∥χ�∥∥2+ 1

2
k�1

∣∣sT�χ�∣∣2
‖s�‖5/2

+k�1

∥∥χ�∥∥2
‖s�‖1/2

+

(
1
2
k2�1 + 2k�3

) ∣∣sT�υ∣∣
‖s�‖

+

(
k2�2 + 2k�4

) ∣∣∣sT�υ∣∣∣
+
3
2
k�1k�2

∣∣sT�υ∣∣
‖s�‖1/2

+
1
2
k�1

∣∣sT�υ∣∣ ∣∣χT�s�∣∣
‖s�‖5/2

+k�1

∣∣χT�υ∣∣
‖s�‖1/2

+k�2
∣∣∣υTχ�∣∣∣ (29)
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With the bound of ‖υ‖ ≤ δ1 ‖s‖, the equation (29) can be
converted to:

V̇ s

≤−

(
k�1k�3 +

1
2
k31

)
‖s�‖1/2−

(
k�2k�3+2k2�1k�2

)
‖s�‖

−

(
k3�2+k�2k�4

)
‖s�‖2−

(
5
2
k�1k2�2+k�1k�4

)
‖s�‖3/2

+ k2�1

∣∣sT�χ�∣∣
‖s�‖

+2k2�2
∣∣∣sT�χ�∣∣∣+ 3k�1k�2

∣∣sT�χ�∣∣
‖s�‖1/2

− k�2
∥∥χ�∥∥2 + 1

2
k�1

∣∣sT�χ�∣∣2
‖s�‖5/2

+ k�1

∥∥χ�∥∥2
‖s�‖1/2

+

(
1
2
k2�1 + 2k�3

)
δ1 ‖s�‖ +

(
k2�2 + 2k�4

)
δ1 ‖s�‖2

+
3
2
k�1k�2δ1 ‖s�‖3/2 +

3
2
k�1δ1 ‖s�‖1/2

∥∥χ�∥∥
+ k�2δ1 ‖s�‖

∥∥χ�∥∥ (30)

Define X =
[
‖s�‖1/2 , s�,χ�

]T
, then:

V̇ s ≤ −
1

‖s�‖1/2
XTPX − XTQX (31)

where P,Q are as follows:

P =

P11 0 P13
0 P22 P23
P31 P32 P33

with the elements are:

P11 =
1
2
k3�1 + k�1k�3

P13 = −
1
2
k2�1

P22 = k�1k�4 +
5
2
k2�2k�1 −

3
2
k�1k�2δ1

P23 = −
3
2
k�1k�2

P31 = P13
P32 = P23

P33 =
1
2
k�1

Q =

Q11 0 Q13
0 Q22 Q23
Q31 Q32 Q33

with the elements are:

Q11 = k�2k�3 + 2k2�1k�2 −
(
1
2
k2�1 + 2k�3

)
δ1

Q13 = −
3
4
k�1δ1

Q22 = k�2k�4 + k3�2 − (k2�2 + 2k�4)δ1

Q23 = −k2�2 −
1
2
k�2δ1

Q31 = Q13

Q32 = Q23

Q33 = k�2

In order to make P > 0 and Q > 0 satisfied simultane-
ously, the parameters are selected as:

k�1 > 0

k�2 > 2δ1

k�3 >
9
16 (k�1δ1)

2

k�2(k�2 − 2δ1)
+

1
2k

2
�1δ1 − 2k2�1k�2
k�2 − 2δ1

k�4 >

(
1.5k2�1k�2 + 3δ1k�2

)2
k2�1k�3 − 2δ21 − 3δ1k2�1

+ 2k2�2

(32)

From equation (31), by utilizing the Rayleigh’s inequality,
it can be obtained that:

V̇ s ≤ −
1

‖s�‖1/2
XTPX ≤ −

1

‖s�‖1/2
λmin(P) ‖X‖2 (33)

Define ς = [ s�
‖s�‖1/2

, s�,χ�]
T , and it is obvious that

‖X‖ = ‖ς‖. Thus the equation (33) can be written as:
V̇ s ≤ −

1
‖s�‖1/2

λmin(P) ‖ς‖2. The Lyapunov function of
equation (26) can be rewritten as:

V s = ς
T4ς ≤ λmax(4) ‖ς‖2 (34)

where the symmetric positive-definite matrix 4 is:

4 =
1
2


4k�3 + k2�1 k�1k�2 −k�1

k�1k�2 2k�4+k2�2
−k�2

−k�1 −k�2 2

.
Thus the equation (33) can be transferred to the following

form:

V̇ s ≤ −
1

‖s�‖1/2
λmin(P) ‖X‖2 ≤ −

1

‖s�‖1/2
λmin(P)
λmax(4)

V s

(35)

Then Vs ≤ −σV
1/2
s , where σ = λmin(P)

√
λmin(4)

λmax(4) .
It can be concluded that if the parameters k�1, . . . , k�4 are

selected appropriately, s� and its derivative can converge to

zero in finite time ts� ≤
2V 1/2

s (0)
σ

[23].
Afterward, to make ṡ� converge to zero, that is:

ė� + ksigγ� (e�) = 0 (36)

Choosing the positive-definite Lyapunov function:

V e =
1
2
eT�e� =

1
2

3∑
i=1

e2i (37)

The derivative of equation (37) is:

V̇ e =

3∑
i=1

eiėi = −k�
3∑
i=1

snγ�ei = −k�
3∑
i=1

|ei|γ�

≤ −k�
3∑
i=1

|ei|γ�+1 ≤ −k�

(
3∑
i=1

e2i

) γ�+1
2

=−k�V
γ�+1

2
e

(38)
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From the above in equation, if the parameters k�, γ� are
selected properly, e� can converge to zero in finite time te� ≤
‖e(0)‖

1−γ�

(1−γ�)k
. Some details can be found in [23].

Finally, e� can converge to zero in t� = ts� + te� .

B. INNER-LOOP CONTROLLER DESIGN
The inner-loop controller is to design the control torqueM to
make ω tracking the guidance command ωd , considering the
external disturbance 1d .

Considering the design method of the outer-loop, the fast
terminal sliding mode manifold is defined as:

sω = eω + kω

∫ t

0
snγω (eω)dτ (39)

where kω > 0, 0 < γω < 1.
The derivate of the above equation is:

ṡω = J−10 8J0ω + J−10 M +1d − ω̇d + kωsnγω (eω) (40)

Substituting the equation (40) into the equation (23),
the control law can be obtained as follows:

M = J0[J−10 8J0ω − kωsnγω (eω)− kω1
sω
‖sω‖1/2

− kω2sω −1d + χω]

χ̇ω = −kω3
sω
‖sω‖

− kω4sω (41)

According to the proof of the Theorem 2, if the parameters
kω, kω1, . . . , kω4 and γω are selected properly, sω, ṡω will
converge to zero in finite time tsω , and eω converges to zero
in finite time teω . Hence, eω can converge to zero in tω =
tsω + teω .

V. SIMULATION ANALYZE
This section presents the simulation and results analysis of the
proposed control scheme. In order to verify the effectiveness
of the SESO proposed in Section III, according to [8], a com-
pared ESO based on the super-twisting algorithm is designed
as follows:

˙̄z11 = Rω − �̇d + z̄12 − βz1sign
(a+1)/2(z11 − z̄11)

−βz2(z11 − z̄11)
¯̇z12 = −βz3sign

a(z11 − z̄11)− βz4(z11 − z̄11)
(42)

Change the multi-variable system (5), (42) to three same
structure SISO system, and choose one system to verify the
performances of the two kinds of ESO. The parameters of the
super-twisting extended state observer (STESO) are selected
as βz1 = 5, βz2 = 20, βz3 = 1.5, βz4 = 150, a = 0.5.
The parameters of the SESO are selected as βs1 = 4, β2 =
18,E11a = 2,E11b = 18, and the actual disturbance is set as:

1f =


0 0 ≤ t < 10
cos(20) 10 ≤ t < 20
cos(t) t > 20,

The simulation result is shown in Fig. 3. The result shows
that both the STESO and SESO can estimate the disturbance.

FIGURE 3. The STESO, SESO estimation results.

The maximum estimation errors of the two observers are
listed in Table 2. However, for the SESO utilizes the sigmoid
function instead of sign function, the SESO estimation error is
lower than the STESO, and the STESO has more parameters
to regulate without clear adjustment rules, the SESO is more
suitable for engineering application.

TABLE 2. The maximum estimation errors of the two observers.

Select the 6-DOF RLV during the re-entry phase as the
simulation model. The initial simulation conditions are set
as follows: the initial attitude of the re-entry phase is �0 =

[51.2452◦,−2.0498◦, 180◦], the initial angular velocity is
ω0 = [0, 0, 0](deg /s), the RLV trajectory is shown in Fig. 4,
the re-entry flight time is set as 500s, the step size is set as

FIGURE 4. The RLV trajectory.
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0.01s, the moment of inertia is:

J0 =

 56241 0 0
0 106 0
0 0 985392

 kg ·m2,

and the control parameters are set as Table 3. Inspired by
the controller proposed by [1], the compared controller is
consist of the controller of [1] and the STESO proposed by
equation (42).

TABLE 3. Value of parameters.

The simulation results are shown in Fig. 5-Fig. 9.

FIGURE 5. The attitude of controllers.

Fig. 5-Fig. 6 show the attitude � tracking curves and the
tracking errors of the proposed controller and the compared
controller. The compared controller is a finite-time super-
twisting controller based on the STESO. Themaximum errors
are shown in the Table 4. It can be seen that the maximum
errors of the proposed controller are 1.028◦, 0.18◦, 0.89◦,
while the maximum errors of the compared controller are
7.2◦, 0.8◦, 1◦. That’s because the SESO can estimate the

FIGURE 6. Attitude tracking errors of controllers.

FIGURE 7. Angular velocities of the proposed controller.

FIGURE 8. Control torques of the proposed controller.

external disturbance and model uncertainties more precisely
and compensate them. It is obvious that the big attitude of
RLV happens during 77s - 150s, and by using the super-
twisting algorithm, the proposed controller can effectively
suppress the chattering, while the compared controller has
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FIGURE 9. Velocities of the proposed controller.

TABLE 4. Attitude angle maximum errors of the two controller.

larger error and chattering. That’s because the proposed con-
troller can reach the sliding manifold fast. The proposed
outer-loop subsystem controller can converge in 1.6s.

The attitude angular velocities are shown in Fig. 7. From
that, it can be observed that the maximum angular velocities
are −24.18deg/s, 2.504deg/s, 4.859deg/s. When the RLV
has big attitude change during 77s-150s, the chattering is
small and acceptable. The proposed inner-loop subsystem
controller can converge in 1.8s.

Fig. 8 shows the control torque during the re-entry phase
of the RLV. It is obvious that the maximum control torque is
less than 4 × 105(N∗m), which is lower than the maximum
torque that the RLV can provide.

Fig. 9 shows the velocities of the RLV during the re-entry
phase. From the simulation results, it can be obviously seen
that the curves of the velocity are smooth without big chat-
tering. From that we can see that the proposed controller has
good ability in chattering suppression.

From the simulation result, we can draw the conclusion that
the controller proposed in this paper can track the guidance
command rapidly and precisely.

VI. CONCLUSION
In this paper, a novel controller is designed based on the
SESO to track the guidance command in finite time during
the RLV re-entry phase considering the model uncertainties
and external disturbances. The SESO is able to estimate the
uncertainties and disturbances precisely and rapidly for the
nonlinear RLV system. By applying the sigmoid function
instead of the sign function in the ESO, the outputs of the ESO
become smooth. The controller based on the multivariable

finite-time super-twisting sliding mode control can converge
in finite time and effectively suppressing the chattering simul-
taneously. The simulation results verify the effectiveness and
advantages of the control scheme.

The future work will be that an improved adaptive distur-
bance observer should be studied to deal with the circum-
stance that if the bounds of model uncertainty and external
disturbance are not known.
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