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ABSTRACT Registration between the intraoperative 2D digital subtraction angiography (DSA) and the pre-
operative 3D computed tomography angiography (CTA) is useful in the guidance of vascular interventional
surgery (VIS). Because of the flow and diffusion of contrast in vessels, not all the vessels are visible in
the DSA, which leads to difficulty in registration. Although the conventional mutual information (MI) and
the normalized MI (NMI) perform well in orthopedic surgery, it cannot perform as well in VIS because
of the missing vessel in DSA. In this paper, a novel similarity measure, WLMI (Weighted Local Mutual
Information), is proposed to perform 2D-3D registration, which uses the patches selected in DSA to find the
best match in the DRRs (digital radiography reconstruction) with weighted MI. At first, we choose several
ways to measure the richness of block information to select small and scattered patches in the DSA image.
Subsequently, different weights are assigned to these patches according to their information abundance by
calculating the local MI. With the proposed WLMI, the 2D-3D registration experiments are conducted with
the synthetic and real DSA images to CTA vessel model. In synthetic registration, the optimal way tomeasure
information abundance and the optimal weight parameter value are selected. The registration with intact
and partially absent vessels are compared with the conventional methods using MAE, mTREproj, and IoU
metrics. In the registration of real DSA to CTA model, only IoU is used to compare the difference since the
ground-truth cannot be derived. In synthetic registration with vessel excalation test, the mTREproj is 2.9 mm
and the IoU is 96.7%. In a real registration test, the IoU reaches 81.3%. Both the synthetic and real DSA
registration results show that the proposed WLMI can cope with the problem that partial vessel is invisible
in the DSA, and outperformed the conventional methods such as MI and NMI. Therefore, the WLMI is more
suitable to be used in the 2D/3D registration task in VIS.

INDEX TERMS 2D-3D registration, mutual information, weighted joint histogram, patch extraction.

I. INTRODUCTION
DSA (Digital Subtraction Angiography) is widely used in
vascular interventional surgery (VIS). However, in DSA
image the vessels are overlapped due to the central projection
which further complicates the interventional procedure [1].
3D vascular structure can be pre-extracted from CTA (Com-
puted Tomography Angiography). Therefore, it is expected to
align the DSA and CTA data to guide the VIS [1]–[4].

The key of registering 3D vascular model to 2D DSA
is to derive their space transformation between CT and
C-arm reference frame. C-arm can be regarded as pin-hole
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camera whose intrinsic parameters can be obtained from
vendors, or by camera calibration. Therefore, the essence
of registration is to calibrate the position and orientation of
C-arm in reference to 3D model [6]. It is equivalent to solve
a Perspective-n-Points problem [7], [8] where the point pairs
are feature points on the 3D model and the DSA image. The
features can be external artificial marker points or anatomical
feature points such as bifurcation points of vascular cen-
terline [5]. However, the field of view of C-arm is narrow
which confines the placement of the markers. Furthermore,
it is difficult to extract enough precise feature points because
CTA and DSA/X-ray images have different dimensions and
different image characteristics [9].
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Another approach of registering 3D vascular model to
2D DSA image is to convert the 2D-3D registration prob-
lem into 3D-3D registration [10], [11], or into 2D-2D reg-
istration [12]. As to the previous way, C-arm is rotated to
acquire multi-angle DSA images to reconstruct the local
3D vessel model, and then the local model is registered to the
global 3D vessel model reconstructed from CTA. However,
the acquisition of multi-angle DSA increases the complexity
of the surgery and operation time. As to the latter way, the
3D CTA vessel model is transformed into 2D DRRs (Digital
Radiography Reconstruction) image under a series of pose
transformation parameters. Then these DRRs are compared
with the DSA image to find the best transformation that
leads to the best similarity. It does not require extra apparatus
operation, therefore it attracts more attention in research.

Mutual Information (MI) [17] is generally used to eval-
uate the similarity between the DRR and DSA. MI mea-
sures the strength of the statistical relationship between two
images by using their joint probability distribution and is
therefore robust to intensity discrepancy. MI performs well
in 3D/2D registration in orthopedic surgery [13]. However
MI only uses the gray intensity of each pixel and takes no
consideration about other information. Therefore many other
algorithms have been proposed to endow MI with spatial
information, such as feature [23], local information [24],
gradient [25], edge [26], orientation information [27]. Nor-
malized Mutual Information (NMI) was introduced to han-
dle the sensitivity overlap. The entropy calculation was
also improved, including optimizing the calculation method
of joint distribution [18], [19], estimating probability [20],
adding weight to joint distribution. Cross-correlation [22]
can also be combined with MI to improve the registration
accuracy.

AlthoughMI performs well in 2D/3D registration in ortho-
pedic surgery, it doesn’t perform as well as in VIS. At first,
CTA can acquire clearer vasculature than DSA. There is no
background noise in theDRRs from the CTAvessel 3Dmodel
compared with DSA; while in DSA, some organs or tissue
may have similar intensity with vessel. Secondly, because
of the incomplete flow and diffusion of contrast agent in
vessels, some vessel branches that can be seen in 3D vessel
model may be missing in DSA image. MI is calculated on
the whole image, therefore it incorporates much undesired
interference information. Furthermore, the vessel excalation
(or partial missing vessel) may result in that the vessel infor-
mation (edges and even orientations) extracted from DSA
are inaccurate and hence not consistent with that in DRR.
Subjected to these factors, the registration with MI is easy to
fall into the wrong local extremum during optimization and
fail to align the images [31].

Though some local MI metrics are proposed based on
the gradient orientation [32] or distance to independent fea-
ture points [31], they do not take into account the effects
of vessel excalation in the DSA and thus not suitable for
2D-3D registration in VIS. Therefore, in order to improve
the accuracy of 2D-3D registration in VIS, a new similarity

measure according to the characteristics of vascular images is
expected to utilize local vascular information effectively and
avoid the interference.

In this paper, a new similarity measurement, called
weighted local mutual information (WLMI), is proposed
based on MI. WLMI extracts local image blocks accord-
ing to the defined information intensity and specific selec-
tion strategy, and calculates weighted normalized MI from
these patches. By this method, most of the background-
independent interference can be eliminated because the
extracted image patches contain a lot of effective information.
Besides, as the patches are extracted from the DSA and thus
other possible features in the DRR are ignored, the effect of
vessel excalation can also be avoided. What’s more, the patch
selection only relies on the information of the fixed image
which needs just once calculation. Compared with the tra-
ditional MI metrics, WLMI can achieve better registration
results.

We have introduced the idea in our previous confer-
ence paper [28]. In this paper, we discuss more about the
patch selection and revise the weight calculation way. The
framework of registration with WLMI is also updated. More
experiments and analysis are supplemented to show the fea-
sibility and robustness. The main contributions of the paper
are:

(1) The local patches are selected according to the informa-
tion abundance of the real DSA image, which helps eliminat-
ing the interference of other organs in the image background
and the incoherence caused by vessel excalation in DSA
image compared to DRR.

(2) An empirical weight equation is providedwhich is close
to 1.0 but modified slightly. The modification is related to the
information abundance of the selected patches.

(3) Based on the patch selection and weight computation,
a newmetricWLMI is proposed for the 2D-3D registration in
VIS. It shows a better performance in evaluating the similarity
between DSA and DRR in VIS registration.

The rest of this paper is organized as follows: Sec.2 intro-
duces the 2D-3D registration framework and the methods
used in this paper, including brief introduction of MI, fea-
ture patch extraction, local mutual information calculation.
The registration experiment is conducted using the syn-
thetic X-ray image and real image in Sec.3. For comparison,
the results of conventional methods are also provided. The
discussion and conclusion are followed in Sec.4 and Sec.5.

II. METHOD
2D-3D registration problem is usually transformed into
2D-2D registration. The framework of 2D-3D vascular reg-
istration can be divided into three steps: (1) Transform the
preoperative 3D vascular model into a DRR image under
given transformation parameters. (2) Compute the similarity
between DRR and intraoperative DSA/X-ray image to judge
whether the best similarity is achieved. If yes then regis-
tration succeeds, or else go to the next step. (3) Generate
new transformation parameters with the appropriate search
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optimization strategy and go to step (1) to iterate. If iteration
exceeds maximum times, then registration fails.

A. 2D-3D REGISTRATION BASED ON
SIMILARITY MEASURES
Denote C as the 3D vascular model obtained by CTA seg-
mentation and reconstruction, IDSA as the X-ray image to
be registered. 2D-3D registration based on 2D-2D similarity
measure is the process of finding the optimal transforma-
tion parameters P (including attitude angle R, position t ,
and intrinsic matrix K of C-arm camera) under which the
transformed IDRR from C by ray projection method [15] can
have maximum similarity with IDSA. The process can be
expressed as

(R̂, t̂, K̂ ) = argmax
(R,t,K )

S (IDSA, IDRR (R, t,K ,C)) (1)

where S(·) represents similarity measure function to mea-
sure the quality of registration. IDRR (R, t,K ,C) denotes the
projective transformation of vascular model C under param-
eters R, t and K to obtain 2D image IDRR, which can be
expressed as

IDRR(p) =
∫
µ(L(p, l) ∩ C)dl (2)

where IDRR(p) is the gray value of the DRR image at the
point p, L(p, l) represents the ray from the virtual light source
to the point p and their within distance l, µ(·) is the X-ray
attenuation coefficient.

Since the intrinsic matrix K of the C-arm used in clinic can
be obtained by pre-calibration, Eq. 1 can be simplified to:

(R̂, t̂) = argmax
(R,t)

S (IDSA, IDRR (R, t,C)) (3)

B. SIMILARITY MEASURES
1) TRADITIONAL SIMILARITY MEASURES
In terms of Eq. 3, how to measure the similarity of IDSA and
IDRR is the key. Traditional methods often use MI to measure
similarity. Denote the intra-operative X-ray image IDSA as the
fixed imageF , denote IDRR as the floating imageM , then their
MI can be calculated by,

MI (F,M ) = H (F)+ H (M )− H (F,M ) (4)

where H (X ) is the marginal entropy of X that calculated
according to the probability distribution P (x) of gray inten-
sity x; H (F,M ) is the joint entropy calculated according to
the joint probability distribution of two images, defined as:

H (F,M ) =
∑
f ,m

−P(f ,m) logP(f ,m) (5)

where (f ,m) is the intensity pair of pixels occurs in cor-
responding pixel pairs and the joint probability distribution
P(f ,m) can be estimated using joint histograms h(f ,m). The
joint histogram h(f ,m) can be estimated by counting the
number of times the intensity pair (f ,m) occurs in the same

position of two images, and then the joint distribution proba-
bility is estimated by the normalization of the histogram:

P( f ,m) =
h ( f ,m)∑

f ,m
h ( f ,m)

(6)

When the two images are correctly matched, MI reaches
maximum. Since MI is sensitive to the size of overlapped
parts, more robust NMI measure was introduced as:

NMI (F,M ) =
H (F)+ H (M )
H (F,M )

(7)

2) WEIGHTED LOCAL MUTUAL INFORMATION (WLMI)
MEASURE
For the vascular registration in VIS, due to the influence of
complex background and vascular excalation, MI and NMI
measure are easy to fall into the wrong local extremum in the
process of optimization search which results in registration
failure. Spatial information can be used to minimize the influ-
ence of background and vascular excalation. Based on this,
the WLMI (weighted local mutual information) proposed in
this paper is a combination of feature weight and local image
mutual information.

In order to avoid the difference between the real DSA
image and DRRs caused by vascular excalation and the com-
plex background, one measure is to supplement the back-
ground of the DSA when generating DRR; the other is to
use the information of the DSA to select the region with
sufficient local information to participate in the registration
and to ignore the regions with less information. The WLMI
measure proposed in this paper adopts the latter way. Fixed
image features are used to filter local image patches to obtain
the mask image, then different weights of patches are added
to estimate the joint distribution histogram. The NMI value
calculated by DSA and DRR combining the mask image is
used as the registration measure. In addition, the registration
efficiency and accuracy can be further improved by giving
different weights to different regions according to their infor-
mation intensity.

a: SELECTION OF LOCAL PATCHES
In order to select patches with rich information, a feature
value Vp should be defined for each pixel p to measure its
information intensity or abundance in the fixed imageF .With
each pixel p as the center, r as the radius, a square window
with 2r + 1 side length is generated, and the region in the
window is defined as a patch Lr (p). Assuming that D patches
are selected for registration, and these patches are combined
into a local region set � = {Lir (p)}, (i = 1, ...,D). However,
due to the continuity of the image, if a point is rich in the
information intensity, then its adjacent points are probably
also rich. As a result, there is large overlap between adjacent
patches, which results in relatively concentrated patches and
less effective information. To make the selected patches dis-
tributed as much as possible, the overlap between adjacent
patches should be restricted. Therefore, the patches can be

VOLUME 7, 2019 162631



C. Meng et al.: 2D-3D Registration With WLMI in Vascular Interventions

selected with such a strategy: (1) Sort the pixels of the image
in descending order according to their Vp; (2) In the queued
pixels, from begin to end, if pixel p’s Lr (p) satisfies Eq.(8),
then Lr (p) is added to �; (3) Repeat (2) until D patches are
selected.

Lr (p) ∩� < η · Area (Lr (p)) (8)

where η is the allowable overlap rate of Lr (p) and the selected
area. Large overlap rate will lead to excessive concentration
of patches that cannot express the shape of vessels. In our
method, η is set to 20% according to the experiment.

b: INFORMATION INTENSITY OF IMAGE PIXELS
In order to select patches, a feature valueVp should be defined
to measure the richness of the information intensity for each
pixel. The principle of patch selection is to preserve the
useful information that has a great influence on the regis-
tration results, such as vessel edges, but avoid the parts that
have less influence on registration result. There are three
ways to measure the information abundance: (1) Gradient.
The image gradient contains the shape information of the
object, and larger gradients usually represent edges or cor-
ners; (2) Entropy. The entropy of the image characterizes the
aggregation of the gray distribution of the image, and larger
entropy can reflect more information; (3) Variance. The gray
variance of the image represents the dispersion of the gray
value, and larger variance usually represents higher contrast.
Therefore, the information abundance in an image patch can
be measured by the gradient (Eq.9), the entropy (Eq.10) or
the gray variance (Eq.11):

gp =
√
g2x + g2y (9)

Hp =
∑

(x,y)∈Lp

−P (I (x, y)) logP (I (x, y)) (10)

Sp =
1
N

∑
(x,y)∈Lp

(
I(x,y) − I (x,y)

)2
(11)

where gx , gy is the sobel gradient of pixel I(x, y), P (I (x, y))
is the probability of gray intensity I (x, y), and I (x, y) is the
pixel value at the point (x, y) of the image. Lr (p) is the patch
extracted from the fixed image, and N is the number of pixels
in Lr (p).

c: WEIGHT CALCULATION
Local area � based MI computation considers only pix-
els in D patches for both fixed and floating images in
joint distribution histograms statistics. Joint distribution his-
tograms usually are obtained by counting the number of
occurrences of intensity pairs at the corresponding location
in two images, which means that all pixels contribute equally
to the histogram.

However, it is natural to think that the patch with rich
information intensity should have more important role in
similarity measurement. Therefore, it is necessary to give
different weights to the patches involved in NMI calculation

so as to make the regions with strong information intensity
have higher weights. Weight wp can be added to the Lr (p)
to represent its importance in registration. Then the patch set
can be represented as 0 = {(w (pi) ,Lr (pi)) , i = 1, ...,D}.
(The weight of all patches in 0 can be considered as w (p) =
1 when weight not considered, and it is defined as local
mutual information LMI.) w (p) is related to Vp and should
not greatly affect the integrity of the joint distribution, thus
Eq. (12) is used to calculate the weights. Pixels in each
patch have the same weight w (p). When calculating the joint
distribution histogram, the number of pixels is replaced by
the sum of the corresponding weights of pixels, as Eq.(13)
shows. And then NMI is calculated as the final measure by
Eqs. (5) and (7).

w ( p) = 1−
1
V k
p

(12)

P( f ,m) =
w ( f ) h ( f ,m)∑

f ,m
w ( f ) h ( f ,m)

(13)

where k is the adjustment factor of joint histogram calculation
weight.

The process of obtaining set 0 according to information
abundance is equivalent to extracting features from fixed
image F. The proposed WLMI has following advantages:
First, patch selection can avoid most of the irrelevant back-
ground organs and preserves the shape features of vessels.
Second, the process of obtaining 0 only uses the information
of fixed image F, which reduces the computational com-
plexity. Third, the proposed method can effectively avoid the
influence of vessel excalation in DSA image, because only
the features in the fixed image are extracted, and the positions
of other possible features in the moving image are ignored.

C. 2D-3D REGISTRATION BASED ON WLMI
The 2D-3D registration process based on WLMI measure is
shown in the Fig. 1.

At first, the region set� and their weightswp are calculated
from the fixed image F, which is recorded as a mask. Let
Imask be the mask image which has the same size as the fixed
image F. Initially Imask are set to 0, indicating that no region
is selected (or activated). The patch Lr (p) is then selected
according to the patch selection strategy and the weights wp
is calculated. For each patch selected, all the pixels within the
corresponding region in the Imask are set to the wp, i.e. Imask
(Lr (p)) = wp. Then the nonzero pixel in the Imask show
the selected region �, and their value are their weights. If a
pixel belongs to multiple regions, its weight is the average of
different region weights.

Secondly, the preoperative 3D vascular model is used to
generate a DRR image under a specific transform parameter
Tk (an initial transform parameter T0 = (R0, t0) should
be provided), and the WLMI between the DRR and the
intraoperative X-ray image is calculated. Then a new trans-
form parameterTk+1 is generated by Powell optimization
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FIGURE 1. The registration framework with WLMI. (a) Patch selection and
weight calculation. (b) Registration procedure.

search strategy. Iterate until the registration condition is sat-
isfied, then the final registration parameters is obtained.

III. EXPERIMENTS AND RESULTS
In order to analyze and verify the proposed method, the regis-
tration experiments of 3D vascular model and simulated/real
DSA images are conducted. At first, experiments are carried
to select how to measure the information abundance in patch
selection and theweight parameter k . Then registration exper-
iments are conducted with synthetic and real DSA images
respectively. In synthetic DSA image registration, intact and
partial-missing vessels are used separately. The experimental

FIGURE 2. Reconstruction of 3D vascular model DRR generation.

FIGURE 3. Synthetic DSA (a) and real DSA (b).

results show that the proposed WLMI achieves better regis-
tration results than other state-of-the-art metrics (MI, LMI
and NMI).

A. DATA PREPARATION
The 3D vessel models are obtained from CTA images of two
patients in AnzhenHospital. The resolution of the CTA image
is 194∗122∗611, and the physical size of the voxel is 0.68
∗0.68∗5 mm3. Vascular segmentation is performed by thresh-
old method, and the non-vascular part is erased manually by
region growing algorithm. Finally, the 3D vascular model is
reconstructed.

Fig. 2 shows procedure of reconstruction of the 3D vascular
model from CTA imagery and generation of DRR. To quan-
tify the registration accuracy, a simulated DSA image I∗DSA is
generated to work as fixed image F. I∗DSA is generated with
the following equation:

I∗DSA = µ · Ibg + γ · Gσ ∗ IDRR + N (a, b) (14)

where Ibg is the background image generated from a real
intraoperative DSA image sequence without injection of con-
trast medium. IDRR is the DRR image generated by the vessel
model under given transformation parameters which work as
ground-truth, as shown in Fig.2. Gσ is a Gauss smoothing
kernel with variance of σ , which is used to simulate the scat-
tering effect of X-ray. N (a, b) is uniformly distributed noise
in interval [a, b]. µ and γ are the coefficients of synthesis.
We adjust the parameters to make the synthetic images more
similar to real DSA images. The simulation parameters used
in the experiment are (µ = 0.6, γ = 0.8, σ = 0.5, a = −5,
b = 5). Fig. 3 (a) shows a synthetic X-ray image, whose
resolution is 512∗512 and pixel spacing is 0.74∗0.74 mm2.
Registration to the real DSA images of the patient are also

conducted. The resolution of the DSA is 1024 ∗ 1024, and the
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pixel size is 0.37∗0.37 mm2. Fig. 3 (b) is the corresponding
DSA image.

B. REGISTRATION RESULT EVALUATION
Ignoring the effect of vascular elastic deformation on reg-
istration accuracy, the main transform parameters consid-
ered in 3D space have six degrees of freedom, which can
be expressed as T =

(
rx , ry, rz, tx , ty, tz

)
, where (rx , ry, rz)

are the relative rotation angle around the X, Y, Z axis, and
(tx , ty, tz) are translation along X, Y, Z axis. Specially, tz,
the translation in Z axis is corresponding to the image zoom-
ing of the DRR.

DRRs are generated with random transform parameters
shift whose rotation range is ±10◦ and translation range is
±10 mm with an initial reference position T̃. Totally 10 syn-
thetic DSA are generated for the simulated experiment.

Here the ground-truth registration parameters are T̃, and
the experiment result is T. To evaluate the registration accu-
racy, the metrics of mTREproj (mean Target Registration
Error in the projection direction),MAE (mean absolute error)
and IoU (Intersection-over-Union) are adopted. mTREproj is
the mean distance between reprojected points in the image,
as shown in Eq.(15), where Pn(n = 1, . . . ,N ) are the
N points selected in 3D vessel model, T ◦ Pn and T̃ ◦ Pn
mean re-project Pn into the image plane with registration
parameters T and T̃ respectively. MAE is shown as Eq.(16),
where Ti(T̃i) is the ith element in T(T̃). IoU is denoted
in Eq.(17), where area(I ) represents the number of pixels
constituting the vessels in the image I , I1 and I2 are the DRRs
corresponding to T and T̃ respectively. For the real image
registration, because the ground-truth registration parameters
cannot be obtained, only IoU will be used as the quantitative
criterion. From the metrics, it can be seen that the lessmTRE-
proj is, or the lessMAE is, or the higher the IoU is, the better
the registration is achieved.

mTREproj =
1
N

N∑
n=1

∣∣∣T ◦ Pn − T̃ ◦ Pn
∣∣∣ (15)

MAEi =
1
N

N∑
n=1

∣∣∣Ti − T̃i
∣∣∣, i ∈ [1, 6] (16)

IoU =
area (I1) ∩ area (I2)
area (I1) ∪ area (I2)

(17)

C. INFORMATION MEASUREMENT AND
WEIGHT SELECTION
1) INFORMATION MEASUREMENT
Three measurements of image information abundance
(Eq. (9 ∼ 11)) are tested to find the optimal way. In the
comparison experiment, all the conditions are same only
except the measurement. Fig.4 (a-f) shows one of the syn-
thesized DSA images using different measurements to select
the patches (empirical D = 50, η = 20%, r = 19, k = 1).
Fig.5 shows the MAE of the six registration parameters

under three measurements. It can be seen that all the three

FIGURE 4. Information abundance maps and selected patches by
different measurements. (a) Gradient map. (b) Selected patches by
Gradient. (c) Entropy map. (d) Selected patches by Entropy. (e) Variance
map. (f) Selected patches by Variance.

FIGURE 5. Comparison of registration results with different feature
selection methods.

intensity measurements can work in 2D-3D registration.
However, theMAE by Gradient is the smallest (position error
is less than 2 mm, attitude error is less than 1 degree) com-
pared with those by Entropy and Variance. The results show
that the Gradient is the optimal measurement in registration.

2) WEIGHT PARAMETER k
The weight parameter k in Eq. (12) affects the weight com-
putation. To find an optimal value, k is set to different values,
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FIGURE 6. Comparison of registration results with different weighting k.

namely 0.5, 1, and 2. According to the above test, Gradient is
chosen as the informationmeasurement, and other parameters
kept unchanged (D = 50, η = 20%, r = 19). The MAEs of
the registration results are shown in Fig.5.

From Fig.6 it can be drawn that all k work in the test. The
bigger k is, the closer wp is to 1. However, the MAE is not
consistent with the change of k . Obviously k = 1 can retrieve
better result than k = 0.5and k = 2, especially in tz where the
MAE of k = 0.5 or k = 2 is much larger than that of k = 1.

D. REGISTRATION EXPERIMENT OF
SIMULATED DSA IMAGES
Because the registration parameters between real DSA
images and 3D vessel model cannot be obtained, the regis-
tration experiments are carried out using the 10 simulated
DSA images in order to quantitatively analyze the registra-
tion methods. In the registration experiment, the registra-
tion process based on WLMI is implemented by MATLAB,
the DRR generation part is implemented by ITK. Ten groups
of experiments are carried out. Moreover, the registration
with conventional MI,WJH-MI, GMI, NMI and LMI are also
implemented.

1) REGISTRATION EXPERIMENT WITHOUT
VESSEL EXCALATION
First, a registration experiment with intact vessel was
conducted. Fig.7 shows the overlay of the boundary of
re-projection of 3D vessel model on the synthetic DSA image
plane by the final Transform T and the DSA intrinsic parame-
ters. Fig.8 shows the average statistical errors of the registra-
tion parameters. Table 1 shows the mTREproj and IoU result
of these methods.

It can be seen that although all the methods can achieve the
registration, the accuracy are different.

The maximumMAE, mTREproj and average iteration time
of MI and NMI are all significantly higher than those of LMI
and WLMI, indicating that the idea of local area registration
has more advantages in vascular registration tasks. Besides,
LMI,WLMI has better convergence effect on the parameter tz
representing the scaling effect, and the registration result is
more stable.

2) REGISTRATION EXPERIMENT WITH VESSEL EXCALATION
In real DSA images, vessel may partly missing because of
the diffusion effect of contrast. In order to simulate the vessel

FIGURE 7. Registration results without vessel excalation by different
metrics. The red contours in the image are the vascular boundaries in the
DRR images corresponding to the registration result parameters.
(a) WLMI. (b) LMI. (c) WJH-MI. (d) GMI. (e) NMI. (f) MI.

FIGURE 8. Comparison of MAE without vessel excalation.

excalation, some ends of the 3D vascular model are wiped
off intentionally and then the simulated DSA images are
regenerated. The images are registered with the intact 3D vas-
cular model. The other steps are same to the experiment
without vessel excalation. Fig.9 shows the registration results.
Fig.10 and Table 2 show the statistical results of the MAE,
mTREproj, and IoU.
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TABLE 1. Registration comparison without vessel excalation.

FIGURE 9. Registration results with vessel excalation by different metrics.
The red contours in the image are the vascular boundaries in the DRR
images corresponding to the registration result parameters. (a) WLMI.
(b) LMI. (c) WJH-MI. (d) GMI. (e) NMI. (f) MI.

As can be seen from statistical results, the registration
error has been increased because of vessel excalation. The
maximum MAE of MI is greater than 10; therefore, it is
regarded as failure. The MAE of NMI is larger than that of
LMI and WLMI, and mTREproj of NMI is also one order of
magnitude higher than that of LMI andWLMI. Experimental
results show thatWLMI and LMI based on feature patches are
less susceptible to vascular excalation than NMI and MI, and
can achieve registration more quickly and accurately. And
registration based on WLMI is better than LMI.

3) NOISE ROBUSTNESS EXPERIMENT
In order to verify the robustness ofWLMI registrationmethod
to noise, a group of noise experiments are carried out in this
paper. According to Eq.(15), uniformly distributed noise is
added to the fixed image IF , and ten groups of experiments

FIGURE 10. Comparison of MAE with vessel excalation.

TABLE 2. Registration comparison with vessel excalation.

(a ∈ [0, 10]) are carried out under the same conditions. The
experimental results are shown in Fig.11.

IF−noise (x, y) =


255, IF (x, y)+ rand (−a, a) > 255
0, IF (x, y)+ rand (−a, a) < 0
IF (x, y)+ rand (−a, a) other

(18)

FIGURE 11. Registration error under different noise levels.

It can be seen from the Fig.11 that although the noise has a
little impact on the registration results, the registration error
is relatively stable.

From the synthetic registration experiment, it can be drawn
that:

(1) If there is no vessel excalation, all measurements can
be used in the VIS 2D-3D registration task. But the proposed
metrics WLMI performs better than other MI-based metrics.

(2) Vessel excalation will lead to larger registration error
compared with intact vessel. However, the proposed WLMI
still surpasses other MI-based metrics.

(3) The noise in the image intensity has little effect on the
proposed registration. The proposedWLMI is robust to image
intensity noise.
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FIGURE 12. The registration result of WLMI for real vessel image. The red
contour line is the edge of vessel in DRR corresponding to the registration
result parameter, and the background is the real DSA image. (a) WLMI.
(b) LMI. (c) WJH-MI. (d) GMI. (e) NMI. (f) MI.

TABLE 3. Registration comparison with real DSA image.

E. REGISTRATION EXPERIMENTS OF REAL DSA IMAGES
In order to verify the registration effect in the actual situation,
it is necessary to verify the feasibility and effectiveness of the
proposed method in real surgical environment. Fig.12 shows
the registration result of two patient. The background is the
real DSA image and the red contour line is the registration
result. Table 3 is the comparison of average IoU. The ground
truth area of the real DSA are manually marked out. Fig-
ures show that the result of WLMI is basically consistent
with the contours of vessels in real image, and the results of
WLMI and LMI registration based on local information are
obviously better than those of NMI and MI.

IV. DISCUSSION
Vessel excalation or the missing of some part of the vessels in
DSA image, results in that there are significant information
difference in DSA and DRR. Therefore global similarity
measurement is slow in registration and easy to fall into
wrong extremum. WLMI is more effective and faster than
the traditional method in registration during VIS, because it
just selects the patches with rich information that are highly
probable existent both in DSA and DRR. Compared with
the traditional MI or NMI, WLMI has greater gradient and
is easier to converge under the same conditions. Further-
more, the selected patches can also reduce the influence of
the background difference. The computational complexity of
extracting the image patches can be reduced too. However,
Besides similarity measure, the accuracy of segmentation,
the clarity and contrast of vessels in DSA images will all
affect the final registration results.

In the implementation, DRR image generation is realized
by ITK program, and then is invoked in MATLAB according
to the parameters given by Powell optimization. Most of
registration time is consumed in the generation of DRRs. The
functions in ITK can be accelerated by CUDA to shorten the
generation time of DRR image, then the registration can be
effectively accelerated.

V. CONCLUSION
This paper presents a new similarity measure WLMI to
register preoperative 3D CT vessel model to intraoperative
2D X-ray images in VIS. WLMI incorporates MI algo-
rithm and spatial information. Local patches are selected
using the gradient of DSA image, which is in essence a
particular sampling way to filter the information. Then the
weights are assigned to each patch according to the gradi-
ent of the patch center. WLMI value is evaluated in these
patches using weighted joint histogram. We test out results
on both synthetic and real X-ray images, which show that
the proposed WLMI measure is more accurate than tradi-
tional ways. In synthetic registration with vessel excalation
test, the mTREproj is 2.9mm and the IoU is 96.7%. In real
registration test, the IoU reaches 81.3%. Therefore, WLMI is
more suitable to be used in 2D/3D registration task in VIS.
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