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ABSTRACT Infant failure analyzing is an effective approach to improve production quality continuously.
The root causes of infant failure have always been a puzzle to manufacturers. To satisfy the increasing
demand for the fuzzy root cause analysis of product infant failure in the era of big data, a novel root
cause identification approach based on the associated tree and fuzzy data envelopment analysis (DEA) is
presented for product infant failure. First, to decrease fuzzinesswith regard to themechanism of infant failure,
the associated tree is adapted to guide the analysis process for possible root causes based on axiomatic domain
mapping. Second, considering the fuzzy mechanism and massive data, the fuzzy DEA technique is adopted
to cluster all the potential factors of functional parameters, physical parameters, and process parameters from
big data regarding product life cycle. Third, the ranking method of decision-making unit efficiency in fuzzy
DEA is used to model and rank the weight of each node in the established associated tree of infant failure.
Finally, a case study of root cause identification for a typical infant failure of the vibration and noise of a
washing machine is presented to demonstrate the feasibility and validity of the proposed method.

INDEX TERMS Infant failure, big data, root cause analysis, associated tree, fuzzy DEA.

I. INTRODUCTION
With the advent of Industry 4.0 and big data era, the Artificial
Intelligence (AI) techniques should be widely adopted to the
field of quality management and improvement [1]. The infant
failure is deemed to be built in the manufacturing process,
and infant failure root cause analysis is a routine task for
quality managers of product manufacturers [2]–[4], which is
also a challenge for most of manufacturers due to the non-
intelligent analyzing means and vague understanding of its
mechanism.

Infant failure frequently refers to failure that occurs in
the ‘‘infant’’ region of the leftmost portion of bathtub curve
of product life [5]. The majority of reliability failures are
assumed to be infant mortality failures, and these failures
are mostly attributed to hidden defects formed during the
product design and manufacturing process. To ensure product
reliability and quality from industrial batch production, the
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burn-in test is typically the only means to accelerate the
screening of hidden defects [6]. Although this test is widely
used to reduce infant failures in reliability engineering, stud-
ies on the root cause analysis of product infant failure are few.
With the constant emergence of big data from the life cycle
of complex engineering products, such as cars, root cause
identification is becoming a key task in quality control, and
the precision of results is crucial to prevent similar failures
from occurring repeatedly [7], [8]. A number of studies have
investigated infant failure with statistical methods, such as
traditional infant failure rate modeling and bathtub-shaped
failure rate modeling [9], [10]. Domma and Condino [11]
proposed a new class model for survival data analysis. This
model is characterized by the sign of the first derivative for
the hazard rate by building two new distribution functions.

Failure mode and effect analysis (FMEA) and fault tree
analysis (FTA) are generally utilized to identify failure causes
and modes in engineering. Masayuki et al. [12] used the
Axiomatic design to conduct failure data analysis and stressed
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that complex and coupled designs are the root causes of
engineering failures. Pavasson et al. [13] proposed a varia-
tion mode and effect analysis (VMEA) method to identify
the source of variation by identifying the key characteris-
tics in the product development process that can be used as
specific targets for quality improvement. Shukla et al. [14]
proposed a methodology for optimal sensor allocation for
root cause analysis that maximizes key characteristics, which
include product characteristics and control characteristics in
a multi-station assembly process. He et al. [2] presented a
multilayered model structure for modeling infant failure rate
by integrating and quantifying the influence of quality vari-
ations into the manufacturing process for electromechanical
products. Tang et al. [15] proposed a weighted risk priority
number (AMWRPN) based on the FMEA fuzzy metric, and
by measuring the degree of ambiguity assessed by experts,
the relative weights of different risk factors are determined.

Although several studies on root cause analysis have been
conducted, most previous works have focused only on failure
rate modeling and specific product failure analysis. In con-
trast with constant and wear-out failures, infant failures are
the most complicated, and their root cause identification
involves all the parameters originated in a product life cycle.
That is, improper design, manufacturing defects, and opera-
tion errors can cause product infant failures. The formation
mechanism of infant failure remains fuzzy due to its com-
plexity, and a systematic identification approach for the fuzzy
cognition of its root causes is rare. Therefore, a method for
identifying the root causes from fuzzy big data for infant
failure should be developed. In fact, the data of possible
root causes for evaluation are frequently expressed fuzzily.
That is, causal relationship of inputs and outputs are fre-
quently represented in fuzzy numbers, which reflecting the
preference experience of decision-making experts in the field
of infant failure analysis. Fortunately, fuzzy data envelop-
ment analysis (DEA) [16], [17] can be adopted to evaluate
the relative efficiencies of decision-making units (DMUs)
under an environment in which processing data cannot be
precisely measured. Wen and Li [18] extended traditional
DEA models to a fuzzy framework. A fuzzy DEA model
based on credibility measure and a ranking method for all
DMUs are also presented. To evaluate relative efficiency
for multiple inputs and outputs, Puri and Yadav [19], [20]
proposed a fuzzy DEA model to deal with the imprecise
or fuzzy input/output data problem. Their proposed model
can transform the fully fuzzy cost efficiency (CE) and rev-
enue efficiency (RE) models into crisp linear programming
problems. Garcia et al. [21] presented the possibility DEA
model for FMEA and utilized the fuzzy DEA method to
determine ranking indices among failure modes. Hossein and
Arezoo [22] evaluated the priority and importance of each
DMU by using TOPSIS and the FMEA model in an interval-
valued intuitionistic fuzzy environment. Wen et al. [23] pro-
posed a random spare part optimization model (SSOM) based
on random DEA to improve the efficiency of solving the
problem of spare parts optimization under fuzzy conditions.

These strategies introduce a customized approach that tar-
gets inefficient DMUs to improve computation efficiencies.
In addition, uncertainty and fuzziness in the health prediction
and failure analysis process are increasingly emphasized in
the failure analysis field. A fuzzy theory–gray model–support
vector machine approach for an integrated health manage-
ment system was proposed by Xu et al. [24]. Fuzzy intelli-
gence methodologies should have been applied extensively to
improve the accuracy of root cause analysis for infant failure.

The reliability theory based on fault physics tend to use
fault mechanism model to describe regularity of fault occur-
rence, and the influence of uncertain factors on the regularity
of fault occurrence is described by the dispersion of model
parameters [25]. Hall and Strutt [26] proposed methodology
based on physics-of-failuremodels to analyze the influence of
model uncertainties and uncertain parameters on component
reliability. The method based on physics of failure are always
confined to reliability data, and lack of systematic research
on early failure mechanism of products from the perspective
of product reliability formation. Still, issues of root cause
identification approach of product infant failure mechanism
in the context of big data and from the perspective of product
reliability formation for infant failure which should be devel-
oped and have not drawn the attention it deserves. Driven
by these requirements, a new big data-oriented root cause
identification approach based on the associated tree and fuzzy
DEA is proposed in our study. The main contributions of this
method are as follows:

1) The associated tree is adopted to collect all the possible
root causes based on Axiomatic domain mapping from
the big data of product life cycle, thereby decreasing
the fuzziness of the mechanism of infant failure, and
it provides a new means to guide the analysis process
for infant failure mechanism, which can decrease the
information illegibility.

2) In consideration of the fuzziness from imprecise or
fuzzy input/output data problems of the collected big
data, the fuzzy DEA technique is adopted to cluster all
the potential factors of functional, physical, and process
parameters from the big data collected from product
life cycle. The fuzzy DEA algorithm is applied firstly
to compute and analyze the weight of the possible root
cause of infant failure,

3) Ranking method for DMU efficiency in fuzzy DEA
is used to model and rank the relation weight of
each node, which provides a feasible method to locate
the weak risk parameters in infant failure mechanism
analysis.

The rest of this paper is structured as follows. The
mechanism of product infant failure and its fuzziness are
explained in Section 2. Weight computation based on fuzzy
DEA is analyzed in Section 3 with reference to the asso-
ciated tree model. A numerical example of a typical infant
failure of washing machine is presented in Section 4.
Finally, conclusions regarding the study are drawn in
Section 5.
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FIGURE 1. Associated tree framework of the root cause of product infant failure.

II. MECHANISM OF PRODUCT INFANT FAILURE
AND ITS FUZZINESS
Undoubtedly, design or manufacturing defects cannot be
completely prevented or eliminated by quality control in
the product development process, thereby resulting in prod-
uct failure during early use. That is, infant failure is typi-
cally caused by poor design, material defect, manufacturing
defect, inadequate materials, poor inspection, quality vari-
ation, assembly error, poor workmanship and mishandling,
and other human errors. Overall, infant failure is frequently
caused by inherent defects formed throughout the life cycle
of a product due to variation and uncertainty in design,
manufacturing, assembly, and operation. Furthermore, inher-
ent reliability established during manufacturing will directly
determine the rate of product infant failure. Hence, the accu-
mulation of quality deviations in manufacturing is generally
accepted as the key cause of high infant failure rate [2].

A. CONSTRUCTING THE ASSOCIATED TREE OF PRODUCT
INFANT FAILURE BASED ON AXIOMATIC
DOMAIN MAPPING
As mentioned earlier, the formation mechanism of infant
failure is currently fuzzy for most manufacturers. This study,
which aims to decrease the fuzziness of the root causes of
infant failure, builds an associated tree of product infant
failure based on waterfall decomposition and mapping theory
of functional, physical, and process domains in Axiomatic
design [27], as shown in Fig. 1. The associated tree of
product infant failure is a hierarchical tree of function
requirements (FR), design parameters (DP), and process vari-
ables (PV) of a product.

In this figure, the established associated tree can help
quality engineers set the hierarchical relationships of infant
failure symptoms, function requirements (FR), design param-
eters (DP), and process variables (PV). In other words,
the associated tree of product infant failure can be able to

build the mapping relationship between associated tree and
product assemble tree, which have contributed to analyze
quality problem rooted deeply in product design schemes and
variations of parameters in manufacturing process. In partic-
ular, failure symptoms are first decomposed into FRs in the
functional domain. In this link, the first-level function nodes
be decomposed sequentially and hierarchically by means of
layer-by-layer analysis of design objects. Then, the identified
FRs are decomposed into DPs in the physical domain accord-
ing to the decomposition results of function domain. In this
link, through the coding of each component, the correspond-
ing subassemblies are obtained from the product data man-
agement (PDM) system. Finally, through the coding of each
physical note, the corresponding sub-processes are obtained
from the Enterprise Resource Planning (ERP) system. The
skeptical DPs are decomposed into the corresponding man-
ufacturing variables (PVs) in the process domain according
to the results of physical decomposition and manufacturing
scheme. FRs and DPs are determined in the design process,
whereas PVs are built in the production process. Usage
environmental stresses are the inducement factors of infant
failures; therefore, the possible root causes of infant failure
can be classified into design, production, and usage causes.

B. BIG DATA OF POSSIBLE ROOT CAUSES
AND THEIR FUZZINESS
As shown in the established associated tree model of infant
failure root cause, uncertain factors that cause imprecise or
fuzzy identification results exist. To systematically identify
the latent causes of infant failure, the big data of quality
and reliability collected from the design, production, test,
and usage of product life cycle comprise an indispensable
database. The investigation on the product infant failure can
effectively achieve root cause identification by data inte-
grated from different stages benefit from big data. Differ-
ent resources of data and different data with heterogeneous
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formats are collected. The data integrated from different steps
of product life cycle in a unified manner to identify the
latent causes of infant failure. As described earlier, fuzziness
naturally exists in the root cause identification process, which
is produced by big data from product life cycle. The big data
of possible root causes and their fuzziness are shown in Fig. 2.

FIGURE 2. Big data of possible root causes and their fuzziness.

As shown in the figure, the big data-oriented infant failure
root cause identification process is complex and involves
multiple uncontrolled uncertainties. From the perspective
of the established associated tree for product life cycle,
the infant failure mechanism of a product is related to the
variation accumulation of design, manufacturing, and usage
factors. When the design stage is considered, functional
specifications related to infant failure should be translated
into detailed qualitative and quantitative physical and pro-
cess parameters. The mapping vulnerabilities of infant failure
symptoms between physical and process parameters are the
source of design defects. Some of these design defects should
be transformed into manufacturing defects by variation accu-
mulation in a multilevel manufacturing process. Variations
from human, machine, material, method, measurement, and
environment (5M1E) result in quality-related failures, which
will occur during usage stage due to overstress variation and
finally result in product infant failure. However, fuzziness
exists in this cognition of infant failure root cause and the root
cause cannot be identified. Different designers, conditions of
use, and part requirements indicate a different description of
the method. In fact, determining whether an object belongs
to a root cause is difficult due to the complexity of products,
the ambiguity of the concept, and the vague extension. There-
fore, fuzziness exists due to unclear definitions and vague
criteria, which results in uncertainty.

From the preceding discussion, the mechanism of the gen-
eration and root cause identification of infant failure remains
fuzzy. Moreover, big data from design, production, and use
have different characteristics. Big data create unique features
because of their volume, variety, and velocity, which are
difficult to express accurately. As shown in Fig. 2, the volume
of data from design, process, and usage parameters causes
the storage of big data to reach terabyte or petabyte. Variety
is typically reflected in various forms of existing documents,
eye-tracking data, and sentiments about purchased products
based on ‘‘Likes.’’ In addition, velocity is usually reflected in
frequent updates. In different stages of a product life cycle,

performing real-time data processing is difficult due to the
characteristics of big data. These multiple characteristics lead
to a significant challenge in the analysis of big data from a
product life cycle, which result in fuzzy qualitative and quan-
titative descriptions. The present study considers the vague
data of root cause analysis from an associated tree model
and uses triangular fuzzy numbers in the deburring process.
A relationship matrix of the functional, physical, and struc-
tural domains can be used to express the correlation degree
of each element. Failure probability, failure detectability, and
fault severity can be used to measure the strength of the
relationship matrix. Therefore, fuzziness fully exists in root
cause analysis based on big data and should be defuzzified.
This study uses fuzzy DEA to help analyze the root causes of
product infant failure based on an associated tree.

III. WEIGHTS COMPUTATION BASED ON FUZZY DEA
FuzzyDEA can provide a calculationmethod for weight eval-
uation based on the nodes of the output–input index, which
helps obtain the node relation weight and quantitatively rank
the whole associated tree.

A. FRAMEWORK OF WEIGHT COMPUTATION
FOR THE ASSOCIATED TREE
The big data of possible root causes and their fuzziness in the
associated tree are shown in Fig. 1. Effective data analytics
methods that can handle fuzziness are required to address
this issue. Accordingly, a fuzzy DEA-based data analytics
approach is adopted to rank the weights of the associated tree
of product infant failure based on the collected quality and
reliability data for each node, which can fulfill the objective
of this study and the systematic identification of root causes.
Therefore, an analysis framework is proposed to compute
the weight of the root cause analysis based on the fuzzy
DEAmethod according to the identification framework of the
associated tree of product infant failure shown in Fig. 1. The
process of weight computation for each node in the proposed
associated tree is illustrated in Fig. 3.

FIGURE 3. Weight computation of the associated tree based on the DEA
analysis framework.

As shown in the above Fig.3, to identify root cause, the
core task of the associated tree is node weight computation
through fuzzy DEA, which is expounded as follows.
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Step 1 (Data Collection and Preprocessing): On the basis
of the framework of the associated tree of infant failure shown
in Fig. 1, big data from the product data management sys-
tem should be collected and preprocessed first. All possible
causes originating from the design, production, and usage
phases of product life cycle may be extracted from data
information.
Step 2 (Fuzzy Analysis):The main task is to verify the

advantage of utilizing triangular fuzzy number given the fact
that not only the uncertainty in the involved data should be
fully accounted for, but the expertise should also be fully
represented. Therefore, considering the big data of possible
root causes and their fuzziness shown in Fig. 2, the fuzzy
DEA model that considers fuzzy number can be effective
in dealing with uncertainty, which contains information that
cannot be suitably accounted for and should be regarded as
uncertain.
Step 3 (Fuzzy DEA Model Construction): The main task is

to determine the suitable method for dealing with the weight
computation of nodes in the associated tree. This study intro-
duces fuzziness into the classical DEA–Banker, Charnes, and
Cooper models, which can be regarded as an extension of the
DEA methodology. In this study, we adopt the fuzzy DEA
model to address fuzziness and use the ranking method based
on the α-cut.
Step 4(Setting the Fuzzy Values of Indexes): Given the

important task of fuzzy DEA in determining the input and
output indicators, this step emphasizes the fuzzy value of
indexes for root cause identification from big data. To ensure
the accuracy of weight computation, designers should set
fuzzy values with the aid of original quality data and their
expertise and experience.
Step 5(Computation of the Weight of the Associated Tree

via Fuzzy DEA):
The main task is to determine the relative efficiency of

DMUs in the associated tree. In accordance with the fuzzy
DEA model, efficiency scores that evaluate the weight of
different DMUs in terms of the use of inputs and outputs
originating from fuzzy indexes in the design and manufacture
of product life cycle should be provided.
Step 6(Rating of Nodes by the Relative Weight Value): The

main task for all the nodes of the functional, physical, and
manufacturing trees of the presented associated tree is to rank
the weight vectors of nodes based on their efficiency value.
FromStep 5, the efficiency value can be obtained by assessing
the relative weight value and the rating process is based on the
associated tree. The relative weight value of the process cell
nodes can be calculated by means of the efficiency index of
the nodes for the corresponding arithmetic operations of the
triangular fuzzy number.

As shown in the preceding framework, the weight com-
putation for the associated tree of product failure can
be effectively performed via fuzzy DEA, and the details
of fuzzy DEA theory are expounded in the subsequent
section.

B. FUZZY DEA THEORY
Fuzzy DEA is a means to quantify vague data in which
the inputs and outputs of DMUs are fuzzy variables. Sup-
pose that each DMUj (j = 1, · · · , n) has m different inputs
xij(i = 1, · · · ,m) and s different outputs yrj(r = 1, · · · , s).
With the aid of the fuzzy Charnes, Cooper, and Rhodes (CCR)
model, the applicative fuzzy DEA [19], [20] model can be
defined as follows.

The efficiency evaluation value is set as

hj =
s∑

r=1

uryrj

/ m∑
i=1

vixij

and the mathematic model of DMUj0 is

hj0 =
s∑

r=1

uryrj0

/ m∑
i=1

vixij0

s.t.
s∑

r=1

uryrj

/
vixij ≤ 1;

v ≥ 0, u ≥ 0, j = 1, 2, · · · , n; (1)

where ur (r = 1, · · · , s) and vi(i = 1, · · · ,m) are the weights
on the rth output and ith input. Through transformation with
the CCR model, the model is presented as

Max h0 = µTY0

s.t. ωTXj − µTYj ≥ 0;

ωTX0 = 1; ω ≥ 0, µ ≥ 0, j = 1, 2, · · · , n. (2)

The fuzzy DEA of the CCR model can be expressed as

Max h̃0 =
s∑

r=1

µr ỹr0

s.t.
m∑
i=1

ωix̃i0 = 1̃;

s∑
r=1

µr ỹij −
m∑
i=1

ωix̃ij ≤ 0;

ω ≥ 0, µ ≥ 0, j = 1, 2, · · · , n; (3)

where ∼ denotes fuzziness.
The fuzzy input is in the form of x̃ = (xL , xM , xR) and

the fuzzy output is in the form of ỹ = (yL , yM , yR), where
xL ≤ xM ≤ xR and yL ≤ yM ≤ yR. Therefore, the fuzzy
DEA–CCR model is presented as follows:

Max h̃0 =
s∑

r=1

µr (yLr0, y
M
r0, y

R
r0)

s.t.
m∑
i=1

ωi(xLi0, x
M
i0 , x

R
i0) = (1L , 1, 1R);

s∑
r=1

µr (yLrj, y
M
rj , y

R
rj)−

m∑
i=1

ωi(xLij , x
M
ij , x

R
ij ) ≤ 0. (4)
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FIGURE 4. Proposed procedure for weight computation utilizing fuzzy DE–CCR.

C. WEIGHT COMPUTATION ALGORITHMS
From the preceding discussions, fuzzy DEA can be used to
quantitatively rank the whole associated tree by its efficiency
value. Accordingly, the next task is to fully use the efficiency
of fuzzy DEA as the basis for computing weight. As shown
in Fig. 2, fuzzy data can be collected in a bottom-up manner
by considering the proposed associated tree in product life
cycle. Therefore, with regard to the complexity and potential
terminal nodes of each stage in the associated tree, we applied
the bottom-up manner and started the weight computation
from parts, components, and assemblies using the proposed
method. The proposed procedure for weight computation that
utilizes fuzzy DEA–CCR is shown in Fig. 4.
Step 1(Select Nodes): The task is to identify a limited

number of nodes as operation objects. When numerous nodes
exist, batch calculation is required to deal with the num-
ber of nodes in the associated tree. Thus, we use ECj j =
1, 2, · · · , n to express each process node.
Step 2(Determine Input and Output Variables): Fuzzy

DEA is used to calculate the characteristics of process vari-
ables. Each process variable is considered as a decision-
making cell, and the evaluation value decision cell may reflect
the relative importance of process variables. DEA should
determine the input and output indexes. If the input is higher
and the output is smaller, then the decision cell is poor.
Therefore, if a factor value in the decision cell is large and
the importance of the decision cell is higher, then this factor
should be included as an output index; however, if a decision
cell is greater than the value of certain factors and the degree
of importance of the decision cell is lower, then this factor
should be used as an input indicator [28]. In accordance with
this principle, if the degree of association between a child
node and a parent node is high for a process variable, then the
child node is important. Thus, the association degree of the
parent node with the relationship can be regarded as an output
indicator, which can be presented as a correlation matrix.
When the correlation degree of the modified autocorrelation
matrix is given, if the impact is serious for cost and technical
environmental factors, then the importance degree of the node
is low. Thus, the influence degree of the sub-indexes on the
failure correlation weight of the process node is used as an
input indicator.
Step 3(Determine the Fuzzy Number of the Influencing

Factor): This task determines the influencing factor and its
evaluation fuzzy number of nodes. In this study, the triangular
fuzzy number is used to quantify the subjective evaluation of

fuzziness of a designer. In accordance with the two charac-
teristics of the process, i.e., quality and reliability, and the
property of the process node, five input indexes are used,
as shown as Table 2. The index impact factor is denoted by
IF = (IF1, IF2, · · · , IFs).
This study adopts the triangular fuzzy number [29] to

quantify the subjective assessment of the relative importance
of the individual index via linguistic terms. M = (L, M, R) is
set, and its membership function µM (x) : R→ [0, 1] can be
described as follows:

µM (x) =


0, otherwise
(x − L)/(M − L), L ≤ x ≤ M
(R− x)/(R−M ), M ≤ x ≤ R,

where L, M, and R represent the lower, mean, and upper
bounds, respectively. Assume that the decision-makers adopt
the linguistic variable to reflect the weighting set W,
as described in Table 1.

TABLE 1. Triangular fuzzy conversion.

The triangular fuzzy conversion scale is presented in Fig. 5.
Step 4(Determine the Efficiency of Fuzzy DEA–CCR): For

IF = (IF1, IF2, · · · , IFs), given that this influencing factor
reflects the importance of its indictors, we use constraint µr0
to reflect the importance of the indicators of different nodes.
µr = σrµ1, r = 1, 2, · · · , s, and σ1 = 1, σr = IFr/IF1
are set.
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TABLE 2. Transaction data table.

FIGURE 5. Linguistic scale for conversion proportion.

Therefore, in accordance with the input and output of the
triangular fuzzy number, the CCR model can be expressed as
follows:

Max h̃0 =
s∑

r=1

σrµ1(yLr0, y
M
r0, y

R
r0)

s.t.
m∑
i=1

ωi(xLi0, x
M
i0 , x

R
i0) = (1L , 1, 1R);

s∑
r=1

σrµ1(yLrj, y
M
rj , y

R
rj)−

m∑
i=1

ωi(xLij , x
M
ij , x

R
ij ) ≤ 0;

ωi ≥ 0, µr ≥ 0, j = 1, 2, · · · , n. (5)

The objective function is Max µ1 after conversion.
For model (5), one widely used method for solving this

programming problem is α-cut. The minimum level of possi-
bility α and a nonlinear programming (NLP) model are given
as follows:

Max h̃0 =
s∑

r=1

σrµ1[yLr0, y
M
r0, y

R
r0]

Subject to
s∑

r=1

µr [αyMrj + (1− α)yLrj]−
m∑
i=1

ωi[αxMij + (1− α)xLij ] ≤ 0;
s∑

r=1

µr [αyMrj + (1− α)yRrj]−
m∑
i=1

ωi[αxMij + (1− α)xRij ] ≤ 0;
m∑
i=1

ωi(xLi0, x
M
i0 , x

R
i0) = (1L , 1, 1R);

ωi ≥ 0, µr ≥ 0, j = 1, 2, · · · , n. (6)

Through this NLP, we can calculate the value of the effi-
ciency index of a node h̃0 by using the object value. This index
value reflects the significance of the node. For n nodes, the
final calculation is h̃jj = 1, 2, · · · , n. h̃j = (hLj , h

M
j , h

R
j ) is

set. We use the centroid method to defuzzify as follows:

f (h̃j) = (hLj + h
M
j + h

R
j )/3. (7)

Step 5(Rate Nodes by Relative Weight Value): The task in
this step is to calculate the weight vectors of nodes using
their relative closeness. From Step 4, the efficiency index of a
node h̃0 and the defuzzification value f (h̃j) can be computed.
After normalization, the final weight of the node ECj can be
calculated using the following formula:

Wj = f (h̃j)
/ n∑

j=1

f (h̃j). (8)

Therefore, the maximum weightWj can be used to reason-
ably and methodically rate nodes from the process, physical,
and function domains in the associated tree.

IV. CASE STUDY
A. BACKGROUND
During the early usage of washing machines, the problem of
the common vibration and noise failure of washing machine
body is always the No.1 customer complaint. It is a typical
infant failure of washingmachine, and how to identify the for-
mation mechanism and identify the root causes of this failure
in the context of big data is always a dilemma for washing
machine manufacturers. In this study, a washing machines
in batch manufacturing is selected to identify root cause and
potential vulnerabilities of the vibration and noise failure of
washing machine body through mining these heterogeneous
big data with fuzziness from different in the life cycle of the
product (Fig.1). These data include product design, process
design, and manufacturing information.

B. CONSTRUCTING THE ASSOCIATED TREE
OF THE FAILURE ROOT CAUSE MODEL
The associated tree of failure root cause is established accord-
ing to the failure symptom of the vibration and noise of
a washing machine body and by using Axiomatic domain
mapping theory and waterfall type decomposition theory,
the final result is shown in Fig. 6.
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FIGURE 6. Associated tree model of infant fault vibration and noise of a washing machine body.

As shown in the Fig.6, the design requirements, corre-
sponding part characteristics, corresponding manufacturing
requirements are all obtained from these collected big data
in product lifecycle, which provide the basic components to
construct the associated tree of the selected infant failure.

In practical engineering applications, the infant failure
result of a product varies due to different causes, such as
errors from the design, physical, and manufacturing stages.
With the input and use of a product, a large amount of related
transaction record data is generated in the manufacture, pro-
duction, usage, and maintenance of a product. In the era
of big data, knowing how to mine specific rules and deriv-
ing a meaningful relationship model from these seemingly
insignificant and disorderly big data is important. Analyzing
the root causes of product infant failure from the design
and manufacturing processes is useful, necessary, and can
improve the utilization rate and reliability of a product.

Based on the big data collected, the actual faulted module
for this type of washing machine is obtained via the prod-
uct lifecycle management (PLM) system. This study uses
10000 simulation failure data as the transaction record data
for the product failure maintenance test phase. This simula-
tion data of the case study come from the actual industrial
practice. For these data, if the property of a certain stage
encounters a problem in the product failure test, then it is
marked as 1. If the property is normal, then it is marked as 0.
The transaction data are provided in Table 2.

A large number of transaction data are generated in Table 2,
and the associated tree shown in Fig. 6 is combined with
knowledge of mathematical statistics and probability. We use
PV13 as the parent node, and PV131, PV132, and PV133 as
sub-nodes to analyze transaction data, and thus, we can
obtain the direct correlation degree between these nodes and
the inspection index in the product maintenance process.

For example, the total failure transaction data are denoted
by N, PV131 and index(i) occur Q times, and the correla-
tion degree (denoted as p(i)) between PV131 and index(i) is
p(i) = Q/N .
Through the preceding discussion, we take the correspond-

ing DMU and transformed the input and output indicators
index(i) into triangular fuzzy numbers, as shown in Table 5.
In the case study, PV13 is regarded as the object node, and
the correlation degree and the triangular fuzzy numbers are
presented in Table 3.

TABLE 3. Degree of correlation and triangular fuzzy number.

C. WEIGHT COMPUTATION
Step 1(Choose Nodes): The manufacturing process is the
main cause of early failure, and thus, this study selects this
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TABLE 4. Failure association weight evaluation index of nodes.

process as the main case analysis. We focus on process node
PV13 (transformer assembly process), and select tertiary
nodes PV131 (cutting), PV132 (winding), PV133 (anneal-
ing), and PV134 (winding assembly) as object nodes to cal-
culate their weights.
Step 2(Determine Output Indicator Variables): Opera-

tional and technological costs are considered in fuzzy DEA.
This performance attribute is mostly concerned with the cost
of acquiring the necessary operation and technology and
the amount of money invested in design and manufactur-
ing. From the perspective of manufacturers, this attribute
shows how much capital has been used for product. Hence,
operational and technological costs, together with technical
environment factors, are used as input indicators. When these
indicators are serious, the importance degree of a node is low.
Furthermore, we select the relationship of nodes as the output
index and use five output indexes, namely, variation possibil-
ity, variation effect, failure probability, chance of undetected
failure, and severity of failure effect, as output indicators to
evaluate the relationship.
Step 3(Determine the Fuzzy Number of the Influencing

Factor):
Triangular fuzzy numbers are used to construct the impact

failure association weight node evaluation index. Association
weight evaluation indexes and their influencing factors are
constructed based on historical data and expert experience,
as shown in Table 4.

PV13 is taken as an object. We focus on PV131, PV132,
PV133, and PV134. The corresponding index evaluation of
nodes is transformed into a fuzzy number according to the
five indexes, as shown in Table 5.

TABLE 5. Fuzzy evaluation values of nodes.

The triangular fuzzy matrix is transformed into a fuzzy
normalized triangular fuzzy number using the conversion
scale, and the results are presented in Table 6.

When fuzzy DEA is considered, and cost and techni-
cal environment factors are regarded as input indicators,
the importance degree of the node is low when the impact
is serious. This study presents the fuzzy number of input
indicators provided by experts in Table 7.
Step 4(Determine the Efficiency of Fuzzy DEA–CCR):
EC1 (PV131) is presented as an example. The efficiency

evaluation value is, Max h̃j shown at the bottom of this
page.

Max h̃j = (0.65,0.75,0.85)µ1+ (0.5,0.6,0.7)µ2+ (0.05,0.65,0.25)µ3+(0.8,0.9,1)µ4+(0.05,0.65,0.25)µ5

Subject to (0.5,0.75,0.92)ω1 + (0.83,1,1)ω2 = 1̃

(0.65,0.75,0.85)µ1+ (0.5,0.6,0.7)µ2+ (0.05,0.65,0.25)µ3+(0.8,0.9,1)µ4+(0.05,0.65,0.25)µ5

− (0.5,0.75,0.92)ω1 − (0.83,1,1)ω2 ≤ 0̃

(0.5,0.6,0.7)µ1+ (0.8,0.9,1)µ2+ (0.5,0.6,0.7)µ3+(0.5,0.6,0.7)µ4+(0.2,0.3,0.4)µ5

− (0.33,0.42,0.67)ω1 − (0.083,0.25,0.42)ω2 ≤ 0̃

(0.35,0.45,0.55)µ1+ (0.65,0.75,0.85)µ2+ (0.2,0.3,0.4)µ3+(0.65,0.75,0.85)µ4+(0.8,0.9,1)µ5

− (0.5,0.75,0.92)ω1 − (0.33,0.42,0.67)ω2 ≤ 0̃

(0.05,0.65,0.25)µ1+ (0.2,0.3,0.4)µ2+ (0.35,0.45,0.55)µ3+(0.8,0.9,1)µ4+(0.5,0.6,0.7)µ5

− (0.83,1,1)ω1 − (0.5,0.75,0.92)ω2 ≤ 0̃

µ2 = 1.67µ1; µ3 = µ1; µ4 = µ1; µ5=2µ1;

µi ≥ 0(i = 1, · · · , 5); ωi ≥ 0(i = 1, 2);

VOLUME 7, 2019 34695



Z. He et al.: Big Data-Oriented Product Infant Failure Intelligent Root Cause Identification

TABLE 6. Normalized fuzzy matrix.

TABLE 7. Fuzzy number of input indicators.

The linear programmingwith fuzzy coefficients is obtained
as follows:

Max h̃j = (2.435,4.602,3.769)µ1

Subject to (0.5, 0.75, 0.92)ω1 + (0.83, 1, 1)ω2 = 1̃

(2.435, 4.602, 3.769)µ1 − (0.5, 0.75, 0.92)ω1

−(0.83, 1, 1)ω2 ≤ 0̃

(3.236, 3.903, 4.57)µ1 − (0.33, 0.42, 0.67)ω1

−(0.083, 0.25, 0.42)ω2 ≤ 0̃

(3.8855, 4.5525, 5.2195)µ1 − (0.5, 0.75, 0.92)ω1

−(0.33, 0.42, 0.67)ω2 ≤ 0̃

(2.534, 3.701, 3.868)µ1 − (0.83, 1, 1)ω1

−(0.5, 0.75, 0.92)ω2 ≤ 0̃

µ1 ≥ 0; ωi ≥ 0(i = 1, 2);

Set α = 0.8. The multi-objective programming is

Max h̃j = µ1

Subject to 0.5ω1+ 0.83ω2 ≤ 1;

0.75ω1 + ω2=1;

0.92ω1 + ω2 ≥ 1;

4.1686µ1 − 0.7000ω1 − 0.9660ω2 ≤ 0;

3.7696µ1 − 0.4020ω1 − 0.2166ω2 ≤ 0;

4.4191µ1 − 0.7000ω1 − 0.4020ω2 ≤ 0;

3.4676µ1 − 0.9660ω1 − 0.7000ω2 ≤ 0;

4.4354µ1 − 0.7840ω1 − 1.0000ω2 ≤ 0;

4.0364µ1 − 0.4700ω1 − 0.2840ω2 ≤ 0;

4.6859µ1 − 0.7840ω1 − 0.4700ω2 ≤ 0;

3.7344µ1 − 1.0000ω1 − 0.7840ω2 ≤ 0;

µ1 ≥ 0; ωi ≥ 0(i = 1, 2);

This linear programming problem is solved by Lindo,
µ1 = 0.1421902. The efficiency evaluations of EC1(PV131),

EC2(PV132), EC3(PV133), and EC4(PV134) are 0.1421902·
(2.435,4.602,3.769), 0.2539110 · (3.236,3.903,4.57),
0.1421902 · (3.8855,4.5525,5.2195), and 0.1066426 ·
(2.534,3.701,3.868), respectively. The result can be calcu-
lated using equation (6):

f (h̃1) =
(0.3462+0.6544+0.5359)

3
= 0.50705,

f (h̃2) = 0.9811, f (h̃3) = 0.64085,

f (h̃4) = 0.35555.

Step 5(Rate the Nodes by Relative Weight Value): After
nominalization, Equation (7) is used. The relative weights of
EC1(PV131), EC2(PV132), EC3(PV133), and EC4(PV134)
are w1 =

0.50705
0.50705+0.9811+0.64085+0.35555 = 0.2041, w2 =

0.3949, w3 = 0.2579, and w4 = 0.1431, respectively.
Thus, the priority of node ranking is

EC2 (PV132)>EC3(PV133)>EC1(PV131)>EC4 (PV134).

D. RESULTS AND DISCUSSIONS
Similarly, we focus on DP134. The relative weights
of EC1(PV1341), EC2 (PV1342), EC3(PV1343), and
EC4 (PV1344), are 0.1864, 0.3717, 0.3093, and 0.1327,
respectively. The priority ranking of nodes is

EC2 (PV1342) > EC3(PV1343) > EC1(PV1341)

> EC4 (PV1344).

After the relative weights of all the nodes from the man-
ufacturing domain were calculated, the weights of the nodes
from the physical and functional domains could be computed
using the proposed method. The final results show that the
nodes of FR1313, DP13222, and PV1342 are the top three
causes of infant fault vibration and noise of the washing
machine body, as shown in Fig. 5.

Table 8 presents the efficiencies of different nodes (DMUs)
for different α values. Different sets of values will acquire
different efficiency values. A high efficiency shows that the
corresponding DMU is important. With an increased level
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TABLE 8. Efficiency of different nodes (DMUs) for different α values.

of α value, the corresponding efficiency of the evaluation
value also increases. When α=1, the value of the efficiency of
nodes(DMUs) is the maximum. From this table, the value of
the efficiency of DMU (EC2) is the maximum. For different
α values, the corresponding efficiency values are higher than
0.93, which shows that this process is the most important in
manufacturing. Therefore, it should be strictly controlled in
the design and manufacturing processes. The failure of EC2
(PV132) may lead to the failure of PV13; that is, the process
of PV132 is the root cause. Similarly, the efficiency values of
EC4 are less than 0.5, which indicates that the corresponding
process phase is less important compared with EC2. Further-
more, the assessment results for the efficiency of the DMUs
according to different α levels are shown in Fig. 7.

FIGURE 7. Assessment results of the efficiency of DMUs.

As shown in Fig. 7, the evaluation values for the efficiency
of the four DMUs increase with an increase in the α level,
and the rank of importance degree of each DMU is EC2 >
EC3 > EC1 > EC4. That is, PV132 > PV133 > PV131 >
PV134. The result in this paper are coincident with the result
of engineering practice.

V. CONCLUSION
In this study, a novel big data-oriented root cause identi-
fication approach based on fuzzy DEA is proposed with
the help of an established failure associated tree. First,
the associated tree is adopted to guide the analysis process
for possible root causes based on Axiomatic domain map-
ping to decrease the fuzziness of infant failure mechanism.

Second, in consideration of the fuzzy mechanism and big
data, the fuzzy DEA technique is adopted to cluster all the
potential factors of functional, physical, and process parame-
ters from the big data collected from product life cycle. Third,
the ranking method for DMU efficiency in fuzzy DEA is used
to model and rank the weight of each node in the established
associated tree of infant failure. Finally, a case study of root
cause identification for a typical infant failure of the vibration
and noise of a washing machine is presented to demonstrate
the feasibility and validity of the proposed method.

In conclusion, the proposed technique can cope with the
root cause identification in an imbalanced or fuzzy dataset
environment, and extract associations or causal relationships
can be identified from the fuzzy big data collected from
product life cycle. However, effectively mining vague big
data of failure symptoms and quality inspection to compute
the weights of nodes of high-dimensional structure based on
dimensionality reduction requires further study.
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