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ABSTRACT Target tracking in passive multi-static radar (PMSR) with bistatic range and Doppler frequency
measurements from multiple transmit–receive pairs is gaining increasing interest. For the data association
problem in this scenario, the parallel architecture of a multi-sensor joint probabilistic data association
(P-MSJPDA) filter has been significantly investigated. As an alternative architecture, the sequential
MSJPDA (S-MSJPDA) is rarely discussed in PMSR. In this paper, we evaluate the behaviors of S-MSJPDA
in PMSR target tracking with bistatic range and Doppler frequency measurements. A comprehensive
comparison between the S-MSJPDA and the P-MSJPDA in PMSR is provided. It can be found from the
analysis that S-MSJPDA outperforms its parallel counterpart in terms of computational efficiency, given an
acceptable degradation in position accuracy. The S-MSJPDA is further applied to an experimental passive
multi-static radar for aircrafts tracking. The real data results obtained are rather close to the true trajectories
of the targets. This demonstrates that the S-MSJPDA has great potentials in PMSR target tracking.

INDEX TERMS Passive multi-static radar, target tracking, multi-sensor joint probabilistic data association.

I. INTRODUCTION
Over the last two decades, passive radar has received a
renewed interest for civilian andmilitary applications [1], [2].
Passive radar exploits existing transmitters as illuminators
of opportunity; thus it needs neither frequency allocation
nor extra hardware, and the detection of targets is covert,
continuous, and also inexpensive [3]–[9]. Specifically, when
more than one transmitter is simultaneously exploited, a pas-
sive multi-static radar (PMSR) is formed. In this case the
location and trajectory of a potential target can be deter-
mined by combining measurements from multiple transmit–
receive pairs with overlapping coverage. This provides the
PMSR with great potentials in air surveillance [10]–[13].
The measurements available in PMSR for target tracking are
usually bistatic range, Doppler frequency and direction of
arrival (DOA). In many passive radar systems, DOA is hard to
get with satisfactory accuracy, especially for those equipped
with small antennas. The poor quality of DOA usually results
in great degradation in the estimation accuracy of a target’s
trajectory [14], [15]. Therefore, tracking with only bistatic
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range and Doppler frequency in PMSR is attracting increas-
ing attention.

Target tracking in PMSR is a typical multi-sensor multi-
target tracking problem. In this situation [16], measurements
may originate from one of the various targets whose existence
and trajectories are not known a priori, as well as from
other random sources, which are usually termed as clutter.
In addition, target measurements are only present in a scan
with some probability of detection PD < 1. Targets may
enter and leave the surveillance region at any time, thus at any
given moment the number of targets in the surveillance area
is unknown. More challengingly in PMSR with only range
and Doppler measurements, the position of a target cannot be
determined by using only one transmit-receive pair. To cope
with these difficulties, research has been conducted on track
initiation, track confirm, track maintenance, and track termi-
nate [17]–[20]. In this paper we assume track initiation and
confirm to have been performed beforehand. We only focus
on trackmaintenance, wherewewill evaluate the behaviors of
S-MSJPDA in PMSR, and compare with that of P-MSJPDA,
which has rarely been discussed previously.

In the following we give a review of the multi-sensor
multi-target tracking methods. These methods can be
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classified into two categories, i.e. association-based methods
and non-association methods [21], [22]. The association-
based methods usually involve measurement-to-track associ-
ation and may be grouped into two types, i.e. non-Bayesian
methods and Bayesian approaches. The non-Bayesian meth-
ods include the greedy nearest-neighbor filter and the
multi-dimensional assignment method. The greedy nearest-
neighbor filter assigns a target with the measurement that is
closest to the predicted position of the target [23]. In dense tar-
get or clutter scenario, the closest measurement is usually not
the true measurement from the target, so the nearest-neighbor
filter degrades severely in this case. The multi-dimensional
assignment method finds the best measurement-target asso-
ciation by posing it as a multi-dimensional assignment
problem [24]. Optimal implementation of multi-dimensional
assignment is NP-hard and some approximation schemes
should be invoked, such as Lagrangian relaxation tech-
niques [25]. The Bayesian approaches include the multi-
hypothesis tracker (MHT) and the JPDA filter [26], [27].
MHT enumerates the measurement to target association
hypothesis using measurements from all the scans. The
hypothesis with the highest posterior is returned as a solu-
tion. JPDA formulates measurement-target associations and
computes the association probabilities by exploiting the mea-
surements only from the current scan. Given an association,
the state of a target is estimated by a filtering algorithm and
this conditional state estimate is weighted by the association
probability. Then the state of a target is estimated by summing
over the weighted conditional estimates. Optimal MHT and
JPDA consume excessive time, since the number of asso-
ciation hypothesis increases exponentially with the number
of targets and measurements. Pruning schemes are usually
adopted to reduce the hypothesis number [28]–[30].

The most representative non-association methods are those
based on finite-set statistics (FISST), which provides a set
of mathematical tools that extends the Bayesian filtering
framework to the multi-target tracking problems [31]. This
avoids explicit measurement-to-track associating. The opti-
mal implementation of multi-target tracking based on FISST
is computational intractable, because the propagation of the
multi-target posterior involves the evaluation of multiple
set integrals. A more tractable alternative is the probability
hypothesis density (PHD) filter which propagating the first
moment associated with the multi-target posterior [32]–[34].

It is hard to assert which of the two categories is better, but
one statement is often mentioned in the literatures. That is the
association-based methods are readily to cause ghost targets
which can be handled by the non-association methods at the
cost of requiring more computation [35].

As for multi-target tracking in PMSR with bistatic range
and Doppler frequency measurements, the MSJPDA frame-
work has been widely used and verified. It is known that
there are two implementation architectures of MSJPDA [36],
i.e. P-MSJPDA and S-MSJPDA. The P-MSJPDA exploits
all measurements from all the sensors simultaneously to
update the tracks of potential targets. Most of the PMSR

multi-target tracking methods are based on the P-MSJPDA,
such as those in [37]–[39] developed for target tracking in
digital audio/video broadcasting (DAB/DVB) passive radar.
The disadvantage of P-MSJPDA is that the multi-sensor data
associating consumes excessive time. The S-MSJPDA is to
process the measurements sensor by sensor. That is, it first
exploits the measurements from the first senor to update
the tracks of the targets, and then the measurement from
the second sensor. Repeat this process until the measurements
from the last sensor are processed. S-MSJPDA breaks the
multi-sensor data association problem into several single-
sensor data association problems, of which the treatment
is more efficient. Intuitively, S-MSJPDA has great poten-
tials in target tracking. But it is rarely discussed in PMSR.
In this paper we evaluate the behaviors of S-MSJPDA in
PMSR target tracking with bistatic range and Doppler fre-
quencymeasurements, and give a comprehensive comparison
between the two architectures. It should be noted that the
optimal implementations of the both methods are NP-hard,
and there is no practical value to compare two algorithms
with intractable computation. In this paper the near opti-
mal approximations of the both architectures are proposed
based on the m-best assignment technique. The comparison
is conducted over the approximation versions. Theoretical
analysis of the computational complexity of the both methods
is conducted. It will be found from the later analysis that
the S-MSJPDA is more efficient than P-MSJPDA because
the association event in S-MSJPDA is simpler, of which the
association probabilities is easier to be computed. However,
S-MSJPDA degrades in position accuracy compared to P-
MSJPDA owing to the approximation strategies used in the
both methods. Fortunately, this degradation is rather small
and therefore acceptable. The S-MSJPDA is further verified
by real experiments for aircrafts tracking. An experimental
frequency modulation (FM) based PMSR is utilized for the
experiments. The real data results are presented and analyzed.
More details can be found in the paper below.

The organization of the paper is as follows. Section I
gives the introduction. Section II gives the target track-
ing problem definition in PMSR with bistatic range and
Doppler frequency measurements. Section III introduces the
framework of MSJPDA. The derivations of P-MSJPDA and
S-MSJPDA are presented, with emphasis on the near opti-
mal implementation strategies of the both architectures. The
computational complexity of the both methods are analyzed
theoretically. Section IV provides a comprehensive compar-
ison between the behaviors of the both methods through
simulations. Section V gives the experimental validation of
the S-MSJPDA. The experiment setup and the FM-based
PMSR configuration are introduced. The real data results are
presented and analyzed. Section VI gives the conclusions.

II. TARGET TRACKING PROBLEM DEFINITION
Consider a PMSR configuration depicted in figure 1.N signal
transmitters located in different positions are adopted as the
illuminators of opportunity. One radar receiver is deployed
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FIGURE 1. PMSR configuration.

to receive and process target echoes. We assume in the paper
that signals from different transmitters are resolvable. This is
applicable for many communication signals such as the FM
and many satellite signals [14], [40], [41].

A. TARGET MODEL
In this paper we are interested in tracking K slowly maneu-
vering targets, and we ignore the altitudes of the targets
as many other passive radars although the methods pre-
sented in the paper can be easily extended to 3-dimension
tracking scenario. The state of the τ -th target comprises its
position pτ (k) = [xτ (k), yτ (k)]T and velocity vτ (k) =
[ẋτ (k), ẏτ (k)]T , i.e.

xτ = [xτ (k), ẋτ (k), yτ (k), ẏτ (k)]T

Assuming further a uniform discretization with a sampling
period of Ts seconds, the state evolution equation for the τ -th
target becomes:

xτk = Fkxτk−1 + wk (1)

where:

Fk =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1


wk is the process noise following a zero mean Gaussian

distribution with the covariance matrix:

Q =



1
4
T 4
s

1
2T

3
s 0 0

1
2
T 3
s T 2

s 0 0

0 0
1
4
T 4
s

1
2
T 3
s

0 0
1
2
T 3
s T 2

s



The collection of tracks in time k is denoted by xk =
{x1k , x

2
k , . . . , x

K
k }.

B. MEASUREMENT AND SENSOR MODEL
In this paper we consider collecting the bistatic range and
Doppler frequency measurements in PMSR to determine the
track of a target. We call a transmit-receive pair in the PMSR
as a sensor hereafter. The target measurement of each sensor
at time k is modeled as:

yτs,k =
[
γ τs
f τd,s

]
= hs(xτk )+ υs,k , s=1,2,. . . ,N (2)

where γ τs and f s,τd are the bistatic delay and Doppler fre-
quency of target τ measured by sensor s. υs,k is the measure-
ment noise following a zero-mean white Gaussian distribu-
tion with covariance matrix Rk .

hs(xτk ) =


Rτtran,s + R

τ
rec

c
−
fc,s
c
vτ (k)T (

pτ (k)− ptran,s
Rτtran,s

+
pτ (k)− prec

Rτrec
)


(3)

Rτrec =
√
(xτ (k)-xrec)2 + (yτ (k)-yrec)2 (4)

Rτtran,s =
√
(xτ (k)-xtran,s)2 + (yτ (k)-ytran,s)2 (5)

c is the velocity of light, ptran,s = [xtran,s, ytran,s]T is the
position of the s-th transmitter, and prec = [xrec, yrec]T is the
position of the receiver.

The collection of measurements at sensor s including
clutter at time k is represented as ys,k = {y1s,k , y

2
s,k , . . . , y

K
s,k}⋃

cs,k , where cs,k is the set of clutter measurements obtained
by the s-th sensor. It is noted that some targets may not
be detected by sensor s at time k , so the corresponding
notations should be removed from ys,k . The measurement
collection of sensor s up to and including timek is denoted by
Yk
s , s = 1, 2, . . . ,N , then we have Yk

s = ys,k
⋃

Yk−1
s , s =

1, 2, . . . ,N . The number of measurements at each sensor
varies with time, and it is usually different from the number of
true targets.We assume that each of the targets can generate at
most one measurement per sensor at a particular time instant,
and each of the measurements per sensor can originate from
at most one target. However, several measurements may be
due to clutter.

To address the data association problem, it is necessary
to introduce association events, each of which is a complete
assignment of measurements to targets or clutter. We add
a dummy track denoted by x0k in the track set xk and a
dummy measurement y0s,k in each measurement set ys,k .
Define an association variable Zτ,i1,...,iN = [τ, i1, . . . , iN ],
which claims that measurements y1,k (i1), . . . , yN ,k (iN ) orig-
inate from target τ (0 ≤ τ ≤ K ), where ys,k (is) is the is-th
measurement in measurement set ys,k and 0 ≤ is ≤ ns. ns
is the total number of measurements in ys,k . It is noted that
τ = 0 means that y1,k (i1), . . . , yN ,k (iN ) are all due to clutter.
is = 0 means that no measurements at sensor s are due to
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target τ . A complete association event θ includes a set of asso-
ciation variables [(Z(1)

τ,i1,...,iN
)T , . . . , (Z(L)

τ,i1,...,iN
)T ], such that

measurements at each sensor are assigned to corresponding
targets or claimed as clutter, conditioned on the assumption
that each measurement per sensor originates from at most one
target and that each target generates at most one measurement
per sensor:

θ =


Z(1)
τ,i1,...,iN

Z(2)
τ,i1,...,iN
...

Z(L)
τ,i1,...,iN

 =

τ (1), i(1)1 , . . . , i

(1)
N

τ (2), i(2)1 , . . . , i
(2)
N

...

τ (L), i(L)1 , . . . , i(L)N


τ (l) 6= τ (j), forl 6= j, τ (l) 6= 0, andτ (j) 6= 0

i(l)s 6= i(j)s , forl 6= j, i(l)s 6= 0, andi(j)s 6= 0 (6)

The subscript (j) in (6) is used to discriminate between
different association variables, and it will be omitted to avoid
the symbol abuse in the following if ambiguity is not induced.
It can be seen in the association matrix that the combination
between column 1 and column s + 1 denoted by εs is an
association event that assigns each measurement at sensor s
to a target or claims it as clutter:

εs =


Z(1)
τ,is

Z(2)
τ,is
...

Z(L)
τ,is

 =

τ (1), i(1)s
τ (2), i(2)s

...

τ (L), i(L)s


III. MULTI-SENSOR JPDA
In this section we first introduce theMSJPDA framework and
then give the derivations of P-MSJPDA and S-MSJPDA, with
emphasis on the near optimal implementation strategies of the
both architectures. Theoretical analysis of the computational
complexity of the both methods is also presented.

Instead of maintaining the posterior probability density
of the joint state p(xk |Yk ), the JPDA updates the marginal
density for each target p(xτk |Y

k ), τ = 1, 2, . . . ,K through the
Bayesian sequential estimation recursion, which effectively
combats the curse of dimensionality. For the multi-sensor
case we described above, the posterior density of target τ
given measurements at all the sensors can be written as
follows:

p(xτk |Y
k
1, . . . ,Y

k
N )

=

∑
θ

p(θ |Yk
1, . . . ,Y

k
N )p(x

τ
k |θ ,Y

k
1, . . . ,Y

k
N ) (7)

where θ is the association event as described in section
II. p(θ |Yk

1, . . . ,Y
k
N ) is the posterior probability density of

association event θ conditioned on the measurements at the
current instant, and:

p(θ |Yk
1, . . . ,Y

k
N ) ∝ p(y1,k , . . . , yN ,k |θ ,Yk−1

1 , . . . ,Yk−1
N )

(8)

Actually, both P-MSJPDA and S-MSJPDA are designed to
compute (7).

A. PARALLEL MSJPDA
Assuming a Gaussian distribution of xτk , (7) can be repre-
sented as

p(xτk |Y
k
1, . . . ,Y

k
N ) = N (xτk |x̂

τ
k , P̂

τ
k )

P-MSJPDA exploits all the measurements from all the
sensors associated with target τ simultaneously to update the
target state with the association probabilities

x̂τk =
N∑
s=1

ns∑
is=0

βτis x̃
τ
k (is)

P̂τk =
N∑
s=0

ns∑
is=0

βτis

{
P̃τk (is)+ (x̃τk (is)− x̂τk )(x̃

τ
k (is)− x̂τk )

T
}
(9)

where x̃τk (is) is the result of updating target τ by only using
measurement ys,k (is), and P̃τk (is) is the corresponding covari-
ance matrix. Since the bistatic range and Doppler frequency
equations in PMSR are non-linear, conventional Kalmanfilter
(KF) is not applicable to compute the statistical quantities
above [42]. This can be overcomewith a non-linear filter such
as the unscented Kalman filter (UKF) [43]. βτis is the proba-
bility of associating measurement ys,k (is) to target τ , and is
the summation of the posterior probabilities of the association
events θ in which measurement ys,k (is) is assigned to target
τ

βτis ∝
∑
θ

p(θ |Yk
1, . . . ,Y

k
N ) (10)

where

p(θ |Yk
1, . . . ,Y

k
N )

∝

L∏
j=1

p(y1,k (i
(j)
1 ), . . . , yN ,k (i

(j)
N )|Z(j)

τ,i1...iN
,Yk−1

1 , . . . ,Yk−1
N )

=

L∏
j=1

N∏
s=1

p(ys,k (i(j)s ))|τ (j),Yk−1
s ) (11)

p(ys,k (is)|τ,Yk−1
s ) is the predictedmeasurement likelihood

corresponding to target τ , and can also be easily obtainedwith
UKF.

In order to compute the association probabilities βτis ,
the optimal MSJPDA enumerates all the association events θ ,
which is NP-hard especially for the multi-sensor case.
In practice, many association events only have very low
probabilities and contribute little to the solution. A prac-
tical and near optimal approximation is to select the
m-best association events with the m-largest probabilities.
Suppose θ (1), θ (2), . . . , θ (m) are them-best association events,
thus (10) becomes

βτis ∝
∑

1≤i≤m

p(θ (i)|Yk
1, . . . ,Y

k
N ) (12)
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In the multi-sensor scenario we describe above, finding the
m-best association events is a typicalm-best (N+1)-D assign-
ment problem, which can be solved within polynomial time.
To formulate them-best (N +1)-D assignment problem, each
of the association event θ is assigned with a cost measured as
its generalized likelihood ratio, i.e.

c(θ ) =
L∏
j=1

N∏
s=1

p(ys,k (i
(j)
s ))|τ (j),Yk−1

s )
Vs

(13)

where Vs is the volume of the view filed of sensor s. Let
4 denote the association event space, which contains all the
feasible association events θ . Then the m-best (N + 1)-D
assignment problem is casted in the following:

θ (1) = argmin
θ∈4
{c(θ )}

θ (2) = arg min
θ∈4\θ (1)

{c(θ )}

...

θ (m) = arg min
θ ∈ 4\θ (n)

n = 1, 2, . . . ,m− 1

{c(θ )} (14)

It is noted that each optimization problem in (14) repre-
sents a (N +1)-D assignment problem. Therefore, the m-best
(N +1)-D assignment is accomplished by conducting several
(N + 1)-D assignments, each of which can be solved within
a polynomial time by the successive Lagrangian relaxation
technique in [44]. The worst-case complexity for comput-
ing (14) is O(m(N + 1)ρL4), where L is the number of the
(N+1)-tuples in θ and ρ is the number of relaxation iterations
in a single (N+1)-D assignment. This complexity can further
be reduced to O(m(N + 1)ρL3) with some preprocessing and
optimization steps [45]. However, this complexity does not
take into account the calculation of assignment cost c(θ ),

which still has a great complexity of (K + 1)
N∏
s=1

(ns + 1).

B. SEQUENTIAL MSJPDA
Instead of updating the probability density of target τ with the
measurements at all sensors simultaneously, S-MSJPDA uses
the measurements at different sensors sequentially. Suppose
x̂τk−1 is the estimated state of target τ at the previous time
instant, and P̂τk−1 is the covariance matrix. The sequential
updating scheme is presented as follows.
Step 1: use measurements at sensor 1 to update x̂τk−1 and

P̂τk−1, yielding x̂
τ
k,1:1 and P̂τk,1:1 (1 ≤ τ ≤ K );

Step 2: use measurements at sensor 2 to update x̂τk,1:1 and
P̂τk,1:1, yielding x̂τk,1:2 and P̂τk,1:2 (1 ≤ τ ≤ K ). Repeat this
process until step N .
Step N: , use measurements at sensor N to update x̂τk,1:N−1

and P̂τk,1:N−1, yielding x̂
τ
k,1:N and P̂τk,1:N (1 ≤ τ ≤ K ).

x̂τk,1:N and P̂τk,1:N are the estimates of the target state
and covariance matrix at time k , i.e. x̂τk = x̂τk,1:N , and

P̂τk = P̂τk,1:N . Therefore (7) can be computed as

p(xτk |Y
k
1, . . . ,Y

k
N ) = N (xτk |x̂

τ
k,1:N , P̂

τ
k,1:N )

In the following we will show how to update x̂τk,1:s−1 and
P̂τk,1:s−1 by using measurements at sensor s, i.e. ys,k .

With x̂τk,1:s−1 and P̂τk,1:s−1, the probability density of xτk
conditioned on measurements at the first s-1 sensors is
approximated as

p(xτk |Y
k
1, . . . ,Y

k
s−1,Y

k−1
s . . . ,Yk−1

N )

= N (xτk |x̂
τ
k,1:s−1, P̂

τ
k,1:s−1)

Thus x̂τk,1:s−1 and P̂τk,1:s−1 (1 ≤ τ ≤ K ) contain all the
statistical information inYk

1, . . . ,Y
k
s−1,Y

k−1
s . . . ,Yk−1

N . The
probability density of xτk conditioned on measurements at the
first s sensors is thus

p(xτk |ys,k ,Y
k
1, . . . ,Y

k
s−1,Y

k−1
s . . . ,Yk−1

N )

= p(xτk |ys,k , x̂
1
k,1:s−1, . . . , x̂

K
k,1:s−1)

=

∑
εs

p(xτk |εs, ys,k , x̂
τ
k,1:s−1)p(εs|ys,k , x̂

1
k,1:s−1, . . . , x̂

K
k,1:s−1)

≈ N (xτk |x̂
τ
k,1:s, P̂

τ
k,1:s) (15)

where

x̂τk,1:s =
ns∑
is=0

ατis x̃
τ
k,1:s−1(is)

P̂τk,1:s =
ns∑
is=0

ατis

{
P̃τk,1:s−1(is)+ (x̃τk,1:s−1(is)− x̂τk,1:s)

×(x̃τk,1:s−1(is)− x̂τk,1:s)
T
}

(16)

x̃τk,1:s−1(is) and P̃τk,1:s−1(is) are the results of updat-
ing x̂τk,1:s−1 by suing measurement ys,k (is). Similar to the
P-MSJPDA, KF is not applicable to compute the statistical
quantities above owing to the nonlinearity of the measure-
ment equation in PMSR. A sequential UKF for computing
x̃τk,1:s−1(is) and P̃

τ
k,1:s−1(is) with ys,k (is), x̂

τ
k,1:s−1, and P̂

τ
k,1:s−1

is proposed in this paper and shown in the appendix.
In (15), εs is an association event that assigns each mea-

surement at sensor s to a target or claims it as clutter, as shown
in section II. ατis is the probability of associating ys,k (is) to
target τ , and is the summation of the posterior probabilities
of all the association events εs in which ys,k (is) is assigned to
target τ , i.e.

ατis ∝
∑
εs

p(εs|x̂1k,1:s−1, . . . , x̂
K
k,1:s−1, ys,k ) (17)

where

p(εs|x̂1k,1:s−1, . . . , x̂
K
k,1:s−1, ys,k )

∝ p(ys,k |εs, x̂1k,1:s−1, . . . , x̂
K
k,1:s−1)

∝

L∏
j=1

p(ys,k (i(j)s )|Z(j)
τ,is , x̂

τ (j)

k,1:s−1) (18)
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p(ys,k (is)|Zτ,is , x̂
τ
k,1:s−1) is the predicted measurement

likelihood and can also be computed by using the procedure
in the appendix.

Similar to the P-MSJPDA, in order to compute the associ-
ation probabilities ατis , the optimal JPDA enumerates all the
association events εs, which is NP-hard. Still, many asso-
ciation events only have very small probabilities and con-
tribute little to the solution, thus them-best association events
with the m-largest probabilities are utilized instead, which
results in a practical and near optimal approximation method.
Suppose ε(1)s , ε

(2)
s , . . . , ε

(m)
s are them-best association events,

thus (17) becomes

ατis ∝
∑

1≤i≤m

p(ε(i)s |x̂
1
k,1:s−1, . . . , x̂

K
k,1:s−1, ys,k ) (19)

Finding them-best association events in this subsection is a
typical m-best 2-D assignment problem, which can be solved
optimally in polynomial time. Assigning a cost to each of the
association events εs with its generalized likelihood ratio, i.e.

c(εs) =
L∏
j=1

p(ys,k (i
(j)
s )|Z(j)

τ,is , x̂
τ (j)

k,1:s−1)

Vs
(20)

and denoting2 as the association event space which contains
all the feasible association events εs, the m-best 2-D assign-
ment problem is casted in the following

ε(1)s = arg min
εs∈2
{c(εs)}

ε(2)s = arg min
εs∈2\ε

(1)
s

{c(εs)}

...

ε(m)s = arg min
εs ∈ 2\ε

(n)
s

n = 1, 2, . . . ,m− 1

{c(εs)} (21)

(21) can be solved efficiently by anm-best 2-D assignment
algorithm described in [46] with the worst case complexity
of O(mL4), where L is the number of two-tuples in εs. This
complexity can further be reduced to O(mL3) with some
optimization steps [46].

We need to perform this m-best 2-D assignment in each
step. The overall complexity is O(mNL3), which is better
than the m-best (N + 1)-D assignment case, since there are
no relaxation iterations in 2-D assignment. If we take into
account the complexity of the computation of the assignment

cost, which is (K+1)
N∑
s=1

ns in this subsection, the S-MSJPDA

well outperforms its parallel counterpart in computation time.

IV. SIMULATION
In this section we will compare the performance of
P-MSJPDA and S-MSJPDA in an FM-based PMSR scenario
through simulations. We consider a simulation setup shown
is figure 2.

Three FM transmitters are used with the carrier frequen-
cies of 93.1 MHz, 90.9 MHz and 99.9 MHz respectively.

FIGURE 2. Sketch of the simulation scenario.

Four targets fly parallel over the surveillance region from
k = 1 s to k = 50 s with the same initial velocities of
vτ (k) = [200, 244.1]Tm/s, τ = 1, 2 . . . , 4, and they are
about 2 km to each other. In this case the bistatic range and
Doppler frequency of the four targets are similar to each
other, so both gating and clustering cannot separate the four
targets, and then the multi-sensor multi-target tracking prob-
lem holds. The relative positions of the transmitters and the
receiver, and the trajectories of the four targets are depicted
in figure 2, which reveals the real distribution of three FM
broadcasting stations in northwest China. The measurement
noise follows a Gaussian distribution for bistatic range and
Doppler frequency. We set the deviation of the bistatic range
to 1000 m, and that of the Doppler frequency to 1 Hz, typical
values for FM based passive radar. Under this setup, the four
parallel targets in figure 2 cannot be resolved in the bistatic
range domain because of the poor range resolution of FM
signals. However, they can usually be resolved in the Doppler
frequency domain given the excellent Doppler frequency res-
olution. We thus assume the four targets are resolved. Since
the track initiating is not within the scope of this paper, we set
the initial state of each track as the true state plus some
random noise. Gating and clustering are performed to reduce
the computational complexity. It is noted that the same gating
and clustering procedures are used in both tracking methods.

We set the detection probability PD and the number of
clutter at each sensor per scan as 0.8 and 50 respectively.
100 independent trials are conducted. The root mean square
position error (RMSE) of each target is given as

ςτ (k) =
1
√
M

√√√√ M∑
i=1

[σ iτ (k)]2 (22)

where M is the number of Monte Carlo trails, and σ iτ (k) is
the position error of target τ at time k corresponding to the
i-th trails. The RMSEs of target 1 and 4 are shown in figure 3.
It can be seen that the RMSE achieved by P-MSJPDA is close
to the true assignment case, however S-MSJPDA degrades
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FIGURE 3. RMSEs of target 1and 2. (a) Target 1, (b) target 2.

slightly. For P-MSJPDA, the converged RMSEs of the two
targets are blew 120 m. For S-MPJPDA, the converged
RMSEs are between 120 m and 140 m. This is due to the
fact that the S-MSJPDA only considers measurements from
one sensor per step, and the assignment result will affect that
of the next step. For example, if a target is assigned with a
dummy measurement or a measurement from another target
at sensor s, the updated target state at step s will have a poor
quality, which is not good for the assignment of the next step.
Fortunately, the RMSE degradation of S-MSJPDA is quite
small compared to the surveillance region size.

In the following we will test the performance of the two
tracking methods in terms of position accuracy, loss probabil-
ity and running time versus detection probability and clutter
density. We average ςτ (k) over timek and target index τ to

denote the position accuracy, i.e. ς = 1
4

4∑
τ=1

[ 1
50

50∑
k=1

ςτ (k)].

Furthermore, we use a strategy similar to that in [38] to
report the loss of a target. That is, for each target, if the
dummy measurement has the largest association probability
for successive four scans, or the target gate is larger than
a certain threshold, the target is declared lost. We take the
averaging loss probabilities over the four targets as the loss

FIGURE 4. Tracker accuracy versus detection probability 50 clutters each
sensor per scan.

FIGURE 5. Loss probability versus detection probability. 50 clutters each
sensor per scan.

probability of the tracking method. Finally, we run all the
simulations on a PC with four 3.3-GH Intel processors, and
use the averaging running time over theM Monte Carlo trails
to examine the running time of the two tracking methods.

We first study the performance of the two tracking meth-
ods versus the detection probability PD. We set the number
of clutters at each time instant per sensor as 50. For each
PD, 100 independent trials are conducted. The results are
displayed in figure 4, 5 and table I. Figure 4 depicts the
position accuracy of the two tracking methods. It is seen
that the position accuracy of the both methods increases with
detection probability PD. This is because more true measure-
ments are available to update the targets as PD increases.
The position accuracy of the S-MSJPDA degrades slightly
compared to the P-MSJPDA. Figure 5 depicts the loss prob-
abilities of the two methods. It can be seen that the loss
probabilities of the both methods decrease with the increase
of PD where more true measurements are available. Since
the S-MSJPDA only degrades slightly in position accuracy,
the loss detection performance of thismethod is similar to that
of the P-MSJPDA. Table I shows the running time of the two
tracking methods. It can be seen that the S-MSJPDA is much
faster than the P-MSJPDA. This verifies the previous analysis
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TABLE 1. Running time versus detection probability.

FIGURE 6. Tracker accuracy versus clutter density (PD = 0.8).

that the computation of the assignment costs in S-MSJPDA
is more efficient. It can also be seen that as PD increases the
S-MSJPDA becomes slow while the P-MSJPDA goes fast.
This is because of the nature of the 2-D and S-D assignments
as PD increases [45], [46]. Anyway, the S-MSJPDA is much
faster than its parallel counterpart for all PD tested.

There are 50 clutters at each sensor per scan
We then test the performance of both tracking methods

versus the clutter density. We set the detection probability as
0.8. We vary the number of clutter at each sensor per scan
from 100 to 500. For each clutter density, 100 independent
trials are conducted. The results are displayed in figure 6,
7 and table II. Figure 6 shows the position accuracy of the two
tracking methods. It can be seen that the position accuracy of
bothmethods degrades with the increase of the clutter density.
However, this degradation is quite small compared with the
surveillance region size because of the pre-performing of the
gating procedure. It can also be seen that the P-MSJPDA is
still slightly better than the S-MSJPDA. Figure 7 displays a
similar performance of the both methods in loss probabilities.
Table II shows the running time of the two methods. It can be
seen that the S-MSJPDA is much faster than the P-MSJPDA.
It is noted that since gating and clustering are performed,
the performance of both methods only degrades slightly in
terms of position accuracy, loss probability, and running time
with the increase of clutter density.

FIGURE 7. Loss probability versus clutter density (PD = 0.8).

TABLE 2. Running time versus clutter density.

We have also tried to reduce the distance between targets
to see the behaviors of the two tracking methods and found
that the tracks obtained tend to switch to the trajectories of
the other targets as their distance decreases especially when
it is smaller than 1 km, the deviation of the bistatic range. The
closer the targets are to each other, the more frequent the track
switch is. This is quite expectable since the measurements
from one target may be closer to another target if the distance
between the two targets are smaller than the measurement
deviation. In this case the measurements will be assigned to
a false target and the track switch occurs.

It can be concluded from the above simulations that the
S-MSJPDA is much more efficient than the P-MSJPDA in
PMSR target tracking, with acceptable degradation in posi-
tion accuracy and loss probability.

V. EXPERIMENTAL RESULTS
In this section we will apply the S-MSJPDA to an experimen-
tal FM-based PMSR for aircraft tracking in real life scene.
The distribution of the transmitters and receiver is the same
with that shown in figure 2. The signal processing procedure
of the radar is shown in figure 8.

The radar is equipped with an 8-element uniform circu-
lar antenna array to collect the reference signal and target
echoes. Each array element is connected to a digital chan-
nelized receiver to resolve signals coming from different
FM transmitters. For each transmit-receive pair, the refer-
ence signal is extracted by using the beamforming technique.
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FIGURE 8. Signal processing diagram of the experimental FM-based
PMSR.

With the reference signal, clutter cancellation and range-
Doppler cross correlation is performed and a constant false
alarm ratio (CFAR) procedure is conducted to detect potential
targets. If a target is detected on the range-Doppler sur-
face, its bistatic range and Doppler frequency are collected
and sent to the target tracking procedure. A comprehensive
software is developed based on the compute unified device
architecture (CUDA) to perform the beam scanning, clutter
cancellation, range-Doppler cross correlation, CFAR detec-
tion, and target tracking. The software runs on a Graphic
Processing Unit (GPU), thus the radar system can output
tracking results at each second. In the target tracking proce-
dure, the m/n logic [22] is designed to initiate new tracks. The
S-MSJPDA is developed to maintain the confirmed tracks
because of its high efficiency in computation time compared
to the P-MSJPDA. The deviation of bistatic range is set to
1000 m. The deviation of Doppler frequency is set to 1 Hz.
During the experiment, a lot of tracking results are obtained,
among which we only pick out a typical one and depict it
in figure 9 by using MATLAB. Figure 9 also displays the
ADS-B result. It can be seen that the tracks of the three
targets obtained by our radar are rather close to the ADS-B
tracks. We take the ADS-B tracks as the real trajectories and
use the time average of the absolute difference between the
S-MSJPDA tracks and the real trajectories to approximate
the RMS track errors. We also count the track length of the
three targets. The results are shown in table III. It is seen
that the maximum track length maintained by our radar is
75.9 km, and themaintained length of the other tracks exceeds
20 km. The maximum track error is about 0.7 km and the
minimum one is 0.45 km, which seam slightly worse than the
simulation ones. This may be because we neglect the target’s
altitude. In addition, we found during the experiment that
one of the FM transmitters had poor detection probabilities

FIGURE 9. Experimental result.

TABLE 3. Track errors and length of the three captured targets.

over the targets, which also causes the degradation of the
position accuracy. It is of limited improvement to include the
target altitude into the state vector, since the FM transmitters
are not sufficiently distinct in altitudes and in this case it is dif-
ficult to estimate a target’s altitude with satisfactory accuracy.
Adoption of more transmitters and better transmitter-receiver
distribution is a reliable way to increase the position accuracy.

VI. CONCLUSION
In this paper we evaluated the behaviors of S-MSJPDA in
PMSR target tracking with bistatic range and Doppler fre-
quency measurements. We provided a comprehensive com-
parison between S-MSJPDA and P-MSJPDA in terms of
tracker accuracy, loss probability, and running time.We found
from the comparison that the rarely discussed S-MSJPDA
is much more efficient than the widely used P-MSJPDA in
PMSR, with acceptable degradation in position accuracy and
loss probability. We further apply the S-MSJPDA to real life
aircrafts tracking using an experimental FM-based PMSR.
The tracks of three targets are shown in the paper, among
which the maximal track length is up to 75.9km. The track
accuracy of the targets is slightly worse than the simulation
case, for which the reasons have been analyzed, i.e. neglec-
tion of the target’s altitude in the tracking system and poor
detection probability of one of the three FM transmitters
during the experiments. Simulation and experimental results
verify that S-MSJPDA has great potentials in target tracking
in passive multi-static radar.

APPENDIX
1. Input:ys,k (is ),x̂τk,1:s−1,P̂

τ
k,1:s−1,Rk ,and hs;

2. Determine sigma points χ1,χ2, . . . ,χQ and weights
w1,w2, . . . ,wQ to match mean x̂τk,1:s−1 and covariance
matrix P̂τk,1:s−1;
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3. Compute the transformed sigma points ξ i = hs(χ i);
4. Compute the predicted measurement statistics:

ŷτs/1:s−1,k =
Q∑
i=1

wiξi

6̂
τ

s/s:s−1,k = Rk+

Q∑
i=1

wi(ξ i−ŷ
τ
s/1:s−1,k )(ξi−ŷ

τ
s/1:s−1,k )

T

ψk =

Q∑
i=1

wi(χ i − x̂τk,1:s−1)(ξ i − ŷτs/1:s−1,k )
T

The predicted measurement likelihood is computed as:

p(ys,k (is)|Zτ,is , x̂
τ
k,1:s−1)

= N (ys,k (is)|ŷτs/1:s−1,k , 6̂
τ

s/s:s−1,k )

5. Compute the posterior mean and covariance matrix:

x̃τk,1:s−1(is) = x̂τk,1:s−1 + ψk (6̂
τ

s/s:s−1,k )
−1

×(ys,k (is)− ŷτs/1:s−1,k )

P̃τk,1:s−1(is) = P̂τk,1:s−1 − ψk (6̂
τ

s/s:s−1,k )
−1(ψk )

T

6. Output:

x̃τk,1:s−1(is), P̃
τ
k,1:s−1(is), p(ys,k (is)|Zτ,is , x̂

τ
k,1:s−1).
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