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ABSTRACT The non-ideal circuit implementations cause a significant degradation in the performance of
the time-interleaved analog-to-digital converter (TIADC) system. In this paper, a behavioral model for the
TIADCbased onVolterra series is proposed tomodel the dynamic nonlinearities in TIADC. The time-domain
and frequency-domain expressions of the behavioral model based on hybrid Volterra series are derived
first. Then, the discrete-time equivalent model is proposed by transforming the hybrid TIADC system to
a discrete time one based on discrete-time Volterra series only. The derivations give a theoretical foundation
to use discrete-time Volterra series to model the mixed-domain TIADC system, which makes it possible to
make full use of the related existing derivations, conclusions, and methodologies on discrete-time Volterra
series. We also summarize some common special cases of Volterra series to provide practical guidelines for
ADC and TIADC practitioners. We present the main features of these models and their relationship with the
Volterra series. The simulation and experimental results show the effectiveness of the proposed model.

INDEX TERMS Analog-to-digital converter, time-interleaved, dynamic nonlinearities, Volterra series,
discrete-time equivalent model.

I. INTRODUCTION
Analog-to-digital converter (ADC) is a critical building block
as well as the bottleneck in modern telecommunication
systems [1]–[3]. The rapid evolution of electronics in the
past few decades has pushed ADC towards higher sampling
rate. Time interleaving more than one ADC is an effective
way to substantially increase sampling rate beyond a certain
process technology limit [4], [5]. An ideal M -channel time-
interleaved ADC (TIADC) increases the effective sampling
rate by a factor of M while maintains the resolution as sub-
ADCs.

However, non-ideal circuit implementations cause a signif-
icant degradation in performance of TIADC system [6]–[8].
During the last few decades, a considerable amount of litera-
ture has been published on offset, gain, time, bandwidth and
frequency mismatches in TIADC system [9]–[12]. Several
attempts have been made to analyze these mismatches and
numerous calibration methods have been proposed to com-
pensate for them [13]–[18].

The associate editor coordinating the review of this manuscript and
approving it for publication was Sara Dadras.

In recent years, researchers have shown an increased
interest in nonlinear mismatches of TIADC since nonlinear
distortions deteriorate the dynamic range and reduce the
effective number of bits of TIADC, especially when the
input frequency increases [19], [20]. The nonlinear distor-
tions are originated from switch-induced charge injection
and input signal dependent switch on-resistance in track-
and-hold (T/H) stage [20] and nonlinearities of the op-amp
(operational amplifier) [21]. These nonlinearities cause non-
linear and nonlinear mismatch errors in the TIADC output,
which decrease the SFDR (spurious-free dynamic range) and
SINAD (signal-to-noise and distortion ratio) of the TIADC
system. In practice, the distortions generated by strong sig-
nals may interfere with weak signals, therefore calibration of
the nonlinear mismatch errors is required. Several calibration
methods have been proposed to calibrate the nonlinearity
errors in recent years [21]–[26].

So far, however, there has been relatively few papers ana-
lyzing and modeling the effects of nonlinearity mismatches
in TIADC. A static nonlinear model of TIADC is pro-
posed in [23] and [25], which is based on polynomial and
can model several important nonlinearities, like differential
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nonlinearities (DNL) and integral nonlinearities (INL) [27].
Vogel and Kubin [28] proposed a nonlinear hybrid filter
banks tomodel nonlinear behaviors of TIADC, and illustrated
that nonlinear hybrid filter banks can be used to model offset,
gain, time and nonlinear mismatch errors. Wang et al. [22]
proposed the static and dynamic nonlinear mismatch models
of TIADC, and represented the TIADC output as the sum
of original signal and error signal. A behavioral model for
TIADC based on Wiener model is proposed to describe the
nonlinearities in TIADC system in [29] and the authors have
shown that nonlinearity mismatches are a generalization of
offset, gain, time and frequency mismatches. It can be shown
that the model proposed in [22], [28], and [29] can all be
categorized as Wiener model.

However, these models can only represent a small subset
of nonlinearities in TIADC. For polynomial-based model
and Wiener-based model, they can only represent static non-
linearities and dynamic nonlinearities with Wiener model
structure, respectively. Volterra series is one of the most
general and well-established models in nonlinear modeling
problems and have found wide applications in electronic
and electrical engineering, biomedical engineering, mechan-
ical engineering, etc [30]–[32]. A considerable amount of
literature has been published on Volterra series in the past
few decades [33]–[35]. Polynomial and Wiener model are all
special cases of Volterra series.

In this paper, we propose a behavioral model based on
Volterra series to model the dynamic nonlinear behaviors
in TIADC. Since TIADC is a mixed-domain system, which
involves both continuous-time and discrete-time signals,
the hybrid Volterra series should be used to model the non-
linearities in TIADC system. We derive the expressions of
hybrid Volterra series for mixed-domain systems both in time
and frequency domain, and then generalize the results from
single ADC systems to TIADC systems. The nonlinear model
proposed in [22], [23], [24], [28], and [29] are all special cases
of our proposed model. Thus, the model proposed in this
paper is a more general model than previous ones. In practical
situations, the precise nonlinear model of TIADC cannot be
known beforehand as prior. Therefore, the model in this paper
can represent a wider range of nonlinearities than the previous
models.

What’s more, we propose a discrete-time equivalent model
by transforming hybrid TIADC system to a discrete time
one since the hybrid system is more difficult to be handled
than continuous time or discrete time system. Besides, there
are extensive studies on discrete time systems on Volterra
series, while much less research on hybrid systems. The
derivations give a theoretical foundation to use discrete-time
Volterra series to model TIADC system. The proposed model
makes it possible to make full use of the related existing
derivations, conclusions and methodologies on discrete-time
Volterra series.

We also summarize some special cases of Volterra series
to provide a practical guideline for ADC and TIADC prac-
titioners. We present the main features of these models and

their relationship with Volterra series. Guidelines on how to
choose the suitable model are also provided.

The rest of this article is structured as follows. Section II
provides a brief review of the fundamental theory on Volterra
series. In section III, the time and frequency domain repre-
sentations of hybrid Volterra series for mixed-domain sys-
tems are derived. In section IV, a discrete-time equivalent
model of TIADC based on discrete-time Volterra series is
proposed. Section V describes some special cases of Volterra
series. Simulation and experimental results are provided in
Section VI. Finally, Section VII concludes the paper.

II. THEORY OF VOLTERRA SERIES
In order to stand on a theoretical framework to analyze
dynamic nonlinear behaviors of TIADC, this section gives a
brief review of the fundamental theory on Volterra series.

The continuous-time Volterra series with order P can be
represented as

y(t) =
P∑
p=0

yp(t) (1)

with

yp(t) =
∫
∞

−∞

· · ·

∫
∞

−∞

hp(τ1, . . , τp)
p∏
j=1

x(t − τj)dτj (2)

where x(t), y(t) are input and output of the system respec-
tively, and hp(τ1, . . , τp) denotes the pth order continuous-
time Volterra kernel. It can be assumed that Volterra ker-
nels are symmetric without any loss of generality, that is,
hp(τ1, . . , τp) remains unchanged when permutating the order
of τ1, . . . , τp [31].
If the pth order Volterra kernel hp(τ1, . . , τp) satisfies∫

∞

−∞

· · ·

∫
∞

−∞

|hp(τ1, . . , τp)|dτ1 · · · τp <∞ (3)

then the pth order generalized frequency response function
(GFRF) Hp(j�1, · · · , j�p) can be defined as the multidi-
mensional Fourier transform of hp(τ1, . . , τp), which is given
by [36]

Hp(j�1, · · · , j�p) =
∫
∞

−∞

· · ·

∫
∞

−∞

hp(τ1, .., τp)

· e−j(�1τ1+···+�pτp)dτ1 · · · dτp (4)

Conversely, hp(τ1, .., τp) can be recovered by means of the
inverse multidimensional Fourier transform

hp(τ1, .., τp) =
1

(2π )p

∫
∞

−∞

· · ·

∫
∞

−∞

Hp(j�1, · · · , j�p)

· ej(�1τ1+···+�lτp)d�1 · · · d�p (5)

As we stated before, the pth order Volterra kernel
hp(τ1, . . , τp) can be assumed symmetrical, thus the pth order
GFRFHp(j�1, · · · , j�p) also satisfies symmetrical property.
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Themultidimensional frequency response of yp(t) can then
be expressed as [36]

Yp(j�1, · · · , j�p) = Hp(j�1, · · · , j�p)
p∏
i=1

X (j�i) (6)

whereX (j�) is the one-dimensional Fourier transform of x(t).
Then, the output yp(t) can be derived from multidimen-

sional frequency response Yp(j�1, · · · , j�p), which is given
by

yp(t) =
1

(2π)p

∫
∞

−∞

· · ·

∫
∞

−∞

Yp(j�1, · · · , j�p)

· ej(�1+···+�p)td�1 · · · d�p (7)

As can be seen in (6), the frequency domain representation
of the output is a p-dimensional variable, while in the time
domain the output y(t) are one dimensional. Thus, in order to
get a more consistent relationship between frequency domain
and time domain expressions, a dimensional expansion oper-
ation is required.

A new variable � is defined as

� =

p∑
i=1

�i (8)

Then we can get

�p = �−

p−1∑
i=1

�i (9)

By substituting (9) into (7), we can derive

yp(t) =
1

(2π)p

∫
∞

−∞

· · ·

∫
∞

−∞

Yp(j�1, · · · , j(�−
p−1∑
i=1

�i))

· ej�td�1 · · · d�p−1d� (10)

Thus, the one-dimensional frequency domain representation
of pth order output yp(t) can be described by

Yp(j�) =
1

(2π )p−1

∫
∞

−∞

· · ·

∫
∞

−∞

Yp(j�1, · · · , j�p−1, j

× (�−
p−1∑
i=1

�i))d�1 · · · d�p−1 (11)

The output of the Volterra series can then be obtained by
summing Yp(j�) from 0 to P, which is given by

Y (j�) =
P∑
p=0

Yp(j�) (12)

Now the system output y(t) can be described by inverse
Fourier transform given below just as in linear time invari-
ant (LTI) systems with

y(t) =
1
2π

∫
∞

−∞

Y (j�)ej�td� (13)

FIGURE 1. The diagram of the hybrid Volterra series for single ADC system.

The time and frequency domain expressions for discrete-
time Volterra series have also been fully studied in the
literature [36].

Volterra series can not only be seen as the generalization
of Taylor series from static nonlinear systems to dynamic
nonlinear systems, but also can be regarded as the extension
of convolution function in LTI systems to nonlinear time-
invariant systems. It is appropriate to use Volterra series as
the mathematical model of TIADC.

III. HYBRID VOLTERRA SERIES FOR MIXED-DOMAIN
SYSTEMS
In the previous section, the time and frequency domain
representations of Volterra series have been given. How-
ever, TIADC is a mixed-domain system, i.e. the input is
a continuous-time signal, while the output is a discrete-
time signal. Thus, the relationship between input and output
cannot be described using either standard continuous-time
Volterra series or discrete-time Volterra series. In this section,
we will derive the hybrid Volterra series expressions for the
mixed-domain systems, and then generalize the results from
single ADC systems to TIADC systems.

A. MODELING OF ADC USING HYBRID VOLTERRA SERIES
In this subsection, we will derive the hybrid Volterra
series for single ADC systems both in time and frequency
domain.

The diagram of the single ADC system model is shown
in Fig.1. The analog input signal x(t) passes through the
continuous-time Volterra series (CTVS) with order P to gen-
erate output y(t) as

y(t)=G[x(t)]=H1[x(t)]+H2[x(t)]+· · ·+HP[x(t)] (14)

whereHp[x(t)] is the p-th order Volterra operator [31], which
is given by

Hp[x(t)] = yp(t) (15)

as in (2) and G[x(t)] is denoted as the CTVS function.
Assuming system output y(t) is sampled with sampling

period of Ts, hence the sampled output ys(t) is obtained by
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multiplying y(t) by the Dirac pulse train, i.e.

ys(t) = y(t)s(t) (16)

where

s(t) =
∞∑

k=−∞

δ(t − kTs) (17)

The sampled output ys(t) propagates through an impulse-
train-to-discrete-time-sequence converter (IT/SC) [37] to
obtain the digital output y(n). Assuming the resolution of
ADC is high enough, we neglect the quantization effects.

According to multiplication property of the Fourier trans-
form, the multiplication in the time domain corresponds to
the convolution in the frequency domain [37]. Thus, the fre-
quency response of ys(t) can be described by the following
relationship

Ys(j�) =
1
2π

∫
∞

−∞

Y (j2)S(j(�−2))d2 (18)

where Y (j�) is the Fourier transform of y(t) and S(j�) is the
Fourier transform of the Dirac pulse train, which is given by

S(j�) =
2π
Ts

∞∑
k=−∞

δ(�− k
2π
Ts

) (19)

With (18) and (19), the sampled output of CTVS Ys(j�) can
be derived as

Ys(j�) =
1
Ts

∞∑
k=−∞

P∑
p=0

Yp(j(�− k
2π
Ts

))

=
1
Ts

1
(2π )p−1

∞∑
k=−∞

P∑
p=0

∫
∞

−∞

· · ·

∫
∞

−∞

×Yp(j�1, · · · , j(�−
p−1∑
i=1

�i − k
2π
Ts

))

× d�1 · · · d�p−1 (20)

where Yp(j�1, · · · , j�p) and Yp(j�) are defined in (6) and
(11) respectively.

B. MODELING OF TIADC USING HYBRID VOLTERRA
SERIES
In section A, we have derived the hybrid Volterra series for
single ADC systems both in time and frequency domain.
In this subsection, we generalize the results to TIADC sys-
tems.

An M channel TIADC model using hybrid Volterra series
is depicted in Fig.2. The analog input signal x(t) is fed to the
mth (m = 0, . . . ,M−1) CTVS functionGm[x(t)] as denoted
in (14) to obtain the ym(t). Assuming the aggregate sampling
rate is fs(= 1/Ts). Then the sampled output ym,s(t) is obtained
by multiplying ym(t) by sm(t), where

sm(t) =
∞∑

k=−∞

δ(t − mTs − kMTs) (21)

FIGURE 2. An M channel TIADC model based on Hybrid Volterra series.

Therefore, the output of mth channel can be written as

ym,s(t) =
∞∑

k=−∞

Gm[x(t)]δ(t − mTs − kMTs) (22)

Then the sampled output of the TIADC system y(t) can be
obtained by adding outputs ofM channels

y(t) =
M−1∑
m=0

ym,s(t) (23)

The y(t) are followed by the IT/SC block to get the final
digital output y(n).

Following the same procedure as single ADC system,
the frequency domain representation of mth channel output
ym,s(t) is given by

Ym,s(j�) =
1
2π

∫
∞

−∞

Ym(j2)Sm(j(�−2))d2 (24)

where Ym(j�) is the Fourier transform of the ym(t), which has
the same expression as (14) only by changing G[x(t)] with
mth channel CTVS function Gm[x(t)].

The Sm(j�) can be obtained by using Poisson summation
formula. The Poisson summation formula is expressed as

∞∑
k=−∞

δ(t − kT ) =
1
T

∞∑
k=−∞

ej2πkt/T (25)

By replacing t with t − mTs and T with MTs, (25) can be
expressed as

sm(t) =
∞∑

k=−∞

δ(t − mTs − kMTs)

=
1

MTs

∞∑
k=−∞

ej2πk(t−mTs)/MTs (26)

By taking the continuous-time Fourier transform to (26),
the Sm(j�) can be written as

Sm(j�) =
2π
MTs

∞∑
k=−∞

e−j2πk
m
M δ(�− k

2π
MTs

) (27)
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Combining (27) with (24), the Ym,s(j�) can then be derived
as

Ym,s(j�) =
1

MTs

∞∑
k=−∞

e−j2πk
m
M Ym(j(�− k

2π
MTs

)

=
1

MTs

∞∑
k=−∞

P∑
p=0

e−j2πk
m
M Ym,p(j(�− k

2π
MTs

))

=
1

MTs

1
(2π )p−1

∞∑
k=−∞

P∑
p=0

∫
∞

−∞

· · ·

∫
∞

−∞

× e−j2πk
m
M Ym,p(j�1, · · · , j(�−

p−1∑
i=1

�i−k
2π
MTs

))

× d�1 · · · d�p−1 (28)

The frequency domain representation of y(t) can then be
obtained by summing all Ym,s(j�) together, i.e.

Y (j�) =
M−1∑
m=0

Ym,s(j�) (29)

IV. DISCRETE-TIME NONLINEAR EQUIVALENT
MODEL OF TIADC
In the previous section, we have derived the TIADC model
using hybrid Volterra series. However, hybrid systems are
more difficult to be handled than continuous time or discrete
time systems. What’s more, there are extensive studies on
continuous time or discrete time systems on Volterra series,
while much less research on hybrid systems. Thus, in order to
make full use of the related existing derivations, conclusions
and methodologies on Volterra series, we will derive the
discrete-time equivalent nonlinear model of TIADC based on
Volterra series.

In [38], the author has shown that although nonlinearity
produces a higher frequency range than input signal, it is
sufficient to sample at twice the maximum frequency of
the input signal rather than the output signal. Thus, we can
assume a band-limited analog signal x(t) which satisfies

X (j�) = 0, |�| ≥ B; B ≤
π

Ts
(30)

where X (j�) is the Fourier transform of x(t), then we can get

X (ejω) =
1
Ts
X (j�), ω ∈ [−π, π] (31)

where

ω = �Ts (32)

andX (ejω) is the discrete-time Fourier transform of the digital
signal x(n), which is the sampled output of x(t) with

x(n) = x(nTs) (33)

Assuming the pth order discrete-time Volterra transfer func-
tion of mth channel Hm,p(ejω1 , . . . , ejωp ) is the 2π periodic

FIGURE 3. Discrete-time nonlinear equivalent TIADC model with M
channels for band limited input signal x(t).

extended version of the band limited continuous-time GFRF,
i.e.

Hm,p(ejω1 , . . . , ejωp ) = Hm,p(j
ω1

Ts
, . . . , j

ωp

Ts
),

(−π ≤ ωi ≤ π) (34)

It should be noted that there are several representations of
discrete-time Volterra transfer function, like Hd

m,p(f1, . . . , fp)
in [38], Hm,p(jω1, . . . , jωp) in [36] and etc. In this paper,
we use Hm,p(ejω1 , . . . , ejωp ) to represent discrete-time
Volterra transfer function, which is a generalization of the
one dimensional discrete-time transfer function H (ejω).
According to (6) and (31), the discrete-time multidimen-

sional frequency response of mth channel can then be written
as

Ym,p(ejω1 , . . . , ejωn ) = T ps Hm,p(e
jω1 , . . . , ejωp )

p∏
i=1

X (ejωi )

(35)

Combining (35) with (28), the frequency response of discrete-
time output ym(n) of mth channel is given by

Ym(ejω) =
1

MTs

M−1∑
k=0

e−j2πk
m
M Ym(ej(ω−k

2π
M ))

=
1
M

(
Ts
2π

)p−1
M−1∑
k=0

P∑
p=0

e−j2πk
m
M

∫ π

−π

· · ·

∫ π

−π

×Hm,p(ejω1 , . . . , ej(ω−
∑p−1

i=1 ωi−k
2π
M ))

×

p−1∏
i=1

X (ejωi )X (ej(ω−
∑p−1

i=1 ωi−k
2π
M )dω1 · · · dωp−1

(36)

The frequency domain representation of digital output signal
y(n) can then be obtained by

Y (ejω) =
M−1∑
m=0

Ym (ejω) (37)

Next, we will derive the time-domain representations of
discrete-time nonlinear equivalent TIADC model based on
Volterra series, which is depicted in Fig.3.
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First, we will give the formula of standard discrete-time
Volterra series. The discrete-time multidimensional Fourier
transform of pth order output yp(n) in general Volterra series
is given by

Yp(ejω1 , . . . , ejωp ) = Hp(ejω1 , . . . , ejωp )
p∏
i=1

X (ejωi ) (38)

Compared (38) with (35), the pth order discrete-time equiva-
lent GFRF of mth channel can be described by

Hd
m,p(e

jω1 , . . . , ejωn ) = T ps Hm,p(e
jω1 , . . . , ejωn ) (39)

where Hm,p(ejω1 , . . . , ejωn ) is given in (34).
The time-domain representation of the discrete-time equiv-

alent Volterra kernels can be obtained by taking inverse
Fourier transform of (39) as

hm,p(k1, · · · , kn) =
1

(2π )p

∫ π

−π

· · ·

∫ π

−π

Hd
m,p(e

jω1 , . . . , ejωp )

· · · ej(ω1k1+···+ωpkp)dω1 · · · dωp (40)

Define mth channel discrete-time Volterra series (DTVS)
function Gdm[x(n)] in Fig.3 as

Gdm[x(n)]=
P∑
p=0

∞∑
k1=−∞

· · ·

∞∑
kp=−∞

hm,p(k1, · · · , kp)
p∏
i=1

x(n−ki)

(41)

Then the output ym(n) of mth channel is given by

ym(n) =
1
M

M−1∑
k=0

ejk
2π
M (n−m)Gdm[x(n)]

=
1
M

P∑
p=0

M−1∑
k=0

∞∑
k1=−∞

· · ·

∞∑
kp=−∞

ejk
2π
M (n−m)

· hm,p(k1, · · · , kp)
l∏
i=1

x(n− ki) (42)

The output y(n) can then be written as

y(n) =
M−1∑
m=0

ym(n) (43)

The discrete-time equivalent model of TIADC provides the
theoretical foundation to use discrete-time Volterra series to
model nonlinear behaviors in TIADC if input signal is band-
limited. In many cases, there is no need to obtain neither the
continuous-time GFRF nor discrete-time GFRF of Volterra
series explicitly.

V. SPECIAL CASES OF VOLTERRA SERIES
The Volterra series is one of the most general models of
nonlinear systems. However, the coefficients of the Volterra
series expand rapidly with nonlinear order and memory.
There is no need to use full Volterra series in most practical
situations. Besides, the large number of coefficients also
cause the ill-conditioned problem in identification. So in

practice, we would like to choose some special cases of
Volterra series to approximate the nonlinear system.

In this section, we provide some simpler special cases of
Volterra series, all of which have found wide applications
in practical engineering, such as electronic and electrical
engineering, mechanical engineering, control engineering,
etc. These models either have simpler structures and fewer
parameters than general Volterra series, or can be easily iden-
tified and compensated. The price paid for these advantages
is that there is fewer physical process can be described by
these simplified models. In practice, there are several differ-
ent architectures of TIADC involving different manufacture
process. Besides, nonlinearity in TIADC is not the original
intention of ADC designers, and it is a non-ideal phenomenon
essentially. Thus, the precise nonlinear model structure of
TIADC cannot be known beforehand as prior in practical sit-
uations. This section will introduce the main features of these
models and their relationship with Volterra series to provide
practical guidelines for ADC and TIADC practitioners.

A. POLYNOMIAL MODEL
According to the Weierstrass approximation theorem [39],
every continuous function defined on a closed interval [a, b]
can be uniformly approximated as closely as desired by a
polynomial function. Thus, the polynomial model is the most
widely used static nonlinear model, which is given by

y(n) =
P∑
p=0

apx(n)p (44)

where P is the order of the polynomial model and x(n), y(n)
are the input and output of polynomial model respectively.
According to the definition of Volterra series, the polynomial
model can be obtained by taking

hp(k1, · · · , kp) = apδ(k1) · · · δ(kp) (45)

From (44), it can be seen that output of the polynomial model
is only dependent on the current input, which implies that the
past and future input cannot affect the current output. This
is a strong assumption that there are rare systems in practice
can meet this requirement since most systems have memory
effects to some extent. Thus polynomial model finds limited
use in practical situations.

B. WIENER MODEL
Wiener model consists of a dynamic linear system followed
by a static nonlinear system, which is shown in Fig.4(a) [40].
The relationship of Wiener model can be described by

y(n) = F(z(n)) (46)

where z(n) is the output of the dynamic linear system, which
is given by

z(n) =
∞∑

k=∞

h(k)x(n− k) (47)
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FIGURE 4. Some special cases of Volterra series. (a) Wiener model.
(b) Hammerstein model. (c) Wiener-Hammerstein model.

with x(n) as the input and h(n) as the impulse response of the
system. F(·) is the nonlinear function of the static nonlinear
system, and is usually assumed to be the polynomial function.
Thus the output of Wiener model with polynomial order P is
given by

y(n) =
P∑
p=0

ap

[
∞∑

k=−∞

h(k)x(n− k)

]p
(48)

By comparing with the definition of discrete-time Volterra
series, Wiener model can be obtained by taking

hp(k1, · · · , kp) = aph(k1) · · · h(kp), p = 1, · · · ,P (49)

Compared with polynomial model,Wiener model takes the
dynamic characteristic of the system into account, thus can
be used to describe the dynamic nonlinear systems. However,
the output of Wiener model is nonlinearly dependent on the
coefficients h(k), which makes the identification of Wiener
model become quite complicated since nonlinear optimiza-
tion should be adopt.

C. HAMMERSTEIN MODEL
The Hammerstein model has a similar structure as Wiener
model but with a static nonlinear system followed by a
dynamic linear system, as shown in Fig.4 (b) [41]. The
expression for Hammerstein model is given by

y(n) =
∞∑

k=−∞

h(k)v(n− k) (50)

where v(n) is the output of nonlinear system, which is repre-
sented as

v(n) = F(x(n)) =
P∑
p=0

apx(n)p (51)

The x(n), y(n), F(·), ap are just as defined in Wiener model.
The relationship between Hammerstein model and Volterra

series can be represented as

hp(k1, · · · , kp) =

{
aph(k), k1=k2=· · ·=kp=k
0, otherwise

(52)

For Hammerstein model, only the diagonal components of
theVolterra kernel have value not equal to zero. TheHammer-
stein model has a desirable features that the output depend
linearly on the parameters aph(k), thus can be solved using
least-squares method. However, the Hammerstein model can
represent much less physical process in practice than Wiener
model due to its structure.

It should be noted that Hammerstein model and Wiener
model constitute mutual inverse. Thus, if a dynamic nonlinear
system can bemodeled byWienermodel, the nonlinearity can
be compensated by Hammerstein model, and vice versa.

D. WIENER-HAMMERSTEIN MODEL
The structure of Wiener-Hammerstein model is shown
in Fig.4 (c) [42]. It is a combination of Wiener and Ham-
merstein model that a static nonlinear system is preceded and
followed by the dynamic linear system. The relationship can
be represented as

y(n) =
∞∑

k=−∞

g(k)z(n− k) (53)

z(n) = F(v(n)) =
P∑
p=0

apv(n)p (54)

v(n) =
∞∑

k=−∞

h(k)x(n− k) (55)

where v(n) is the output of first LTI block, z(n) is the output of
static nonlinear system, and h(k), g(k) are impulse response
of the first and second linear systems respectively.

The relationship between Volterra series and Wiener-
Hammerstein model is given by

hp(k1, · · · , kp) = ap
∞∑

k=−∞

g(k)h(k1 − k) · · · h(kp − k),

(p = 1, · · · ,P) (56)

Wiener-Hammerstein model can describe a much wider
physical process than Wiener and Hammerstein model and
has found wide applications in nonlinear systems. However,
it also has the same undesired attribute likeWiener model that
output is a nonlinear function of the parameters.

E. MEMORY POLYNOMIAL
Memory polynomial is a widely used model in power ampli-
fiers, which has proven as an effective model to model non-
linear behaviors of actual power amplifiers [43], [44]. The
expression for memory polynomial model is given as

y(n) =
P∑
p=0

K−1∑
k=0

apkx(n− k)p (57)
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where P and K are the order and memory length of memory
polynomial model respectively.

The relationship between memory polynomial model and
Volterra series can be represented as

hp(k1, · · · , kp) =

{
apk , k1 = k2 = · · · = kp = k
0, otherwise

(58)

Compared with (49), it can be seen that Hammerstein is
a special case of memory polynomial. In [44], the authors
have proven that memory polynomial is a parallel Hammer-
stein model. The memory polynomial not only incorporates
memory effects into the static nonlinear system, but also is
easier to be identified since the output has linear relationship
with coefficients apk . The parameters of memory polynomial
model can be obtained by any least-squares type of algorithm.

F. OTHER VARIANTS OF VOLTERRA SERIES
Apart from the nonlinear models we mentioned above, there
are several other variants of Volterra series, like gener-
alized memory polynomial model [45], dynamic deviation
model [46], envelope-memory polynomial model, and etc.
Interested readers can find more details of these models in
the literature [47].

VI. SIMULATION AND EXPERIMENTAL RESULTS
A. SIMULATION RESULTS
In this section, the numerical simulations with MATLAB are
performed to prove the validity of the proposed model.

We have investigated a four channel TIADC with aggre-
gate sampling rate of 5GSPS. The model of each channel
is assumed to follow a Wiener-Hammerstein structure (see
Fig.4(c)), since Wiener-Hammerstein model can represent a
large class of dynamic nonlinear systems. In TIADC system,
each channel passes through Wiener-Hammerstein model
with different parameters, which would cause nonlinear mis-
match errors in the output. This model can describe offset,
linear and higher order nonlinear mismatch errors in the
TIADC system.

The transfer functions of the first LTI block for four chan-
nels are set as

H0(z) = 1+ 0.02z−1 + 0.05z−2 (59)

H1(z) = 1− 0.01z−1 + 0.03z−2 (60)

H2(z) = 1+ 0.02z−1 + 0.01z−2 (61)

H3(z) = 1− 0.03z−1 + 0.04z−2 (62)

respectively.
In practice, TIADC is a weak nonlinear system and

only second and third order nonlinearities dominant the non-
linear behaviors of TIADC system [20]. Thus, the coeffi-
cients of the static nonlinear blocks for four channels are
set as am,0 = [−0.002, 0.003, 0.001,−0.001], am,1 =
[1.02, 0.96, 1.010, 0.989], am,2 = [0.02,−0.01, 0.03, −
0.05], and am,3 = [0.02, 0.03,−0.03, 0.01]. We also
add a weak fifth nonlinear distortions with parameters

am,5 = [0.001, 0.002, 0.003,−0.002] to demonstrate the
effectiveness of our proposed model.
The transfer functions of LTI block after static nonlinear

block are set as

G0(z) = 1− 0.02z−1 − 0.12z−2 (63)

G1(z) = 1+ 0.01z−1 − 0.11z−2 (64)

G2(z) = 1− 0.01z−1 − 0.03z−2 (65)

G3(z) = 1+ 0.02z−1 − 0.01z−2 (66)

respectively. We also add white Gaussian noise to the TIADC
output to simulate noise generated in practical situations.
Most existing literature on TIADC nonlinear behaviors are

based on polynomial model [23]–[25], which can only model
static nonlinearities in TIADC system. We will compare
Volterra-based model with polynomial-based model next.
The nonlinear order of these two models are both third order,
which canmodel nonlinearities up to third order. Thememory
length of Volterra series is taken as 4.
In order to show themodeling performance of the twomod-

els, the identification of the parameters should be performed
firstly. Since the output of the two models are both linear
dependent on their parameters, they can all be expressed as
the following form

Y = 8b (67)

with 8 = [W0X , · · · ,WM−1X ] and Y = [y(1), · · · , y(N )]T ,
where y(n) is the TIADC output at instant n and N is the
length of date used for identification.Wm is a diagonal matrix
(m = 0, · · · ,M − 1)

Wm =


∑M−1

k=0 ejk
2π
M (1−m)

· · · 0
...

. . .
...

0 · · ·
∑M−1

k=0 ejk
2π
M (N−m)


(68)

b is the coefficients of the model parameters and X is the
associated input matrix.

For polynomial-based model, b is defined as

b = [aT0 , . . . , a
T
M−1]

T (69)

where

am = [am,0, . . . , am,P]T (70)

with am,p as the polynomial parameters of mth channel.
For Volterra-based model, b is defined as

b = [hT0 , . . . , h
T
M−1]

T (71)

where

hm = [hTm,0, . . . , h
T
m,P]

T (72)

with hm,p as the coefficients associatedwith pth order Volterra
kernel of mth channel.
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FIGURE 5. Spectrum of the input signal and output of a four channel
TIADC with nonlinearity obey Wiener-Hammerstein model structure.
(a) Spectrum of the input signal (b) Spectrum of TIADC output.

The matrix X is defined as

X =


x0(1) x1(1) · · · xP(1)
x0(2) x1(2) · · · xP(2)
...

...
. . .

...

x0(N ) x1(N ) · · · xP(N )

 (73)

with xp(n) as the pth order term corresponds to the pth order
model coefficients, where

xp(n) = x(n)p (74)

for polynomial-based model and

xp(n)= [x(n)p, x(n)p−1x(n−1), x(n)p−1x(n−2), · · · ] (75)

for Volterra-based model.
The parameters of the models can then be solved using

least-squares method, which is given by

b̂ = (8H8)−18HY (76)

Since the dynamic nonlinear system is dependent on fre-
quency, the input signal should cover sufficiently wide fre-
quency range to obtain the estimated parameters of themodel.
Multi-tone signal is a widely applied excitation signal in ADC
dynamic testing [49]. In the simulation, we use multi-tone
signal as the input of the dynamic nonlinear TIADC system
to investigate the nonlinear effects of TIADC.

The multi-tone signal to the TIADC system is composed
of 22 uniform amplitude sinusoids with equal spaced fre-
quencies from DC to 0.8π . The spectrum of the input signal
and TIADC output signal are shown in Fig. 5. It can be seen
clearly from the figure that for multi-tone input signal, there
are plenty of spurious tones in the output, which substan-
tially degrade the performance of the TIADC. The situation
will become worse when the wide-band signal is applied,
like WCDMA (wideband code division multiple access)
signal.

In the simulation, we use 1000 samples for the identifica-
tion, i.e. N = 1000 in (67). The parameters of the model are

FIGURE 6. A sample of time-domain waveforms of TIADC output with
dynamic nonlinear distortions and fitted output with polynomial-based
model and Volterra-based model. The mark ’x’ represents the sampled
output TIADC system with Wiener-Hammerstein model. The blue line
depicts the fitted output with polynomial-based model and red line
represents the fitted output with Volterra-based model.

solved using (76). The fitted output with chosenmodel is then
given by

Ŷ = 8b̂ (77)

The accuracy of the model can be assessed using NMSE
(normalized mean squared error), which is defined as the
power of the error vector between measured and modeled
output, normalized to the measured output power [46],

NMSE = 10log10

[∑N
i=1 |yi − ŷi|

2∑N
i=1 |yi|

2

]
(78)

where yi is the measured TIADC output with nonlineari-
ties, ŷi is the fitted output with chosen model and N is the
sample length used for evaluating NMSE. The NMSE of
polynomial-based andVolterra-basedmodel in the simulation
are -25.36dB and -53.21dB respectively.

A sample of time-domain waveform is shown in Fig.6. The
mark ’x’ represents the sampled output of the TIADC system
with dynamic nonlinear distortions, which follows Wiener-
Hammerstein structure. The blue line depicts the fitted output
with polynomial-based model and red line represents the fit-
ted output with Volterra-based model. From the figure, it can
be seen that Volterra-based model has much better modeling
performance than polynomial-based model.

It can be concluded that the static polynomial model can-
not model a dynamic nonlinear systems well, thus nonlin-
ear models with memory are required in practice to model
the nonlinear behaviors in TIADC system, which shows the
necessity of our proposed model. What’s more, it can be seen
that Volterra series can model Wiener-Hammerstein model
very accurately. Increasing the memory length can improve
the modeling performance of nonlinear dynamic model but
the complexity is also increased [32].

In practice, if we know the appropriate model of the nonlin-
ear system beforehand, just identification of the coefficients
is required. However, in most cases, the appropriate model
structure cannot be known in advance, thus we need to choose
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FIGURE 7. Simplified block diagram of the system hardware setup. The
DUT is a commercial ADC EV8AQ160 from E2V company with aggregate
sampling rate of 5GSPS. The clock signal of TIADC is generated by PLL
LMK04806. The digital streams are received and stored by Kintex-7 series
FPGA from Xilinx company. The DSP from Analog Devices company is
responsible for system controlling and data processing.

a suitable model for the system. The strategy for model selec-
tion can be started from relatively simple model. If the cho-
sen model cannot model nonlinear system accurately, more
complex model should be chosen. For example, memory
polynomial model takes only the diagonal terms of Volterra
series, hence it can be chosen firstly. If memory polynomial
model cannot give satisfactory results, it can be replaced by
the generalized memory polynomial model, which adds cross
terms of Volterra series to memory polynomial model and
thus is a more complex model.

It also should be noted that in practical situations, even
two models have similar modeling performance, a model that
is easier to be identified can have superior advantages than
models with complex identification methods. For instance,
the output of Wiener model has nonlinear relationship with
the coefficients, thus the nonlinear optimization methods
should be applied to identify the coefficients. While for
memory polynomial, generalized memory polynomial and
Volterra model, the output has linear relationship with coeffi-
cients, thus can be identified using any least-squares type of
algorithm.

B. EXPERIMENTAL RESULTS
The subject of this section is to show the validity of
the proposed model by experimental results. The simpli-
fied block diagram of the system hardware setup is shown
in Fig.7. The DUT (device under test) is a commercial
ADC EV8AQ160 from E2V company, which has four 8-
bit ADC cores operating in a TI manner with sampling rate
1.25GSPS for each channel and the aggregate sampling rate
of 5GSPS [50]. The clock signal of TIADC is generated by
PLL (phase-locked loop) LMK04806 fromTexas Instruments
company. The digital streams are received and stored by
Kintex-7 series FPGA (field programmable gate array) from
Xilinx company, which is also used for signal processing
and ADC control. The DSP (digital signal processor) from
Analog Devices company is responsible for system control-
ling and data processing. The calibration algorithm can be
implemented in either FPGA or DSP. The printed circuit
board of the acquisition system is shown in Fig.8.

As stated in VI.A, the excitation signal of the system
should be a wide-band signal. In the simulation, we adopt
multi-tone signal as the input signal. However, in practical

FIGURE 8. The printed circuit board of an acquisition system with 5GSPS
sampling rate. The main components of the acquisition system are
composed of TIADC, PLL, FPGA and DSP.

FIGURE 9. Block diagram of the measurement setup.

situations, even though some signal generators can generate
multi-tone signals, the achievable SINAD is not high enough
for testing and the intermodulation distortions cannot be fil-
tered. Schmidt et al. [48] proposed a novel training signal by
concatenating sinusoids in time, which is given by

x(t) =
K∑
k=1

cos(2π fk t)
[
u(t − tik )− u(t − tfk )

]
(79)

where fk is the frequency of the sinusoids, u(t) is the step func-
tion, tik and tfk are initial and finial time instant of sinusoids k
respectively. Authors have proved that this novel training sig-
nal has similar effects as multi-tone signal and demonstrated
the validity of the signal in experimental results.

The test analog input signal in our experiment is gener-
ated by Rohde & Schwarz SMA100A RF signal generator.
From actual measurement and datasheet of SMA100A [51],
we found that it is difficult for signal generator to generate
clean single-tone sinusoid in practice. In order to obtain
the nonlinear behaviors of TIADC, we have to eliminate
the nonlinear distortions generated by signal generator. The
bandpass filters fromMini company are used for this purpose,
which have excellent filter performance. According to [49],
the nonlinear testing of ADC requires the utilization of large
amplitude sin waves. Thus, the amplitude of the input signal
after bandpass filters are all adjusted to 90% of the full
scale range of the converter in every frequency. The spectrum
analyzer is used for the adjustment and it can also assess
the performance of the generated input signal. The block
diagram and actual picture of the measurement setup are
shown in Fig.9 and Fig.10, respectively.
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FIGURE 10. Actual picture of the measurement setup.

Applying a single sinusoidal signal as the input to the
system, which is given as

x(t) = |A|cos(�0t + 6 A) =
A
2
(ej�0t + e−j�0t ) (80)

where A and�0 are the amplitude and frequency of the input
signal respectively. The frequency domain representation of
x(t) can be written as

X (j�) = Aπ [δ(�−�0)+ δ(�+�0)] (81)

With (29) and (81), the output of TIADC can be obtained by

Y (j�) =
π

MTs

Ap

2p−1

M−1∑
m=0

∞∑
k=−∞

P∑
p=0

∫
∞

−∞

· · ·

∫
∞

−∞

× e−j2πk
m
M Hm,p(j�1, · · · , j(�−

l−1∑
i=1

�i − k
2π
MTs

))

×

p−1∏
i=1

[δ(�i −�0)+ δ(�i +�0)]

·

δ(�− k 2π
MTs
−

p−1∑
i=1

�i −�0)

× +δ(�− k
2π
MTs
−

p−1∑
i=1

�i +�0)

 d�1 · · · d�p−1

(82)

Thus, the frequency of spurious tones generated by pth order
nonlinearity in TIADC are located at k �sM ± (p− 2i)�0(k =
0, · · · ,M−1, i = 0, · · · , b p2c) with�s =

2π
Ts
. Taking p = 1,

we obtain frequency of the linear mismatch errors, i.e. k �sM ±
�0, which is consistent with the conclusion in [13].

The second and third order nonlinear distortions are
obtained by taking k = 0, i.e. ±(p − 2i)�0. This types
of distortions appear in single ADC systems. It can be seen
that higher order nonlinearities superpose onto the same fre-
quency bins as lower order nonlinearities. The second and
third order nonlinear mismatch distortions are those with
k 6= 0, which are extra distortions introduced by TIADC
systems.

FIGURE 11. Output spectrum of each sub-ADC core of EV8AQ160 8-bit
TIADC with 800MHz input signal. (a) Output spectrum of ADC core A
(b) Output spectrum of ADC core B (c) Output spectrum of ADC core C
(d) Output spectrum of ADC core D.

FIGURE 12. Output spectrum of EV8AQ160 8-bit TIADC with 800MHz
input signal. The spurious tones are composed of linear mismatches,
nonlinear distortions and nonlinear mismatch distortions.

Fig.11 shows the output spectrum of each sub-ADC with
800MHz input signal. From the spectrum, it can be seen
that only second and third order nonlinearities are obvious
for EV8AQ160 while higher order nonlinearities have minor
impact. For each sub-ADC, it samples at a sub-Nyquist rate
hence the signal and nonlinear distortions are aliased for the
sub-ADC. The aliased frequency for signal, second nonlinear
distortion, third nonlinear distortion are located at 450MHz,
350MHz and 100MHz respectively. It can be seen from the
figure that the second order and third order distortions differ
significantly for each sub-ADC, thus will introduce nonlinear
mismatch distortions in the output of the TIADC system.

The output spectrum of the TIADC system is shown
in Fig.12. It can be seen that there are numerous spuri-
ous tones in the output spectrum. The offset mismatches
are located at dc, 1250MHz and 2500MHz, with mag-
nitude of -30.93dBc, −44.41dBc and −48.38dBc respec-
tively. The linear mismatch errors are in 450MHz, 1700MHz
and 2050MHz, which have magnitude of −46.93dBc,
−47.54dBc and −47.94dBc respectively.

Apart from offset and linear mismatch errors, there are
still numerous spurious tones significantly higher than the
noise floor. The second and third order nonlinear distortions
have magnitude of −51.43dBc and −46.97dBc respectively.
The spurious tone located at 900MHz is caused by second
order nonlinear mismatch errors, which has magnitude of
−54.63dBc. The spurious tones located at 1150MHz and
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FIGURE 13. A sample of time-domain waveforms of TIADC output and
modeled output. The circles represent the sampled output of the TIADC
system. The solid line depicts the fitted output with Volterra-based model.

1350MHz are caused by third order nonlinear mismatch
errors, which has magnitude of −59.69dBc and −60.81dBc.
From the experimental result, it can be seen that the loca-

tion of those spurious tones are consistent with what we have
derived from (82), which shows the effectiveness of themodel
we proposed. Besides, it can be concluded from experimental
results that only considering offset and linear mismatches are
not sufficient for cases where strong signals and weak signals
exist together since distortions generated by strong signals
may interfere with weak signals and hence calibration of the
nonlinear mismatch errors is required.

Then the identification is required to demonstrate the per-
formance of the proposedmodel. The identificationmethod is
given in section VI.A. However, the input signal is an analog
signal in practice, which can not be used to form matrix
X in (73) directly. The initial phase and amplitude can be
obtained by minimizing root-mean-square error between out-
put signal and sine signal with known frequency [20], [48].
The parameters of the sinusoidal signal can be obtained by
four parameter-method proposed in IEEE Std 1241 [49].

The training signals are chosen as sinusoidal waves with
20 different frequencies within the bandwidth of the DUT
with frequency spacing 100MHz. Then these signals are
concatenated in time to form the novel training signal as in
(79). We take 50 samples of each frequency and thus total
1000 samples in the identification, i.e. N = 1000 in (67).
Since linear behaviors have greater impact on TIADC in prac-
tical situation, we set the linearmemory length longer than the
nonlinear memory length in the Volterra-based model. In the
experiment, the nonlinear order is set as third as in simulation.
The memory length of linear terms, second order terms and
third order terms are set as 10, 4, 4 respectively.

The performance of the estimated model is verified by
adopting signal with different frequency from training signal.
We use a 450MHz signal as the validation signal. A sample
of time-domain waveforms is shown in Fig.13. The circles
represent the sampled TIADC output and solid line depicts
the fitted output with estimated model parameters. The
NMSE calculated for 450MHz signal with estimated model

is−39.2784 dB. It is seen that the proposed model is valid to
describe phenomenon in real TIADC system. The NMSE can
be improved further with more memory length in proposed
model.

VII. CONCLUSIONS
In this paper, we have proposed the behavioral model to
describe the dynamic nonlinearities in TIADC system based
on Volterra series. We derive the hybrid TIADC model
firstly, and then propose the discrete-time nonlinear equiv-
alent model of TIADC, which makes it possible to make
full use of the related existing derivations, conclusions and
methodologies on discrete-time Volterra series. We also sum-
marize some common special cases of Volterra series to pro-
vide a practical guideline for ADC and TIADC practitioners.
The derivations in this paper give a theoretical foundation
to use discrete-time Volterra series to model mixed-domain
TIADC system. Then the nonlinear distortions can be cali-
brated using the proposed model, which will be our future
directions.
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