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ABSTRACT As the amount of Internet traffic increases due to newly emerging applications and their mali-
cious behaviors, the amount of traffic that must be analyzed is rapidly increasing. Many protocols that occur
under these situations are unknown and undocumented. For efficient network management and security,
a deep understanding of these protocols is required. Although many protocols reverse engineering methods
have been introduced in the literature, there is still no single standardized method to completely extract a
protocol specification, and each of the existing methods has some limitations. In this paper, we propose
a novel protocol reverse engineering method to extract an intuitive and clear protocol specification. The
proposed method extracts field formats, message formats, and flow formats as protocol syntax by using
a contiguous sequential pattern algorithm three times hierarchically and defining four types of the field
formats.Moreover, the proposedmethods can extracts protocol semantics and a protocol finite state machine.
The proposed method sufficiently compresses input messages into a small number of message formats
in order to easily identify the intuitive structure of an unknown protocol. We implemented our method
in a prototype system and evaluated the method to infer message formats of HTTP (a text protocol) and
DNS (a binary protocol). The experimental results show that the proposed method infers HTTP with 100%
correctness and 99% coverage. For DNS, the proposed method achieves 100% correctness and coverage.

INDEX TERMS Contiguous sequential pattern algorithm, network security, protocol reverse engineering.

I. INTRODUCTION
A. MOTIVATION
With the development of information technology (IT), the use
of Internet traffic has become more common and diverse,
and the traffic volume of Internet applications and mali-
cious behaviors using the network have rapidly increased.
Although many technologies for efficient network manage-
ment, such as software defined networking (SDN) and risk
management in cloud computation [1]–[3], are being stud-
ied, these can only be applied to the identified traffic. They
are not even applicable for unidentified traffic, but many
protocols that occur under these circumstances are unknown
and undocumented protocols. According to the report by
Sophos, IT managers cannot identify 45% of their organiza-
tion’s network traffic that belongs to unknown protocols [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Peter Langendorfer.

These protocols include proprietary protocols such as Skype
protocol, industrial communication protocols used in an
industrial control system (ICS) environment, or customized
protocols used in various types of attacks [5]. For efficient
networkmanagement and security, protocol reverse engineer-
ing, the act of extracting an unknown protocol specification,
is very important. Securing an unknown protocol specifica-
tion in the field of network monitoring implies that informa-
tion on unknown traffic occurring in the target network can be
acquired; thus, it is possible to classify the traffic generated
by these unknown protocols to identify the network usage
status, establish a network expansion plan, and control the
bandwidth for specific protocols [6]. In the field of network
security, it can be helpful in analyzing network vulnerabilities
or providing useful information to firewalls and intrusion
detection and prevention systems (IDSes/IPSes) for detecting
and blocking previously unknown attacks. In particular, many
prior studies of protocol reverse engineering have focused on
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analyzing the command and control (C&C) protocols used
in botnets. Protocol reverse engineering can also be used
for legacy software integration, intelligent DPI, penetration
testing, and building an application-aware fuzzer system [7].

B. PROBLEM STATEMENT
Many protocol reverse engineering methods have been intro-
duced in the literature, but there is still no single standardized
method to extract a protocol specification completely, and
each of the existingmethods has some limitations. Traditional
protocol reverse engineering methods are painstaking and
laborious tasks, so they are time-consuming and prone to
errors. To address these problems, many automatic protocol
reverse engineering methods have been proposed, but they
also have limitations in extracting well-trimmed message
formats.

First, many of the previous works cannot extract all of the
syntax, semantics, and finite state machine (FSM) that are
related to the three major elements of protocol. Second, some
existing methods cannot extract intuitive message formats.
They extract too many message formats, so they keep the
network analysts waiting. As a result, it is hard to intuitively
grasp the structure of the target unknown protocol. Third,
some existing methods extract unclear message formats.
When they extract a message format, they merely use a list
of static fields that have fixed lengths and static values, and
then they fill the blank parts between the static fields with
gap data that can have many values and lengths, resulting in
an incomplete message format.

C. CONTIRIBUTION
In this paper, we propose a novel protocol reverse engineering
method to extract a protocol specification using a contiguous
sequential pattern (CSP) algorithm.We aim to achieve several
important goals.
• Fully Automation. The proposed method does not
require any manual intervention.

• Abundant Specification.The proposedmethod extracts
protocol syntax, semantics, and FSM. These outputs
reflected all of the major element of protocol.

• Intuitive Specification. The proposed method suffi-
ciently compresses input messages into a small number
of message formats. As a consequence, the network
analysts can certainly identify the intuitive structure of
an unknown protocol.

• Clear Specification.We defined four types of field for-
mat. The proposedmethod extracts message formats that
are fully filled with these four types without any blank
part in the message formats. Beside, we defined three
types of formats which are field format, message format,
and flow format for deeper understanding of an unknown
protocol, and the proposed method extracts them as
protocol syntax using CSP algorithm hierarchically.

We implemented our method in a prototype system and
evaluated the method to infer message formats of HTTP
(a text protocol) and DNS (a binary protocol).

The remainder of this paper is organized as follows.
Section II describes the related works, and Section III
explains the CSP algorithm developed by us. Section IV
explains the overall design of the proposed protocol specifica-
tion extraction method in detail. In Section V, we discuss the
experimental results proving the superiority of the proposed
method. Finally, Section VI presents the concluding remarks
and future work.

II. RELATED WORKS
In this section, we describe approaches for protocol reverse
engineering with categorization, and we describe the existing
limitations of previous works.

A. PROTOCOL REVERSE ENGINEERING APPROACHES
The traditional approach for protocol reverse engineering
methods is manual; thus, it is incredibly labor-intensive
and error-prone. Two typical examples are the SAMBA
project [8] and the Pidgin project [9] for interoperability.
The SAMBA project took 12 years to generate a Microsoft
server message block (SMB) protocol specification. The
Pidgin project, a multi-platform integrated messenger client,
requires patching to support the target protocol whenever the
target protocol is changed, and it takes months. In today’s
high-speed network environment, these manual protocol
reverse engineering methods cannot cope with the emergence
and renewal of rapidly increasing applications or the evolu-
tion of various highly intelligent attacks.

In order to address these problems, automatic protocol
reverse engineering has been proposed over the past decade,
and has become a hot topic in the research field of network
management. Automatic protocol reverse engineering can be
categorized into two types: application-based and network
trace-based methods.

The application-based method uses source code or exe-
cution traces, which are files logging how the program
binary that implements the protocol processes messages.
Dispatcher [10] and Liu et al. [11] infers protocol syntax
based on the application-based method using dynamic taint
analysis. These are effective methods to infer the protocol
specification, but the program binary or its source code is
hardly available in real-world situations. For example, the
program binary of a malicious botnet C&C server is likely
to exist in an external network, not in the target network, and
the malicious server makes use of obfuscation interference
techniques to protect itself from being detected.

By contrast, the network trace-basedmethod ismore realis-
tic and among the most widely-used method, as it solely ana-
lyzes network traces captured by monitoring network packets
of the target protocol without access to the program binary.
Hence, in this paper, we focus on the network trace-based
method. These methods mainly fall in 1 of 3 approaches:
natural language processing, bioinformatics, and datamining.

ProDecoder [12], PRISMA [13], and Li et al. [14] are
based on algorithms originating from natural language pro-
cessing to identify protocol keywords by finding tokens that
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appear together frequently in messages. However, because
binary protocols typically pack data more densely and do not
use delimiters to distinguish protocol fields, these methods
are not suitable to infer a binary protocol specification.

PI [15], ScriptGen [16], Discoverer [17], and Netzob [18]
use sequence alignment techniques based on bioinformatics
to determine the similarity of messages and cluster them.
Then, they separate messages into the fields by identifying
the common parts among messages in the same cluster. The
amount of data has a significant impact on the quality of
protocol specification, but the multiple sequence alignment
has exponential complexity because the sequence alignment
algorithm always uses only two messages as input at a
time [19].

As for the methods using data mining techniques, they
are relatively recently proposedmethods. AutoReEngine [20]
consecutively uses the Apriori algorithm to extract proto-
col keywords and message formats. Wang et al. [21] and
Ji et al. [22] first use Aho-Corasick algorithm to extract
protocol keywords, and then extract the message formats
using a frequent pattern (FP)-growth algorithm. These data
mining techniques can possibly use all messages as input at
a time, contrary to sequence alignment, but they also have a
computational cost for candidate selection and yielding sup-
port values. Further, it is crucial to know how to optimize the
result to make the result an intuitive and clear specification.
This will be mentioned in the next part.

FieldHunter [23] and Ladi et al. [24] are state of the art
approaches. Both methods can extracts more specific types
of semantics than other previous works. They determine the
boundaries of the fields in each message type by inferenc-
ing the pre-defined semantics types. However, they do not
consider FSM and may extract too many message formats.

B. EXISTING LIMITATIONS
The fundamental goal of protocol reverse engineering is to
extract as much information as possible related to the three
major elements of protocol. These elements of protocol are
syntax, semantics, and timing, and they define what, how, and
when to communicate, respectively. Syntax refers to the for-
mat of data, including the order in which data is represented.
Semantics indicates the meaning of each region of data.
Timing has two characteristics, indicating when to transmit
data, i.e., the order in which they are transmitted, and how
fast to transmit. For results of protocol reverse engineering,
timing can be represented as an FSM, i.e., a finite state
automaton that expresses the occurrence order, occurrence
probability, and direction of message types through analyzing
the behavior ofmessages. However, as shown in Table 1, most
previous methods only extract some of the syntax, semantics,
and FSM of the protocol as a result.

Other existing limitations include the extraction of unin-
tuitive message formats or unclear message formats. In the
former case, although the number of inferred message for-
mats must be compressed enough to represent the unknown
target protocol for an effective understanding, many of

TABLE 1. Outputs of previous methods.

FIGURE 1. Example of an overly fragmented message format.

previous methods extract too many message formats; given
3500 HTTP messages, the number of extracted message for-
mats from Netzob [18] is 2500 when the similarity threshold
is set to 50%. Therefore, it is difficult for network analysts to
grasp the overall structure of the target protocol. Moreover,
these methods tend to excessively subdivide the message
format into too many fields, as shown in Fig. 1. Fig. 1 is
a notable example of an overly fragmented HTTP request
message format.

In the latter case, the inferred message format should be
separated by fields in succession, but many of the previous
methods extract message formats that are composed of only
static fields, and they refer to the blank part between two static
fields as the gap (some previous works call this the dynamic
field). Hence, network analysts receive unclear message for-
mats that have many blank parts. Fig. 2 shows this problem
by exemplifying the HTTP protocol.

In this paper, we propose a novel protocol reverse engi-
neering method to address above-mentioned limitations. The
proposed method extracts syntax, semantics, and FSM of the
target protocol, and it can extract intuitive message formats
by using a CSP algorithm hierarchically. Moreover, it can
extract clear message formats by extracting additional fields
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FIGURE 2. Examples of unclear message formats and clear message
formats.

using statistical techniques for blank parts in initial message
formats.

III. CONTIGUOUS SEQUENTIAL
PATTERN (CSP) ALGORITHM
In this section, we first explain the basic concept of the CSP
algorithm we developed, and then show how to apply CSP
algorithm hierarchically for protocol specification extraction.

A. BASIC CONCEPT OF CSP ALGORITHM
Data mining is the process of navigating and analyzing
meaningful patterns or rules in a vast amount of data in a
database. The knowledge that one can gain from data min-
ing includes association rules, classification rules, sequential
patterns, clustering rules, generalization rules, and similar-
ity search. One of the association rule mining algorithms,
the Apriori algorithm [25], is historically significant because
it is simple and easy to learn. It can reduce the number
of itemsets to be generated in each pass by reducing the
number of candidate itemsets; thus, it has spawned many
algorithms. These Apriori-like algorithms use the Apriori
principle, i.e., any subset of a frequent itemset must be fre-
quent, and also any superset of an infrequent itemset must be
infrequent. AprioriTID [26], a variation of the Apriori algo-
rithm, extracts the same output as the Apriori algorithm, but
reduces the computational complexity for yielding support of
itemsets.

Sequential pattern mining is a similar process to associa-
tion rule mining, but the main difference is that the purpose of
association rule mining is to extract frequently occurring con-
current itemsets, whereas the purpose of sequential pattern
mining is to extract frequently occurring time-series patterns.
Sequential pattern mining algorithms using the Apriori prin-
ciple include AprioriAll, AprioriSome [27], and Generalized
Sequential Pattern (GSP) [28]. GSP is an improved version of
AprioriAll that allows users to adjust gap constraints, sliding
time window constraints, and constraints on whether to allow
pattern discovery in different levels of a taxonomy, so it is
possible to extract patterns suitable for a user’s own interests.

Among these datamining techniques, the technique that we
need for inferring the specification of the unknown protocol is

sequential pattern mining. In particular, among the sequential
pattern mining algorithms, we need an algorithm to find con-
tiguous patterns that do not allow gaps in a pattern. The reason
is that a protocol message is a contiguous sequence of fields,
and a field is a contiguous sequence of bytes. In addition,
bymining the contiguous sequential patterns in messages that
occur in chronological order, it is possible to infer the order
in which the messages occur.

We developed an algorithm suitable for extracting a proto-
col specification, called CSP, whose goal is to find frequent
contiguous common subsequences. This algorithm is based
on the Apriori principle. It is a modified GSP algorithm with
gap constraints, whose minimum and maximum gaps are
zero to avoid gaps in patterns to be found. Moreover, it has
improved the computational complexity of the counting sup-
port by using the concept of AprioriTID, and it has improved
the computational complexity of the candidate generation
process by utilizing hash. In other words, the CSP algorithm
is an integrated version of the advantages of AprioriAll,
GSP, AprioriTID, and AprioriHash [29], [30]. The proposed
method uses CSP to extract field formats, message formats,
and flow formats.

FIGURE 3. Output of the contiguous sequential pattern (CSP) algorithm
and a simple sequential pattern mining algorithm.

A threshold, named the minimum support, is very sig-
nificant for this algorithm. The support for a target subse-
quence is defined as the ratio of sequences containing the
target subsequence to the total sequences. This algorithm
can obtain frequent contiguous patterns by extracting subse-
quences whose support is higher than the user-defined mini-
mum support. Fig. 3 illustrates the concept of this algorithm
by comparing the final output of CSPwith a simple sequential
pattern mining algorithm. The asterisk in Fig. 3 indicates
a gap.

This algorithm uses a bottom-up approach. First, it gen-
erates length-1 candidate subsequences and determines
frequent subsequences by calculating the support of each
candidate. Subsequently, it expands this process by extending
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subsequences to larger and larger subsequences as long as no
more frequent patterns are extracted.

SequenceSet = {S1, S2, . . . , Sn} (1)

Si =
{
SequenceID, 〈I1I2 . . . Im〉

}
(2)

Equation (1) shows a set of sequences that is an input
database for the CSP algorithm. In Equation (2), S is an ele-
ment of a SequenceSet that consists of a sequence identifier
and contiguous items. As will be explained later, the units
of sequence and item depend on the type of format to be
extracted. The sequence identifier is used to utilize the mech-
anisms of AprioriTID that help it improve the performance
of support calculation and candidate generation, by reducing
the time to read the database.

Algorithm 1 Contiguous Sequential Pattern Algorithm
Input: SequenceSet, Min_Supp
Output: SubSequenceSet
01: foreach sequence S in SequenceSet do
02: foreach item i in sequence do
03: L1 = L1 ∪ i;
04: end
05: end
06: k = 2;
07: while Lk−1 6= 8 do
08: foreach candidate c in Lk−1 do
09: supp = calSupport(c, SequenceSet);
10: if supp < Min_Supp then
11: Lk−1 = Lk−1 − c;
12: end
13: end
14: Lk−1 = extractCandidate(Lk−1);
15: k++;
16: end
17: SubSequenceSet = ∪kLk ;
18: deleteSubset (SubSequenceSet);
19: return SubSequenceSet;

Algorithm 1 is the pseudo-algorithm of CSP. First,
it extracts length-1 subsequences from all the sequences
and stores them in the length-1 subsequence set, L1 (Alg.1,
Lines 1–5). From the length-1 subsequences, it extracts all
length-k candidate subsequences by increasing the length
until no newer subsequences or candidates are to be extracted
(Alg.1, Lines 6–16). This iteration process consists of two
parts. At the first part, it eliminates candidates that do
not satisfy the minimum support threshold after obtaining
the support value from the calculation (Alg.1, Lines 8–13).
At the second part, it extracts length-k candidates by using
length-(k–1) candidates according to the Apriori strategy
(Alg.1, Line 14). As a final step, a relation of inclusion
between subsequences is checked; if the relation is found, the
included subsequences are deleted (Alg.1, Line 18).

FIGURE 4. Process of extracting protocol syntax using hierarchical CSP
algorithm.

B. HIERARCHICAL CSP ALGORITHM
The proposed method extracts field formats, message for-
mats, and flow formats as protocol syntax by using the CSP
algorithm three times hierarchically, as shown in Fig. 4. The
only differences in each level are the units of input trans-
action, i.e., the sequence, length-1 item unit constituting the
sequence, and support unit. Table 2 shows these differences
in each level.

FlowSequenceSet

= {F1,F2, . . . ,Fn} ,

n = number of flows in the target protocol (3)

Fi = {FlowID, 〈P1,P2, . . . ,Pn〉} ,

n = number of packets in Fi (4)

Pi = 〈B1,B2, . . . ,Bn〉, where 0x00 ≤ Bi ≤ 0xFF,

n = number of bytes in Pi (5)

Fig. 5 shows the flow chart of hierarchical CSP. All the
following equations to be described are based on (1) and (2)
mentioned above, except of the equations related to output
such as FieldFormatSet, MessageFormatSet, and FlowFor-
matSet. First, it generates FlowSequenceSet, as shown in (3),
from network traces of the target protocol. A flow is a bidi-
rectional set of packets having the same 5-tuple: source and
destination IP address, source and destination port number,
and transport layer protocol. In Equation (4), Fi is an element
of FlowSequenceSet, and refers to a flow. In Equation (5),
Pi refers to a packet, and B is each one byte of the payload.
Next, as will be explained in Section 4, the process conducts
a message assemble stage to assemble packets of each flow
into a message unit.

FlowSequenceSet ′

=
{
F ′1,F

′

2, . . . ,F
′
n
}
,

n = number of flows in the target protocol (6)

F ′i = {FlowID, 〈M1,M2, . . . ,Mn〉} ,

n = number of messages in F ′i (7)

Mi =
{
MessageID, 〈B1,B2, . . . ,Bn〉, fromFlowID

}
,

n = number of bytes in Mi, (8)
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TABLE 2. Differences in each level of the hierarchical CSP algorithm.

FIGURE 5. Flowchart of hierarchical CSP algorithm.

Then, all ofFi changes toF ′i of (7) that have a series ofmes-
sages, so FlowSequenceSet changes to FlowSequenceSet′,
as in (6). In Equation (8), Mi refers to a message and
fromFlowID refers to the FlowID to which the message
belongs.

MessageSequenceSet

= {M1,M2, . . . ,Mn} ,

n = number of messages in target protocol (9)

FieldFormatSet

= {FieldF1,FieldF2, . . . ,FieldFn} ,

n = number of field formats of target protocol

(10)

FieldF i =
{
FieldFormat ID, 〈B1,B2, . . . ,Bn〉,
FromMessageIDSet

}
,

n = number of bytes of the field format (11)

The algorithm generates MessageSequenceSet, as shown
in (9), having all messages of the target protocol, and runs
the first CSP on MessageSequenceSet. Then, it extracts a set

of field formats as shown in (10). Equation (11) is a field
format, and it has FromMessageIDSet, the set of MessageIDs
of messages that contain the field format. Support for the
field format can be calculated as the ratio of the size of
FromMessageIDSet to the number of total messages. A field
format extracted by the first CSP is a contiguous common
bytestream, and the type of field is a static field that has static
value and length. The process of extracting dynamic fields
will be described in the next section.

MessageSequenceSet ′

=
{
M ′1,M

′

2, . . . ,M
′
n
}
,

n = number of messages in target protocol (12)

M ′i =
{
MessageID, 〈FieldF1FieldF2 . . .FieldFn〉,
FromFlowID

}
,

n = number of field formats in the message (13)

MessageFormatSet

=
{
MsgF1,MsgF2, . . . ,MsgFn

}
,

n = number of message formats of target

protocol (14)

MsgF i =
{
MessageFormat ID, 〈FieldF1FieldF2 . . .

FieldFn〉,FromMessageIDSet

}
,

n = number of field formats in the message

format (15)

Now, we can easily transform Mi to M ′i as shown in (13)
by using FieldFormatSet, because each field format has
FromMessageIDSet. Then, MessageSequenceSet changes to
MessageSequenceSet′, like in (12). It runs the second CSP
onMessageSequenceSet′ to extract a set of message formats,
as shown in (14). Equation (15) is a message format. Support
for the message format can be calculated as the ratio of
the size of FromMessageIDSet to the number of total mes-
sages, as with support for the field format. A message format
extracted by the second CSP is a contiguous series of field
formats. This message format is the skeleton of the final
message format that will be described in the next section.

FlowSequenceSet ′′

=
{
F ′′1 ,F ′′2 , . . . ,F ′′n

}
,

n = number of flows in target protocol (16)

F ′′i =
{
FlowID, 〈MsgF1,MsgF2, . . . ,MsgFn〉

}
,

n = number of message formats in the flow (17)
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TABLE 3. Four types of field format.

FlowFormatSet

= {FlowF1,FlowF2, . . . ,FlowFn} ,

n = number of flow formats of target protocol

(18)

FlowF i =
{
FlowFormat ID, 〈MsgF1,MsgF2, . . .

,MsgFn〉,FromFlowIDSet

}
,

n = number of message formats in the flow

format (19)

The next step is transforming F ′i to F
′′
i as shown in (17),

by using MessageFormatSet. It can be easily transformed
because each message format has FromMessageIDSet, and
eachmessage hasFromFlowID. Therefore,FlowSequenceSet′

changes toFlowSequenceSet′′ like in (16). The algorithm runs
the third CSP on FlowSequenceSet′′ to extract a set of flow
formats, as shown in (18). Equation (18) is a flow format.

Support for the flow format can be calculated as the ratio
of the size of FromFlowIDSet to the number of total flows.
A flow format is a contiguous series of message formats.

IV. OVERALL DESIGN OF THE PROPOSED METHOD
In this section, we describe the overall design of the proposed
protocol specification extraction method in detail after defin-
ing the terminology for better understanding.

In general, a protocol field can be categorized by its value
and length. If categorized by the value of the field, it is
divided into the static field and the dynamic field. A static
field means it has only one value, and a dynamic field means
it has multiple values. If categorized by the length of the field,
it is divided into the fixed length field and the variable length
field. A fixed length field means its length is fixed, and a
variable length fieldmeans its length is variable. Thus, a static
field is always a fixed length field, whereas a dynamic field
is not necessarily a variable length field.

Hitherto, many of the previous works extract static fields
and dynamic fields or only static fields, when they infer
protocol syntax. They refer to the non-static fields in a
message format the dynamic fields or the gaps. In contrast,
to extract clear and detailed protocol syntax, the proposed
method extracts four different types of protocol fields that we
defined. Table 3 shows the four types of the field format.SF(v)
is a static and fixed length field. There are three types of the
dynamic field (DF): DF(v), DF, and GAP. Their lengths may
be fixed or variable. The field formats marked with (v) indi-
cate that their values are predictable because the randomness

of their values is not too high. Hence, SF(v) and DF(v) store
their values.

DF and GAP are the field formats whose values are
unpredictable, because the randomness of their values is too
high to predict. The difference between DF and GAP is
whether the length is predictable. Although the values of
both DF and GAP are unpredictable, the length of DF is
somewhat predictable because of its low randomness. Thus,
SF(v), DF(v), and DF stores their minimum, maximum, and
average lengths. The proposed method first extracts SF(v)
using the first CSP, and extracts DF(v) using CSP recursively.
Next, after extracting the message formats, it extracts addi-
tional SF(v), DF(v), DF, and GAP using statistical methods
for the blank parts of the message format that are not SF(v)
and DF(v).

Fig. 6 shows a flowchart of the proposed method. The
method is composed of five stages: preprocessing, message
assemble, syntax inference, semantics inference, and behav-
ior inference. In the preprocessing stage, if a user inputs the
network traces of a single unknown protocol, it generates
flows and removes control packets that have no payload,
such as TCP three-way-handshake packets. Subsequently,
it rectifies abnormal packets such as retransmission packets,
out-of-order packets, and cross-order packets [31]. Recti-
fying abnormal packets must be done preemptively before
analyzing the protocol structure to correctly split each flow
into messages in the message assemble stage. The message
assemble, syntax inference, semantics inference, and behav-
ior inference stages are then performed step-by-step. These
stages are described in the following parts of this section.

A. MESSAGE ASSEMBLE
A protocol is a set of rules for communication between two
entities. When two entities communicate, the data they send
and receive are transmitted as packet units, so these packets
must be assembled into messages that are application-level
data units (ADUs).

We defined how to split each flow into message units as
shown in Algorithm 2. When each flow is inputted, it is
checked for whether it is a transmission control protocol
(TCP)-based flow or a user datagram protocol (UDP)-based
flow. If it is a TCP-based flow, the packets in the flows are
assembled into messages after setting the message unit to a
series of consecutive packets with the same direction. The
algorithm traverse all packets in the flow and checks the
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FIGURE 6. Flowchart of the proposed method.

directions of each packet. If the packet is the first packet of
the flow or the direction of the packet is different from the
direction of the packet that is checked earlier, the algorithm
generates a new empty message. Otherwise, the algorithm
continues to insert the packet into the generated message as
long as the direction is not changed. If it is a UDP-based flow,
each of the packets in the flow simply becomes a message.
This is based on the following grounds.

TCP uses a stream-based and connection-oriented com-
munication model, and UDP uses a simple connectionless
communication model. We validated the message assemble
method that we defined through experiments on eight proto-
cols, namely hypertext transfer protocol (HTTP), file transfer
protocol (FTP), simple mail transfer protocol (SMTP), and
post office protocol 3 (POP3) for text protocols, and domain
name system (DNS), real-time transport protocol (RTP),
servermessage block (SMB), and dynamic host configuration
protocol (DHCP) for binary protocols. HTTP, FTP, SMTP,
POP3, and SMB are TCP-based protocols, and DNS, RTP,
and DHCP are UDP-based protocols.

B. SYNTAX INFERENCE
The syntax inference stage is composed of four modules:
SF(v) field format extracting, DF(v) field format extract-
ing, message format extracting, and additional field format
extracting in each message format. The ultimate goal of the
syntax inference stage is to extract clear and intuitivemessage
formats that are fully filled with SF(v), DF(v), DF, and GAP.
Fig. 7 shows the overview of the syntax inference stage, along
with the output changing shape for each module.

The SF(v) field format extracting module, as described
above, extracts field formats whose type is SF(v) by running
the first CSP after setting the transaction unit to a message
sequence and setting the length-1 item unit to one byte.

The DF(v) field format extracting module extracts field
formats whose type is DF(v) by using the CSP algorithm
recursively. The pseudo-algorithm of recursive CSP is shown
as Algorithm 3. When each SF(v) from the first CSP is
inputted, it is checked whether this SF(v) can be converted
to DF(v) through the following three conditions (Alg.3
Lines 1–2):

1) The position variance of the SF(v) is low. This means
the position of this field format is almost fixed.

2) The support of the SF(v) is not 1. This means this
field format may have other values, because there are
message sequences that do not have this SF(v).

3) The difference between the maximum depth and min-
imum offset of the SF(v) is low. This means the ran-
domness of the length for this field format is low, so the
length is predictable.

If these three conditions hold, it creates a new set of
message sequences that do not contain the SF(v) (Alg.3
Lines 3–6). It truncates these message sequences based on
the minimum offset and maximum depth of the SF(v) (Alg.3
Lines 7–9). It runs the CSP algorithm on this set of message
sequences, and it stores the bytestream that has the highest
support among the CSP results into the SF(v) as another
value of the SF(v) (Alg.3 Lines 10–12). This iteration process
continues until no more bytestreams are extracted from the
CSP (Alg.3 Lines 5–13). After all iteration processes are
done, the type of this field format is converted to DF(v).
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Algorithm 2 Message Assemble Algorithm
Input: Flows consisting of packets
Output: Flows consisting of messages
01: foreach flow in set of network traces do
02: if flow is TCP flow then
03: foreach packet in flow do
04: if (packet is the first packet of flow) then
05: Mtemp = new Message;
06: Mtemp→ insertPkt (packet);
07: Mtemp→ direction = packet.direction;
08: end
09: else
10: if packet.direction == Mtemp→ direction

then
11: Mtemp→ insertPkt (packet);
12: end
13: else
14: flow→insertMsg (Mtemp);

Mtemp = NULL;
15: Mtemp = new Message;
16: Mtemp→insertPkt(packet);
17: Mtemp→direction=packet.direction;
18: end
19: end
20: if packet is the last packet of flow then
21: flow→ insertMsg(Mtemp); Mtemp = NULL;
22: end
23: end
24: end
25: else if flow is UDP flow then
26: foreach packet in flow do
27: Mtemp = new Message;
28: Mtemp→ insertPkt (packet);
29: Mtemp→ direction = packet.direction;
30: flow→ insertMsg(Mtemp); Mtemp = NULL;
31: end
32: end
33: end

Fig. 8 shows the process of recursive CSP by exemplifying
the HTTP protocol. The system performs recursive CSP for
two SF(v)s, namely ‘‘GET’’ and ‘‘200’’, because they satisfy
the three conditions above mentioned. In the first iteration of
recursive CSP for ‘‘GET’’, the system creates a set ofmessage
sequences that do not contain ‘‘GET’’ and cuts them based
on theminimum offset andmaximum depth of ‘‘GET’’. Then,
the system runs CSP on the set of message sequences. Among
the results of the first iteration, ‘‘POST’’ has the highest
support, so it is stored as another value of ‘‘GET’’. In the next
iteration, the system removes the message sequences that do
not contain ‘‘POST’’ from the set of message sequences, and
runs the CSP algorithm on the set of message sequences. This
procedure is repeated until no more results are extracted from
the CSP. As a result, the SF(v) is converted to a DF(v) having
four values, i.e., ‘‘GET’’, ‘‘POST’’, ‘‘HEAD’’, and ‘‘PUT’’.

Algorithm 3 Recursive CSP Algorithm
Input: FieldFormatSet and original MessageSequenceSet
Output: FieldFormatSet including DF(v)s
01: foreach FieldF i from 1st CSP do
02: if (FieldF i.PosVar ≤ 200)&(FieldF i.Supp 6= 1.0)

&(FieldF i.max_depth− FieldF i.min_offset
≤ 40) then

03: MessageSequenceSet_Temp=MessageSequence-
Set;

04: FieldF_Temp = FieldF i;
05: do while no more result is extracted by CSP
06: MessageSequenceSet_Temp− ={M|M contain

FieldF_Temp};
07: foreach Mi from MessageSequenceSet_Temp

do
08: Mi.〈B1B2 . . .Bn〉=Mi.〈BFieldF_Temp.min_offset

. . .BFieldF_Temp.max_depth〉;
09: end
10: CSP (MessageSequenceSet_Temp, Min_Supp)
11: FieldF_Temp = bytestream with the highest

Supp from CSP result;
12: FieldF i.values = FieldF i.values

∪FieldF_Temp;
13: end
14: FieldF i.type = DF(v);
15: end
16: end

The message format extracting module, as described in
Section 3, extracts message formats by running a second CSP
after setting the transaction unit to a message sequence and
setting the length-1 item unit to SF(v) and DF(v).

The additional field format extracting in each message
format module checks the types of all the blank parts between
the two field formats in each message format. As a result,
it extracts message formats that are fully filled with field
formats classified by four types: SF(v), DF(v), DF, and GAP.

Algorithm 4 is the pseudo-algorithm of the additional field
format extracting in each message format module. There are
two thresholds for this module: Threshold1 is the variance
of length, and Threshold2 is the highest length between two
field formats. First, when each message format is input,
it finds all message sequences thatmatch thismessage format.
Next, traversing all these message sequences, it finds all
bytestreams that match the first blank part between two field
formats in the message format. If the variance of lengths for
these bytestreams is too high, the type of the blank part in
the message format is GAP. i.e., if the variance is higher than
Threshold1, the type of the blank part is GAP. If not, the blank
part is a non-GAP field, so it checks the highest of length
for these bytestreams. If the highest of the lengths is too
high, i.e the highest of the lengths is higher than Threshold2,
then the type of the blank part is DF. If not, the type of the
blank part is SF(v) of DF(v), so it stores all the bytestreams
as the set of values for the blank part. If the number of the
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FIGURE 7. Overivew of the syntax inference stage. It shows the output changing shape of each module.

FIGURE 8. Process of recursive CSP.

set of values for the blank part is one, then the type of the
blank part is SF(v). If the number of the set of value is larger
than one, the type of the blank part is DF(v). After that,

it performs this iteration process for all of the blank parts in
the message formats. Fig. 9 shows the process of this module
intuitively.

36066 VOLUME 7, 2019



Y.-H. Goo et al.: Protocol Specification Extraction Based on Contiguous Sequential Pattern Algorithm

Algorithm 4 Additional Field Format Extracting Algorithm
Input: MessageFormatSet, MessageSequenceSet

Threshold1 = 5000, Threshold2 = 25
Output: Intuitive and Clear MessageFormatSet
01: foreach MsgF i from MessageFormatSet do
02: foreach FieldF i from MsgF i do
03: foreach Mi whose Mi.MessageID==

each MessageID of MsgF i.
FromMessageIDSet do

04: LengthList 6= 8;
05: Blank = bytestream between FieldF i.value

and FieldF i+1.value in Mi;
06: LengthList = LengthList ∪ Blank.length;
07: end
08: if LengthList.variance ≥ Threshold1 then
09: FieldF_Temp.type = GAP;
10: end
11: else
12: if LengthList.highest_length≥ Threshold2 then
13: FieldF_Temp.type = DF;
14: end
15: else
16: foreach Mi whose Mi.MessageID ==

each MessageID of MsgF i.
FromMessageIDSet do

17: FieldF_Temp.values= FieldF_Temp.values
∪ bytestream between FieldF i.value and
FieldF i+1.value in Mi;

18: end
19: if sizeof(FieldF_Temp.values)==1 then
20: FieldF_Temp.type = SF(v);
21: end
22: else
23: FieldF_Temp.type = DF(v);
24: end
25: end
26: end
27: MsgF i.insertNewFieldFtoBlankPart

(FieldF_Temp);
28: end
29: end

C. SEMANTICS INFERENCE
The semantics inference stage checks if there exist the field
formats that correspond to the six predefined semantics types
for all DF(v) in each message format. We use FieldHunter’s
semantics inference methodology [23], because it is the
method that can extract the most specific types of semantics
from among the previous semantics inferencemethodologies.

Algorithm 5 is the pseudo-algorithm of the semantics
inference stage. The six predefined semantics types are
MSG-Type, MSG-Len, Host-ID, Session-ID, Trans-ID, and
Accumulators. The process of this stage is similar to the addi-
tional field format extracting module. When each message

Algorithm 5 Semantics Inference Algorithm
Input: MessageFormatSet
Output: MessageFormatSet with semantics
01: foreach MsgF i from MessageFormatSet do
02: foreach FieldF i from MsgF i do
03: if FieldF i.type==DF(v) then
04: FieldF i.semantics =isMSG-Type(FieldF i);
05: FieldF i.semantics =FieldF i.semantics∪

isMSG-Len(FieldF i);
06: FieldF i.semantics = FieldF i.semantics∪

isHost-ID(FieldF i);
07: FieldF i.semantics = FieldF i.semantics∪

isSession-ID(FieldF i);
08: FieldF i.semantics = FieldF i.semantics∪

isTrans-ID(FieldF i);
09: FieldF i.semantics = FieldF i.semantics∪

isAccumulators(FieldF i);
10: end
11: end
12: end

format is input, the algorithm traverses all the DF(v)s in the
message formats, and performs the six heuristic algorithms to
determine if the DF(v) corresponds to any of the six types.

1) MSG-TYPE
According to [23], a field format corresponding toMSG-Type
is defined as the field format that satisfies the following
conditions:

1) The values taken by this field format are neither
extremely random nor constant.

2) This field format has a causal relationship with the
bytestream that is in the opposite direction.

To check the first condition, it calculates the entropy
H (x) = −

∑
pilog2pi metric. x is the value of the field

format, and pi is the probability of having the field format
taking the value i. To check the second condition, it calculates
the causality metric = I (q; r)/H (q). q is the field format,
and r is the bytestream that is in the opposite direction.
If the entropy of the field format is low but above zero and
the causality is high enough, the semantics type of the field
format is MSG-Type.

2) MSG-LEN
A field format corresponding to MSG-Len is a field format
whose values are the same as the lengths of the messages.
Therefore, to calculate the correlation between the values of
the field format and the lengths of the messages, it checks
their Pearson correlation coefficients. If the Pearson correla-
tion coefficient is high enough, the semantics type of the field
format is MSG-Len.

3) HOST-ID
A field format corresponding to Host-ID is a field format
whose values have a dependency on a source IP Address.
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FIGURE 9. Process of additional field format extracting in each message format module.

FIGURE 10. Overview of the behavior inference stage.

To check this dependency, it calculates the categorical met-
ric = R(x, y) = I (x; y)/H (x, y). x is the value of the field
format, and y is the source IP address of the field format. If the
categorical metric is high enough, the semantics type of the
field format is Host-ID.

4) SESSION-ID
A field format corresponding to Session-ID is a field format
whose values have a dependency on a session. To check this
dependency, it calculates the categorical metric. x is the value
of the field format, and y is the 5-tuple information of the field
format. If the categorical metric is high enough, the semantics
type of the field format is Session-ID.

5) TRANS-ID
A field format corresponding to Trans-ID is a field format
whose values have a dependency on transaction. Transac-
tion is a pair of request messages and response messages.
Therefore, if the values of the field format are a transaction
identifier, the bytestreams that are in the opposite direction

must be the same as the values of the field format, and also,
the values taken by this field format must be random. It cal-
culates the entropy of the values taken by these field for-
mats. If the entropy is high enough and most of the values
of the field format are the same as the bytestreams in the
opposite direction, the semantics type of the field format is
Trans-ID.

6) ACCUMULATORS
To check if the field format corresponds to accumulators,
the algorithm checks if there is a constant increment of the
values taken by the field format.

D. BEHAVIOR INFERENCE
The behavior inference stage is composed of two mod-
ules: flow format extracting and protocol FSM extracting.
Fig. 10 shows an overview of this stage.

The flow format extracting module, as described in
Section 3, extracts flow formats by running the third CSP
after setting the transaction unit to a flow sequence and
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TABLE 4. Quantitative information on the traffic traces for verification.

setting the length-1 item unit to a message format. A flow
format indicates the primary flow type of the protocol,
so it can be helpful for understanding the structure of the
unknown protocol. Moreover, it is helpful for minimizing the
protocol FSM.

The protocol FSM extracting module extracts the protocol
FSM whose states are set to each message format. It extracts
transitions between two states by exploring input traffic traces

in chronological order. This process becomes fairly easy by
using FlowSequenceSet′′, which is a set of F ′′ as described in
Section 3. As shown in (17), each F ′′ has a list of message
formats in chronological order that is contained in each F‘‘
as an element. Finding the transitions, it counts the number
of matchings for each transition. By using these counts of
each transition matching, it calculates the probabilities of the
transitions for each state. The extracted protocol FSM is very
useful to replay packets for a network security area such as a
honeypot system.Moreover, the FSM helps to know the order
of occurrence of messages.

V. EXPERIMENT AND RESULT
In this section, we evaluate the efficacy of the proposed
method in inferring the protocol specification of known
protocols.

We implement the proposed method in a prototype system
in C++ code on Linux. The system takes network capture
files either in the libpcap or Netmon format as input. The
system extracted four xml files describing the information

TABLE 5. Summary of experimental results for HTTP and DNS.

FIGURE 11. Structure of message formats for HTTP.
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FIGURE 12. Representative message format for HTTP.

FIGURE 13. Structure of message formats for DNS.

on field formats, message formats, flow formats, and pro-
tocol FSM and one png file showing the FSM in a directed
pseudo-graph.

We first describe the dataset used for evaluating, and then
explain the evaluation metrics. Lastly, we present the experi-
mental result.

A. DATASET
We selected two well-known protocols for verification. One
is HTTP, to verify for text protocol, and the other is DNS,
to verify for binary protocol.

Table 4 presents the quantitative information on the traffic
traces of these two protocols in flow, packet, and byte, along
with the results of the message assemble stage. We collected
these traffic traces from four different hosts at different times
into pcap files using port-based classification method: port
80 for HTTP and port 53 for DNS. In the result of the message
assemble stage, because HTTP is a TCP-based protocol,
the flows were split using a series of consecutive packets with
the same direction as the message unit, whereas each packet
of DNS protocol became each message, because DNS is a
UDP-based protocol.
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FIGURE 14. Representative message format for DNS.

FIGURE 15. FSM for HTTP.

B. EVALUATION METRICS
The precondition for correct protocol semantics and a proto-
col FSM is that the protocol syntax is correct, so the main

performance evaluation of protocol reverse engineering is
whether the protocol syntax represents the correct message
format. Hence, to evaluate the message formats, we use two
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FIGURE 16. FSM for DNS.

standard metrics [18], correctness and coverage.

Correctness =

the number of true
message formats matched with
extracted message formats

the number of total
true message formats

(20)

Coverage =

the number of messages matched
with extracted message formats

the number of total messages
(21)

Correctness means how many of the true formats can be
analyzed by the extracted message formats. Equation (20)
shows how to calculate correctness of message formats. Cov-
erage means how many of the messages can be analyzed by
the extracted message formats. Equation (21) shows how to
calculate coverage of message formats.

C. EXPERIMENTAL RESULT
Table 5 shows the summary of the experimental results.
The proposed method extracts 22 field formats, 36 message
formats, and 1 flow format for HTTP and 13 field formats,
27 message formats, and 3 flow formats for DNS. The cover-
age and the correctness of both two protocols are close to 1.0.

Fig. 11 shows the structures of message formats for
HTTP. The proposed method compresses 1189 messages into
36 message formats, and each message format is appropri-
ately subdivided into field formats without any blank parts.

Fig. 12 shows a representative message format as a sample
among the whole set of HTTP message formats. This sample
represents an HTTP request message format that is subdi-
vided into 14 field formats. The field formats are in the order
of Method [DF(v)] - URL [DF] - Version and Host [SF(v)] -
value of Host field [DF(v)] - . . . - GAP. It reflects the manda-
tory components: method field, URL field, version field,
and some optional HeaderName field of the HTTP request
message format in non-GAP types. It provides information
on minimum offset, maximum depth, minimum length, max-
imum length, average length, position variance, support, and
semantics of all field formats that make up the message
formats. This information indicates whether the field format
has a fixed position, fixed length, static value, and so on.

Fig. 13 shows the structures of message formats for
DNS. The proposed method compresses 4349 messages into
27 message formats, and each message format fully filled
with SF(v), DF(v), DF, and GAP.

Fig. 14 shows a representative message format as a sample
among the whole set of DNS message formats. This message
format represents a DNS query message format that is subdi-
vided into 6 field formats. The field formats are in the order
of Transaction ID [DF(v)] – Flag and the number of each
record [SF(v)] – a part of query name [DF] - a part of query
name [SF(v)] - . . . – The end part of query name, query type,
and query class [SF(v)]. In addition, the proposed method
correctly found the semantics of Transaction ID for DNS as
Trans-ID and Session-ID, as shown in Fig. 14. The reason
that it found the semantics of Transaction ID as Session-ID
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is that the values of Transaction ID are very random, and it
changes every time the Session ID changes.

Fig. 15 and Fig. 16 shows FSMs of HTTP and DNS,
respectively. Each state indicates each extracted message for-
mat, except for the initial state and the final state. Each path
from the initial state to the final state refers to a flow type
indicating the order in which the message formats are trans-
mitted. Each edge of the FSM has a transition probability.

VI. CONCLUSION
In this paper, we proposed a novel protocol specification
extraction method.We defined three types of formats, namely
field format, message format, and flow format and four
types of field formats to acquire clear protocol syntax.
To extract such formats, we proposed hierarchical CSP and
recursive CSP. The novelty of this method is that it extracts
well-trimmed message formats and sufficiently compresses
input messages into a small number of message formats so
that it can determine the intuitive structure of an unknown
protocol. As far as we know, no other papers have found the
methods that can extract all of the protocol syntax, semantics,
and FSM automatically.

The proposed method clearly has some limitations.
First, the proposed method cannot infer a specification of

encrypted protocols such as SSH protocol. Encrypted pro-
tocols can be inferred only by using the application-based
method. Considering fully automation and the difficulty of
access to program binary, we adopted the network trace-based
method.

Second, the quality of the inferred protocol specification
is highly dependent on the amount of input messages. For
extracting a more detailed and abundant protocol specifica-
tion, it is important to collect large amounts of data in various
environments.

Third, most of the existing protocol reverse engineering
methods including the proposed method only focused on
inferring application layer protocols. In consideration of var-
ious network environments, a method for covering all layers
of the OSI seven model should be studied in the future.

Despite the fact that there are the limitations above men-
tioned, we believe our work could be a springboard for
addressing these limitations and have solved many exist-
ing problems mentioned in Section II. In a future work,
we will apply our method to several other protocols and
further improve our method through experiments. Addition-
ally, we plan to upgrade the method and make it capable of
extracting a specification of protocol for all 7 OSI layers.
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