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ABSTRACT Docker is widely used in data centers to host services. The docker image adopts a hierarchical
storage architecture, which means that the docker image is composed of a set of filesystem layers. In the
image building process, only the top layer is read-write, while the bottom layers are all read-only. However,
temporary files are often used in the image building process. Nevertheless, if a temporary file is imported and
removed in different layers by a careless developer, it will lead a file redundancy. We termed this problem
‘‘temporary file smell.’’ This smell leads to larger-size images, which seriously restricts the efficiency of
image distribution and thus affects the scaling ability of services in facing of sudden high load. To address
this problem, we make an empirical case study to the real-world Dockerfiles on DockerHub. Based on the
case study, we summarize four different smell patterns and propose a state-depend static analysis method to
detect this kind of smells. We also provide three feasible fixing methods as selective options to eliminate the
temporary file smell.

INDEX TERMS Abstract syntax tree, Docker, Dockerfile, static analysis, temporary file smell.

I. INTRODUCTION
Container technology is widely used in all kinds of data
centers due to its powerful elastic scaling ability. It is an
enabling technology for supporting the micro-service archi-
tecture. As the de facto standard of container technology,
Docker plays an important role in hosting micro-service
instances. Docker [1] is a lightweight resource management
tool that is widely used to host distributed applications in
datacenters nowadays. Docker image is the carrier of the
distributed application software. To start an instance of a
service, its corresponding image must be pulled from the
image repository to the host machine through the network.
A fast image distribution is important to the quality of service.
In this paper, we try to summarize and eliminate human errors
that lead to an increase of image size in building process.
Since this kind of human errors can result in a large num-
ber of temporary files left in images, we call it temporary
file smells (TF smell), which is caused by careless use of
Dockerfiles. It is against the best practice [2]. Although some

The associate editor coordinating the review of this manuscript and
approving it for publication was Roberto Nardone.

tools (such as Linter [3]) can be used to check file syntax
according to best practice attributes. However, it does not
care about the real cause why TF smell occurs, thus cannot
resolve the problem completely. To clarify the harmfulness
and universality of TF smell, we go through real world cases
and make some studies. Actually, this kind of careless use has
been discussed in many technology forums in ways of ‘‘how
to build a smaller image?’’. The way they talked is very like
the best practice attributes. However, there is no definite term
to describe this problem and no systematic research on this
problem. In this paper, we study five research questions that
help to understand, detect and eliminate TF smells. These are
our initiative value contribution to the TF smells problem.

As we know that a docker image is usually built according
to the script file that named ‘‘Dockerfile’’ (similar to the
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FIGURE 1. Docker image layers of JDK 1.8.

Makefile). The TF smell we studied in this paper is referred
to the smell that occurred by misunderstanding (including
unintentional) the relational mapping from the syntax and
semantics of Dockerfile to theUnion File System [4] that used
by docker image. 1 Dockerfile syntax defines some keywords
which can guide the image builder to use certain data resource
and control logic to construct an image.

A docker image is a series of layers stacked. Each layer
is created according to an instruction in the image’s Dock-
erfile. A layer is a standalone filesystem. Consider as the
Dockerfile 1. This Dockerfile creates an image with JDK8.
It contains three instructions, each of them creates a layer.
The FROM instruction starts the building process by creat-
ing a layer from the centos:7 image. The COPY instruction
adds the jdk-8u171-linux-x64.tar.gz file which locates in the
docker client’s current directory to the image. The RUN
instruction extracts the archive file by using tar command.

Layers of a docker image are read-only. Each layer is an
independent file system. When instantiating, an additional
read-write layer is added upon the layer stack. This additional
layer is called ‘‘container layer’’. All the filesystem changes
(e.g. write, modify, delete) are recorded in the container layer.
The upper read-write layer distinguishes the docker image
and the docker container. The docker storage driver uses
copy-on-write technology to support the layered filesystem.
Docker container can be saved as an image through specific
operations that put the container layer upon the image layer
stack and make it read-only. When executing a Dockerfile,
it repeatedly performs the three operations, adds a read-write
layer,modifies it and converts it to read-only, for each instruc-
tion. Figure 1 illustrates the image created according to Dock-
erfile 1. The three layers are created according to the three
instructions in Dockerfile 1. In this example, the jdk-8u171-
linux-x64.tar.gz is a temporary file. The whole image size is
about 777MB, however, the useless temporary file accounts
for 191MB (about 25%). Consider as Dockerfile 2 that tries
to delete the temporary file.

Figure 2 illustrates an instance of the image built according
to Dockerfile 2. It adds a new layer which records the deletion
of the jdk-8u171-linux-x64.tar.gz file at the top of the image.

1Other kinds of temporary file redundant that are not caused by careless
use are beyond the scope of this paper.

FIGURE 2. Docker container layers of JDK 1.8.

Thus, we cannot see this file in the instance’s filesystem. The
jdk-8u171-linux-x64.tar.gz file seems to have been removed
from the filesystem of the image, but it still takes up image’s
storage space. That is a typical example of the TF smell in
Dockerfile. In this paper, we first study the universality of the
TF smells, then we give some detection methods and guiding
opinions to overcome these smells.

Contributions of this paper include: 1) We summarize
the programming model of the Dockerfile and classify the
popular TF smell into four different patterns. 2) We address
the true extent of the TF smell problem in practice through
an empirical study. 3) We propose a state-depend static
analysis method to detect the TF smell. 4) We summa-
rize three different fixing methods to eliminate the TF
smell.

The rest of this paper is organized as follows: Section II
illustrates the motivation of this work. Section III analyzes
the Dockerfile programming model and gives four different
TF smell patterns. Section IV issues the TF smell problems
in practice. Section V proposes a state-depend static analysis
method to detect the TF smell. Section VI summarizes three
different TF smell elimination method. Section VII analyzes
the related work. And section VIII gives a conclusion of this
paper and describes our future plan.

II. MOTIVATION
We have introduced the phenomenon of TF smells in the last
section. In this section, we conduct a series of experiments to
investigate the mechanism that why TF smells occurs from
an aspect of the filesystem level. Our goal is to answer the
following question.
• RQ1. How does TF smell occurs in filesystem level?

VOLUME 7, 2019 63651



Z. Lu et al.: Empirical Case Study on the Temporary File Smell in Dockerfiles

FIGURE 3. Filtered log messages. (a) Log message for Test 1. (b) Log message for Test 2.

A. EXPERIMENTAL SETUP
We build the experimental environment based on CentOS 7
with Linux kernel 4.20. The docker storage driver is Overlay
filesystem. The root file system is XFS filesystem. We sep-
arately inject logging code to both of the two filesystems
and rebuild the kernel to trace the temporary file creation
and deletion. For the overlay filesystem, we inject the printk
function to ovl_create_or_link and ovl_do_remove functions
in /linux-4.20/fs/overlayfs/dir.c source code file. The two
functions are used to link and unlink a user space filepath to a
VFS file inode. For the XFS filesystem, we inject the printk
function to xfs_create and xfs_remove functions in /linux-
4.20/fs/xfs/xfs_inode.c source code file. The two functions are
used to link and unlink a userspace filepath to a XFS file
inode.

Then we create two test Dockerfiles, Test 1 and Test 2,
and use docker build command to execute them. The two
Dockerfiles have the same semantic. Both of them firstly
create a temporary file and then delete it. The difference is
that in Test 1 the creation and deletion operations are in one
command connected by the && operator while in Test 2 the
two operations are in two commands.

B. OBSERVATION
In Test 1, we create a temporary file ‘‘add.txt’’ through the
output redirection operator (>) in a RUN command. Then,
delete the file in the same RUN command. That means the

creation and deletion operations are in the same layer. After
analyzing the log message, we observed 107 creation opera-
tions and 69 deletion operations, which include both files and
folders. We use the keyword ‘‘add.txt’’ to filter these message
and get 2 creation operations and 2 deletion operations. We
list the filtered log message in Figure 3(a). From the log
message, we can see that the temporary file is created and
removed in both XFS filesystem and Overlay filesystem.
Furthermore, in the same filesystem, the inode number is the
same for both creation and deletion operations. It indicates
that the temporary file is actually removed from the image
filesystem.

However, the situation is different in Test 2. Since the
creation and deletion operations are in different RUN com-
mand, the two operations are actually performed in different
layers. We analyze the log message and observed 209 cre-
ation operations and 110 deletion operations, which include
both files and folders. We use the keyword ‘‘abc.txt’’ to
filter the message and get 4 creation operations and 3 dele-
tion operations. The filtered logs are listed in Figure 3(b).
From the aspect of Overlay filesystem, the system creates
the ‘‘/abc.txt’’ file in inode 26603 and delete it in inode
61424. It indicates the file is marked as having been removed
in inode 61424, however it is still stored in inode 26603.
From the aspect of ZFS filesystem, there are 3 creation and
2 deletion operations of ‘‘abc.txt’’. Of these operations, one
creation-deletion operation pair of these operations aims at
same inode with number 35765029. The second creation to
inode with number 986983 stores the actual file. The rest
creation-deletion operation pair with different inode number
35765792 and 18986842 simulates the file deletion opera-
tion for the top-most filesystem layer. It indicates that the
file is actually stored in lower-level filesystem layer of the
image, however, from the top-most aspect, we cannot see it
in image’s filesystem.

C. PERFORMANCE
According to the above experiment, we can detect the TF
smell by analyzing the log message that the injected code
printed. However, since the code is injected into the key area
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FIGURE 4. Performance loss of monitoring.

of the kernel, it can generate a large number of logs in the
system running and significantly reduce system performance.
We use the time tool to test the performance lost through
two experiments. The two tests are 1) build docker image
with Dockerfile 2 and 2) compile linux kernel 4.20. In order
to simplify the process, we only take the execution time as
the indicator and ignore other indicators such as CPU and
memory usage.

The experimental results are listed in Figure 4. For the
docker image building test, if we don’t inject any logging
code, it takes 22.4 seconds to complete the task; if we
inject the logging code, it takes 30.7 seconds to complete
the task. The performance loss is about 37.05%. For the
kernel compiling test, if we don’t inject any logging code,
it takes 901 seconds to complete the task; if we inject the
logging code, it takes 1042 seconds to complete the task. The
performance loss is about 15.6%. Therefore, we will try to
avoid using the inject code method to detect TF smells for its
poor performance, because the performance loss influences
the whole system and all the other tasks in that host will be
affected. So, we need to develop a lightweight, non-log based
detection method.

III. TF SMELL PATTERNS
In this section, we introduce the Dockerfile programming
model and summarize the possible TF smell patterns based
on the model. Specifically, we aim at answering the following
research question:

• RQ2. How many different TF smell patterns?

A. DOCKERFILE PROGRAMMING MODEL
A Dockerfile can be modeled as a set of sequential struc-
ture instructions, while an instruction is composed of only
one keyword (also regard as operator) and one operand.
Operands could be classified into resource type(rt) and com-
mand type(ct) depending on the operator it follows. Take
Dockerfile 2 as an example. The operands after FROM and
COPY are resource type since they are resource names or file
paths.While the operands afterRUN are command type since
they are shell scripts. A Dockerfile can be formalized as
follows:

∀i : D · i = < rt_operator, rt_operand >

∨ < ct_operator, ct_operand >

where D represents a Dockerfile and i represents an
instruction.

To study the TF smell problem, we need to address how the
temporary files are imported. Firstly, the rt_operators with
file manipulation capacity can import temporary files into
an image. We call these operators fm_operator. Secondly,
the ct_operand can also import a temporary file into an
image since the shell command can be used to process data
resource. We call these operand fm_operand. Then we have
the following formula.

fm_operator ⊂ rt_operator

fm_operand ⊂ ct_operand

We can see that the fm_operator and fm_operand are the only
two ways to import a temporary file into an image.

B. PATTERNS
Now, we can summarize the TF smell patterns according to
the fm_operator and fm_operand respectively. After enumer-
ating all the operators, it is easy to find that the fm_operator
only includes COPY and ADD. However, the fm_operand is
shell command including scripts, so it’s hard to enumerate all
the possible options. There are many different ways to load
files into an image’s filesystem through shells. The shell can
locate a resource file according to URL and access it through
a network or shared storage. There are many commands have
such function, such as wget, curl, scp and et al. We call these
shells build-in-cmd. We have discussed that the TF smell is
usually caused by an incorrect file delete operation. In Linux
system, the delete operation is usually executed through
rm command. Based on the above analysis, we summarize
4 different TF smell patterns: COPY/rm pattern, ADD/rm
pattern, built-in-cmd/rm pattern and no rm pattern.

The smell in Dockerfile 2 is a typical example of COPY
/rm pattern. It’s the most simple TF smell pattern. Docker-
file 2 use the COPY instruction to import a temporary file
into the image and try to use the shell command rm to delete
the temporary file.

The error mechanism of ADD/rm pattern is similar to the
COPY/rm pattern. It uses the ADD operator to import a tem-
porary file into the image and try to use the shell command
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rm to delete the temporary file. However, the semantics of
the two operators are different. The COPY operator only
imports a file into the image without doing anything. The
ADD operator can also import a file into the image, but it can
uncompress some kinds of archive files, e.g. tar, bzip2, gzip
files. Let’s consider Dockerfile 3 andDockerfile 4. Dockerfile
3 would not lead to the TF smell while Dockerfile 4 would.
Since the ADD operator uncompresses the jdk-8u171-linux-
x64.tar.gz file and only import the files after uncompressed in
Dockerfile3. Although the tar zxvf jdk-8u171-linux-x64.tar.gz
command in line 3 and the rm -f jdk-8u171-linux-x64.tar.gz
command in line 4 will fail to execute, the image building
process is not affected. However, Dockerfile 4 will cause
a TF smell since the COPY operator can only import jdk-
8u171-linux-x64.tar.gz file into the image without doing
anything.

The forms of build-in-cmd/rm pattern are variety since
there are many different ways to import temporary files into
an image. However, there is still a common feature of this pat-
tern. That is the import and deletion operations of temporary
files are in different image layers. Dockerfile 5 illustrates an
example of this pattern. In this example, the image downloads
the jdk-8u171-linux-x64.rpm file through wget command in
layer 2 and tries to delete it in layer 4 during the image
building process. This can undoubtedly result in the TF smell.

The no/rm pattern is an implicit error that is hard to be
recognized because there is no obvious evidence to indicate
this smell. As a file is imported to the image without deletion,
it’s hard to determinewill it be used in the running state or not.
We will solve this problem in other work, so we don’t discuss
it in this paper.

IV. TF SMELLS IN PRACTICE
The examples listed above are made by us. They look very
simple and are easy to avoid. Does it possibly exist in prac-
tice? In this section we will screen the docker’s official reg-
istry DockerHub [5] for TF smells to answer the following
research question:

• RQ3. How common of TF smells in practice?

A. DATASETS
We use the searching function of DockerHub to list the Top-
100 pages2 of images that tagged isAutomatedwith keywords
java, tomcat, mysql and hadoop respectively, and use a web
spider to crawl all the searching results’ Dockerfile. The
searching function returns 10 images for every page. The
return page numbers of java, tomcat, mysql are much larger
than 100, while the return page number of hadoop is only 62.
Theoretically, we should respectively get 1000 Dockerfiles of
java, tomcat, and mysql. However, there are some HTTP 404
(Page Not Found) errors, the actual numbers we get are less
than 1000. Table 1 lists the actual numbers of Dockerfiles we
got with different keywords.

TABLE 1. Dockerfile amounts with different keywords.

B. TF SMELLS DISCOVERING
Weuse a semi-automaticmethod to analysis all the samples to
find the TF smells of different patterns. The analysis process
has two steps.

i) For COPY/rm and ADD/rm pattern, the first step is to
filter all Dockerfiles through a condition that the rt_operator
set of a file contains COPY or ADD instruction and the
ct_operand set of the same file contains rm command. For the
build-in-cmd/rm pattern, since the build-in-cmd is a set that
is hard to enumerate, we choose a typical case wget/rm smell
to analysis. The first step is to filter all Dockerfiles through a
condition that the ct_operand in instruction A contains wget
command and the ct_operand in instruction B contains rm
command, where B is after A.

ii) We manually check all the filtered Dockerfiles to judge
whether a file has a certain type of TF smell. As we know
that manually check is toilsome and error-prone. However,
it seems hard to do this job automatically through static
analysis. The reasons include: 1) the temporary filename and
its path may be changed in the image building process; 2) the
filename is not determined in importing, for example, a short
URL; 3) the Dockerfile may use a wildcard to represent
temporary file; 4) the other conditions that need to execute.

2The DockerHub only allows to access the top 100 pages of searching
results.
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TABLE 2. TF smells with different keywords.

The amounts of TF smells we found is listed in Table 2.
We totally find 152 files3 that have TF smell from 3242Dock-
erfiles, the error ratio is 4.69%. Some files contain more
than one kind of TF smell patterns. Actually, there is a large
amount of smell that are not included in this statistic. Firstly,
the no rm smell are not analyzed since we count the rm
command as a filter condition in the first step. Nevertheless,
we still find 15 no rm smells from the filtered files. Secondly,
there are other types of build-in-cmd, such as curl, apt-get and
so on. However, the 4.69% error rate is still very high. That
means the TF smell is an urgent problem in the real world.

V. TF SMELL DETECTION WITH STATE-DEPENDENT
STATIC ANALYSIS
From the above analysis, we can see that TF smell is very
common. It will increase the size of the image and slow down
the image distribution speed. In this section, we propose a
state-dependent static analysis method (SDSA) to resolve the
following research problem.
• RQ4. How to detect TF smells?

A. ABSTRACT SYNTAX TREE
To detect the TF smells, we need to build the abstract syntax
tree (AST) for the Dockerfile according to the programming
model. The outermost control structure is sequential since
the Dockerfile can be treated as a set of instructions start-
ing with a keyword(operator in the programming model).
In the programming model of Dockerfile, an instruction is
represented as an operator and operand(s) after the operator.
When constructing the AST, we set the Dockerfile name
as the root and set all the instructions as branches of the
root. The operand with most instructions cannot be further
analyzed, so their subtree depth is only two. While operands
of some special instructions are linux shell scripts, they can
be further analyzed. Figure 5 represents the abstract syntax
tree of Dockerfile 5.

In the abstract syntax tree, we classify all the nodes into
4 categories. We use different colors to mark the 4 cat-
egories in figure 5. The red nodes are called operator
node. The blue nodes are called resource node. The green
nodes are called cmd node. And the purple nodes are called

3URLs of these Dockerfiles can be found in https://github.com/iscas-
xujiwei/tfsmell/blob/master/urls

FIGURE 5. Abstract syntax tree of dockerfile 5.

parameter node. We assume all the shell scripts can be
executed successfully as the developer’s intent. In that case,
we need not consider the syntax of parameter nodes in the
next analysis. So, we remove the parameter nodes to prune
the abstract syntax tree.

B. CHALLENGES IN STATIC ANALYSIS DETECTION
We first introduce a few concepts that would bring challenges
to the method.
• Filename is the name of a file. It’s unique in a directory.
However, it can be repeated among different directories.
The filename cannot contain some special characters
includes pathname separator /. Usually, the filename
has an extension, which is split by a dot character.

• Directory is used to contain files and sub-directories.
The naming rules of a directory are almost as same as
the file. It can use all characters that can be used by a
filename to name a directory.

• Directorypath is the path from the root directory to the
current directory.

• Filepath is a unique resource indicator. It is composed
by a directorypath and a filename. Both the directory-
path and filepath can be a relative path or absolute path.

• Wildcard is a kind of placeholder represented by a
single character, such as an asterisk (*), which can be
interpreted as a number of literal characters or an empty
string. It is often used in file matching.

From the above concepts, we can infer some challenges
that are hard to be addressed by pure static analysis.

1). It is hard to determine a path is a directorypath or a
filepath, in other words, it is hard to determine a path that indi-
cates a file or a directory. For example, the path ‘/root/tmp’
can be either a directory or a file.

2). It is hard to determine the actual endpoint of a relative
path. For example, the directorypath ‘tmp/’ can be referred to
‘/tmp/’, ‘/root/tmp/’ or other directories.
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3). The wildcard and environment variables are often used
in Dockerfile. So the full character matching is not always
working. It must be interpreted to match the corresponding
file in the analysis.

C. STATE-DEPENDENT FILE MATCH
To address the first two challenges, we propose a state-
dependent file matching method in detecting TF smells. The
main idea of this method is to use a state table (ST) storing
the variables that represent the current status of resources.
The state table is designed to disambiguate ambiguity when
a resource is hard to be determined.

First, the ST records CurrentDirectory variable. This vari-
able is used to record the absolute directory path of the
current working directory. Its initial value is ‘/’. There are
two different ways to change the value of CurrentDirectory.
One is through the ‘WORKDIR’ operand and the other is
through the shell command ‘cd’ after the ‘RUN’ operand.
When the abstract syntax tree scanner meets the operator
node ‘WORKDIR’, the CurrentDirectory variable is updated
to the value of its child resource node, since this value rep-
resents the operand after ‘WORKDIR’ in the abstract syntax
tree. When the abstract syntax tree scanner meets the cmd
node with command ‘cd’ under the operator node ‘RUN’,
the CurrentDirectory variable is updated to the value of the
last child resource node. If the resource node value is an
absolute path, the CurrentDirectory is set to the node value.
If the resource node value is a relative path, then the Current-
Directory value appends the resource node value.
Second, the ST records types (file or directory) of differ-

ent paths. We use symbol ‘F’ to represent file path, sym-
bol ‘D’ to represent a directory path and symbol ‘U’ to
represent those paths without clear types. For example, S1:
‘ADD jdk-8u171-linux-x64.tar.gz /usr/local/tmp/java’ will
be saved in ST as Table 3 illustrated; while S2: ‘RUN
tar zxvf /usr/local/tmp/java/jdk-8u171-linux-x64.tar.gz’ will
alter ‘/usr/local/tmp/java’→ ‘U’ to ‘/usr/local/tmp/java’→
‘D’ and add ‘/usr/local/tmp/java/jdk-8u171-linux-x64.tar.gz’
→ ‘F’. Table 4 lists these changes.
Third, the ST also records the common directory structure

of Linux system. Such as ‘/etc’, ‘/bin’, ‘/root’ and so on.
When proceeding a file match operation, we compare the

absolute path of resources. If the file path is a relative path,
we translate it into the absolute path according to the Cur-
rentDirectory. The path type variables are used when a path is
ambiguous. For example, in S1, ‘/usr/local/tmp/java’ can be a
file path or a directory path. If it is a file path, the compression
file is added as /usr/local/tmp/java. If it is a directory path,
the compression file is copied to /usr/local/tmp/java/jdk-
8u171-linux-x64.tar.gz. That will misguide the result in com-
plete absolute path matching. Through the ST, we can accu-
rately estimate its real path. If the path is marked ‘U’ in
ST, we would try all the two possibilities in file matching
and file searching. Through the state-dependent file matching
method, we can resolve the first two challenges.

TABLE 3. Variables in ST.

TABLE 4. Variables’ change in ST.

D. SYNTAX INTERPRETATION
We use the plain syntax interpretation to address the third
challenge. There are three kinds syntax of the Dockerfile
needed to be interpreted in detecting TF smells.

The first is the wildcard. As we know that, the wildcard is
a powerful tool of Linux shell. It is often used in shell scripts.
There is no exception in the Dockerfile. Question mark(?)
can represent any single character. Asterisk(*) can represent
any number of characters (including zero, in other words,
zero or more characters). These two characters are often
used in file deletion. When detecting TF smells, we use the
deterministic finite automaton (DFA) to test whether different
character strings have the same syntax.

The second is the environment variable. There are two
kinds of different environment variables. One is the Dock-
erfile environment variable and the other is the system envi-
ronment variable. The Dockerfile environment is used in the
docker image building phase. It is identified by the keyword
ARG. For example, Dockerfile 6 is a real case from the Dock-
erHub. It illustrates the usage of the Dockerfile environment
variable. The system environment variable can be used in
both the docker image building phase and the image running
phase. It can be identified by the keyword ENV. And it can
also be identified by shell commond set or be written to the
system configuration file and loaded when it is needed.

The third is the return of a shell command. The com-
mon cases are using grep, sed or awk to obtain or create a
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TABLE 5. Detection ratio of different TF smells.

character string. The possibility of this kind of usage exists,
but it is relatively rare in the practice. To address this problem,
we need to use the dynamic analysis method.

E. TF SMELL DETERMINATION
TF smells detection is a three-step process. First, building
the abstract syntax tree. We use a syntactic analyzer to make
lexical analysis and syntactic analysis on the Dockerfile
and set up an abstract syntactic tree from the structure of
the Dockerfile. When building the abstract syntax tree, all
nodes are marked by types mentioned in subsection A of
section V.

Second, semantic analyzing. We use a semantic analyzer
to go through the abstract syntax tree. The semantic analyzer
is used to 1) build and maintain the state table; 2) create two
file lists L1 which is used to store all files’ identifiers that
introduced by fm_operator and fm_operand and L2 which is
used to store all files’ identifiers that deleted by ct_operand;
4) convert all relative paths in L1 and L2 to absolute
paths.

Third, file matching. Apply the syntax interpretation tech-
nology to match files between L1 and L2. If {l1 = l2|l1 ∈
L1, l2 ∈ L2}, we call 〈l1, l2〉 is a match m. There are three
situations: 1) If l1 is an operand of rt_operator , then m is a
TF smell; 2) When l1 is in a ct_operand , if ct_operators of
l1 and l2 are different, then m is a TF smell; 3) When l1 is in
a ct_operand , if ct_operators of l1 and l2 are the same one,
then m is not a TF smell.

F. VERIFICATION
We designed an experiment to estimate the effectiveness of
our TF smell detection method. Dockerfiles that have TF
smells are selected as the test cases. The test cases con-
tain 152 Dockerfiles. 24 files of them have COPY/rm smell,
54 files of them have ADD/rm smell and 102 files of them
have wget/rm smell. We use our SDSA method to detect TF
smell of these files.

Table 5 illustrates the experimental result. From the result,
we can see that all different kinds of TF smells have been
detected correctly. The method has detected 36 COPY/rm
smell, 54ADD/rm smell and 116wget/rm smell. As we have
noticed that the total number is not equivalent to the sum of
the three numbers. That is because there are usuallymore than
one kinds TF smells in a single file. We use SDSA method to
detect another instance of build-in-cmd/rm, curl/rm smell,
and find 3 curl/rm smells from the 152 Dockerfiles.

VI. TF SMELL ELIMINATION
We can accurately identify TF smells by using SDSA
method. In this section, wewill answer the following research
question.

• RQ5. How to fix or avoid TF smells?

According to our observation, we classify the temporary
files that have smells into 4 catalogs: i) executable file, such
as .rpm, .deb, .sh file; ii) archive file, such as .zip, .gz, .bz2
file; iii) data file, such as .sql, .csvfile; iv) setup configuration
file.

There are two basic principles to fix and avoid TF smells.
The first is to avoid using temporary files. If it’s unavoidable,
then the second is to import and remove temporary files in the
same layer. There are differently detailed fixing and avoiding
methods specific to each type of TF smells and files.

A. DIRECTLY COPY METHOD
Directly copy method transforms the temporary file into the
final form before the building and copy the final form content
into the container in the building. The transform process can
be automatic or manual. This method is suitable for cases that
only a simple transform action is performed on the temporary
file. The archive files in COPY/rm and ADD/rm pattern are
typical cases. Since the COPY andADD instruction copy new
files or directories from src and add them to the filesystem of
the container at the path dest . They run in a separate layer.
Any other operations to the temporary file must be in new
layers. Once the temporary form is imported, it cannot be
removed through the normal operations provided by docker.
To avoid using a temporary file is an optional way to resolve
this problem. These smells are always accompanied by a
form transforming operation (uncompressing). Directly copy
method could avoid the creation of the temporary file layer.
For specific types of archive files, the ADD instruction can
directly uncompress them in the importing process. It is also
an optional way to use the ADD instruction instead of the
COPY instruction under this situation.

The limitation of this method is that it is only suitable
for the archive file. Since the archive file can uncompress
outside the image, but other kinds of files must be performed
(install or execute) within the image environment, because
execution outside would not work for these files.

B. INSTRUCTION MERGE METHOD
Instruction merge method merges several instructions into a
single one to reduce read-only layers that hold temporary files
of an image. This method is suitable for build-in-cmd/rm
pattern for all file types. Since the operations on tempo-
rary file in build-in-cmd/rm pattern is always scattered in
different RUN instructions. Each instruction creates a read-
only layer. To combine these scripts into a single instruction
can remove the temporary file physically not only logically.
Take Dockerfile 5 as an example, the three RUN instructions
can be merged into a single instruction with logic symbol
‘&&’. Dockerfile 7 illustrates the script form after fixing.
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This method can automatically fix all of these kinds of smells
in the programming stage of Dockerfiles.

The limitation of this method is that it’s only work in
the case of build-in-cmd/rm smell. It is not suitable for
COPY/rm and ADD/rm smells, since the COPY and ADD
instructions cannot be merged with the RUN instruction.

C. EXTERNAL STORAGE METHOD
External storage method requires a container to mount a vol-
umewhich stores the specific file in its first initialization after
building. This method separates a whole building process into
several pieces. When a TF smell occurs, the normal building
process stopped and a temporary image is generated. Then
start a container instance with a temporary image, mount
the volume that stores the specific file and perform relative
operations. After that, go on the normal building process. This
method is powerful to handle most kinds of TF smells. It can
be downmanually or automatically. Its disadvantages are also
obvious. It perplexes the image building process and lower
image building efficiency.

In this section, we summarize three methods to eliminate
TF smells. These methods are suitable for different patterns,
work on different levels and also have different limitations
and disadvantages. Facing the complicated smell patterns,
combining these methods reasonable could eliminate TF
smells effectively.

VII. RELATED WORK
The purpose of our work is to slim the docker image and
thus to speed up docker image distribution. And we use static
analysis method to achieve this goal. So, we will introduce
the related work from the three aspects: Docker image distri-
bution, Docker image slim and Dockerfile analysis.

Docker image distribution. A fast distribution of the
docker image means a faster scaling speed and a better
service quality. How to speed up the image distribution is
becoming an emergency problem [6] [7]. To resolve this prob-
lem, researchers brought many solutions, such as prefetch-
ing [7] or storage sharing [8]. These methods aim to share the
same image data among different host machines through the
network. They don’t care about the image size.

Docker image slim. DockerSlim [9] is an open source tool
to optimize the docker image. It uses a combination of static
and dynamic analyses to generate smaller-sized container
images. It simply identifies the files not required by the appli-
cation and excludes them from the container. However, the

interactive debugging or profiling tools are also removed
from the filesystem. Jörg Thalheim etc. proposed CNTR [10],
which can transparently combine two container images by
using system calls of Linux kernel. CNTR provides the ability
to attach new tools to the container dynamically.

Dockerfile analysis. Dockerfile runs as a script(similar
to a Makefile) that defines exactly how to build up an
image [11]. Studies on Dockerfile mainly focus on the
state [12] and evolution [13] [14] [15] of hosted applications.
Schermann etc. [16] persist the Dockerfile and its evolu-
tionary process into relational database through their tools
developed by themselves for further analysis. Linter [3] can
be used to check file syntax as well as arbitrary semantic
and best practice attributes [2]. It can also combine multiple
adjacent RUN instructions into one and thus can avoid some
simple TF smells. However, it does not care about the real
causes why TF smells occurs, thus cannot resolve compli-
cated situations, such as the RUN instructions is partitioned
by other instructions. Cito et al. [17] use Linter to analysis
over 7000 Dockerfiles on GitHub. They also integrate quality
checks into the container build process. However, theymainly
focus on version pinning warnings and not good at detecting
TF smells.

As far as we know, there is no systematic research onDock-
erfile TF smells at present. Although the best practice [2] can
help to resolve many kinds TF smells, lots of developers still
make mistakes. The 4.69% error ratio of 3242 Dockerfiles
is powerful evidence to prove this. So, it needs a detection
method to warning the developers. TF smells result in a
large number of redundant files. Analyzing its execution
semantics [18] is an important means to eliminate redundant
files [19].

VIII. CONCLUSIONS
Through an empirical study of Dockerfiles in DockerHub,
we find that the TF smells widely exist. We classify TF
smell into four different types and address three of them in
this work. This paper proposes state-dependent static anal-
ysis method to detect TF smells. Experimental results show
that the method can effectively find the known type smells.
Three fixing methods are proposed to eliminate the smell for
different types of data and smells.

The smell addressed in this paper is very popular. How-
ever, there are still other minority smells left unresolved.
For example, in the rayyildiz/java9 case,4 it uses the script
‘‘apt-get install wget’’ to install the wget tool and ‘‘apt-
get remove –purge wget’’ script to remove the wget tool in
different layers. Strictly, this kind of smells is still within the
scope of this paper. However, the variant forms have myriad
ways. So, it needs more prior knowledge to adopt all sorts of
unexpected cases. In the future, we will try to use the dynamic
programming analysis [20] based on log message to identify
the TF smells and the machine learning method to gain more
prior knowledge.

4https://hub.docker.com/r/rayyildiz/java9/∼/dockerfile/
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