
Received November 26, 2018, accepted February 15, 2019, date of publication March 15, 2019, date of current version April 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2904236

Cyberpulse: A Machine Learning Based Link
Flooding Attack Mitigation System for
Software Defined Networks
RAIHAN UR RASOOL 1, USMAN ASHRAF 2, KHANDAKAR AHMED 1,
HUA WANG 1, WAJID RAFIQUE3, AND ZAHID ANWAR4,5
1Centre for Applied Informatics (CAI), Institute of Sustainable Industries and Liveable Cities, Victoria University, Footscray, VIC 3011, Australia
2Department of Computer Networks and Communications, King Faisal University, Hofuf 31982, Saudi Arabia
3Department of Computer Science and Technology, Nanjing University, Nanjing 210008, China
4School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan
5Mathematics and Computer Science Department, Fontbonne University, St. Louis, MO 63105, USA

Corresponding author: Raihan Ur Rasool (raihan.rasool@live.vu.edu.au)

This work was supported by the Deanship of Scientific Research (DSR) at King Faisal University under Grant 186147.

ABSTRACT Software-defined networking (SDN) offers a novel paradigm for effective network manage-
ment by decoupling the control plane from the data plane thereby allowing a high level of manageability and
programmability. However, the notion of a centralized controller becomes a bottleneck by opening up a host
of vulnerabilities to various types of attacks. One of the most harmful, stealthy, and easy to launch attacks
against networked systems is the link flooding attack (LFA). In this paper, we demonstrate the vulnerability
of the SDN control layer to LFA and how the attack strategy differs when targeting traditional networks
which primarily involves attacking the links directly. In LFA, the attacker employs bots to surreptitiously
send low rate legitimate traffic on the control channel which ultimately results in disconnecting control plane
from the data plane. Mitigating LFA on the control channel remains a challenge in the network security
paradigm with the use of network traffic filtering only. To address this challenge, we propose CyberPulse,
a novel effective countermeasure, underpinning a machine learning-based classifier to alleviate LFA in SDN.
CyberPulse performs network surveillance by classifying network traffic using deep learning techniques
and is implemented as an extension module in the Floodlight controller. CyberPulse was evaluated for its
accuracy, false positive rate, and effectiveness as compared to competing approaches on realistic networks
generated using Mininet. The results show that CyberPulse can classify malicious flows with high accuracy
and mitigate them effectively.

INDEX TERMS Link flooding attacks, SDN security, OpenFlow, deep learning.

I. INTRODUCTION
Software Defined Networking has been proposed in the wake
of increasing network scale and management complexities
due to the continuous development in current networks.
SDN reduces network complexities by providing a simpli-
fied, flexible, dynamic, and centralized network management
using the concept of separate layering for data and control
planes [1]–[3]. In SDN environment, the data plane is respon-
sible for providing traffic forwarding functionality while a
centralized controller maintains a global view of the entire
network and can be easily programmed for the desired traf-
fic forwarding [4], [5]. SDN utilizes the OpenFlow (OF)

The associate editor coordinating the review of this manuscript and
approving it for publication was Sungroh Yoon.

protocol for communication between controller and data
plane infrastructure [6]. Every OF-enabled device in the data
plane has flow tables that aremanaged by the controller which
contain the entries called flow rules to route the traffic to
its destined path. All incoming packets are compared with
the entries in flow table, if, flow entries are not found for
a specific flow, a control packet is sent to the controller to
request further action [7]. The controller then updates the
flow rules after the packet inspection and traffic is forwarded
towards the destination. There is a continuous interaction
between the controller and the data plane for traffic forward-
ing. However, this continuous communication can also lead
to serious security issues if disrupted. A skilled adversary
can exploit this security challenge by causing DoS and dis-
rupt this communication [8], [9]. A more serious threat is

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

34885

https://orcid.org/0000-0002-8465-0996
https://orcid.org/0000-0001-9966-2466
https://orcid.org/0000-0001-6288-3513
https://orcid.org/0000-0003-1043-2029


R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

when the control channel is attacked by creating congestion
on the link with anomalous traffic using a Link Flooding
Attack (LFA) [10].

As the name implies, LFA is a link-based attack, where the
link connecting to a target server is flooded to cause traffic
congestion which ultimately disrupts the legitimate traffic
to the target server. Initially, the attacker identifies a target
server and creates a link map around it by sending traceroute
commands [11]. Subsequently, specific hosts called decoy
servers are selected that are placed around the path of the
target link. After identifying the server, a set of bots is selected
which can generate sufficient traffic to flood the link. Finally,
the decoy servers are manipulated by these bots to send low
rate traffic to each other in order to cause congestion on the
target link which can ultimately disrupt communication of the
target server with the rest of the network.

Some studies have been performed recently that attempt to
mitigate LFA in SDN. A few of the available studies focus
on exposing a fake network topology map to the adversaries
[12]–[14]. Some other techniques are based on link inspection
which performs a similar operation but on the basis of critical
links supervision [10], [12], [15]. Most of the available
literature does not clearly distinguish the attack behavior
on SDN versus traditional networks [15]–[19]. While some
authors have used SDN test beds to perform the experiments
[20], [21] or SDNbasedmitigation techniques there remains a
lack of literature available that mitigates LFA on SDN, specif-
ically control channel attacks. The critical reason behind the
failure of traditional techniques in SDN context is that SDN
employs centralized control strategy to handle the network
traffic. The challenge is that the control channel is not directly
accessible to the normal traffic. Therefore, a attacker needs to
perform specially crafted packet misses to attack this channel.
For the same reason, mitigating LFA on control channel is a
complex task.

CyberPulse is a novel solution because it taps into machine
learning and artificial neural networks, a type of artificial
intelligence to select appropriate traffic features for accu-
rate classification in a large volume of traffic data. Machine
Learning (ML) allows machines to learn about the features
of a problem using statistical techniques and automate the
solution for an arbitrary dataset. ML algorithms today are
being used to predict stock prices, weather patterns, highway
traffic, and have been successfully used for intrusion detec-
tion systems as well. This motivated us to employ machine
learning for the LFA problem. Our results show that it is
effective into addressing the challenge of mitigating control
channel LFA.

In this research, we start by highlighting the problem
and use extensive experimentation to show how LFA poses
a threat to modern SDNs. Our goal is to formulate the
LFA problem as a machine learning problem and tap into
existing knowledge base of state-of-the art algorithms devel-
oped by this community to develop a classifier that allows
us to achieve high accuracy. We therefore detail how we
sought machine learning algorithms and performed feature

selection for a deep-learning solution suitable to our prob-
lem. We then outline the design of our testbed using the
Mininet network emulator [21] and Floodlight [22] web-
based controller version 1.2. We chose to use Mininet for
our evaluation testbed because it is widely recognized as
realistic emulator for deploying large networks particularly
SDN. It provides performance accuracy and scalability and
is a preferred option as opposed to simulators and shared
hardware testbeds. We achieve flooding on the network with
a variable number of attackers and show the effect of attacks
on SDN. CyberPulse is implemented as an application at
the application layer of the SDN controller. We propose the
following contributions:
• The challenge of LFA on SDN control channel is high-
lighted with the help of extensive experiments. We show
how LFAs can degrade the performance of SDN and
if no precautionary measures are performed, how these
attacks can bring down the entire network.

• CyberPulse, a novel solution for detecting and mitigat-
ing LFA on the SDN control channel is proposed by
leveraging the application layer of the SDN controller.

• Flood traffic classification is performed using deep
learning-based techniques on state of the art real world
cyber risk research and decision support dataset from the
UCI machine learning repository.

• A comprehensive evaluation has been conducted to
assess the performance of deep learning classification
and a side-by-side comparison has been made with com-
peting techniques.

The rest of the paper is organized as follows, Section II
discusses system adversary model whereas Section III illus-
trates the machine learning approach and algorithm selection
strategy. Section IV describes the detailed architecture of
CyberPulse, in the same way, Section V illustrates multilayer
perception in classifying LFA traffic. Section VI provides the
implementation details of CyberPulse, Section VII presents
the related work, and finally, Section VIII concludes the
paper.

II. SYSTEM AND ADVERSARY MODEL
In this section, we present LFA adversary model used in this
research, we first describe the list of acronyms used in this
research in Table 1. Initially, we discuss about SDN flow rule
installation, a flow rule instructs the switch on how to handle
an incoming traffic packet, an OF switch contains flow entries
that consists of priority, match, timeout, and instruction
fields. Flow entries in an incoming packet at the OF switch
are matched with the flow table in order to forward the traffic.
When a corresponding flow rule for the incoming packets is
found, the received and byte counters are incremented and
the flow is handled according to the entries in the flow table.
In case a flow rule is not found for an incoming packet,
a PACKET_INmessage containing header information of the
packet is forwarded to the controller for further instructions
on how to handle the packet. The controller parses the header
fields of the packet and sends a PACKET_OUT message

34886 VOLUME 7, 2019



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

TABLE 1. List of acronyms.

containing flow rule to the OF switch which subsequently,
forwards the packet and update the flow table.

A. TAXONOMY OF LFA
In LFA, adversaries send low rate legitimate flows to pre-
cisely selected servers around the target link called decoy
servers. This results in an increase in traffic on the target link,
as the number of flows increases. Initially, the network traffic
tends to slow down andwith the passage of timewhen the link
is severely flooded, the target server becomes irresponsive.
In Fig. 1 normal SDN traffic flow is shown, it can be observed
that when a packet arrives on a switch, a request is generated
to the controller for path selection by inspecting the packet
header. Subsequently, the relevant rules are forwarded to the
switch and corresponding packet is transferred towards the
destination. LFA mimics the same normal activity of the
network and utilizes its low rate nature to avoid detection and
flood the entire network.

FIGURE 1. Normal SDN operation.

Attackers use low rate traffic which is hard to detect. They
keep on sending traffic to the decoy servers until the link is
congested with the attack traffic. Fig. 2 shows an example

FIGURE 2. LFA model where bots send traffic to decoy servers and
congest target link. (Redrawn and extended the figure at [19].)

of LFA on a selected link, it can be observed that three
bots are sending traffic to 4 decoy servers which is passing
through the target link. A server is attached to the target link,
so the low rate traffic will occupy the link bandwidth and
ultimately, obstruct the legitimate traffic towards the target
server. To increase the effectiveness of the attack, a high
number of bots are manipulated to send traffic to the decoy
servers.

B. LFA ADVERSARY MODEL
The adversary seeks to disconnect the data plane from the
control plane by employing the link flooding technique. The
attacker first constructs a link map of the network by utilizing
layer 3 diagnosis tools such as traceroute commands targeting
different points in the network [23]. The information gather-
ing host is called a link prober and the identified link map
describes the routing policy towards the target area in the
SDN. The adversary figures out the best attack-cost strategy
and selects the links which can be occupied by as many
bots as possible to send increasing amount of attack traffic.
Afterwards, it utilizes bots to sends TCP like traffic to the
decoy servers. It is also pertinent to note that the adversary
tries to send traffic at a low rate scale to avoid being detected
by the rate limit detectionmechanisms. Subsequently, the link
capacity is fully utilized by the attack traffic, which will

VOLUME 7, 2019 34887



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

impede the legitimate traffic to flow through the link and
ultimately, connection to the victim server will be subverted.

In SDN the control channel can be attacked by flood-
ing data plane switches with flood packets which trigger
new flow rule installation. The buffer memory of the switch
will be full and it will encapsulate the whole packet in
the PACKET_IN message which will result in flooding on
the control channel and increasing the latency of flow rule
installation. Furthermore, in extreme conditions, the control
channel can be disrupted from the rest of the network. This
attack approach is applicable to backbone SDN networks that
are increasingly being employed to ISPs across the world
who want to benefit from the performance gains as well as
ease of maintenance compared to traditional networks. Some
previous studies have also explored the vulnerable nature of
SDN under attacks [24]–[26].

III. MACHINE LEARNING APPROACH AND
ALGORITHM SELECTION
There are several well-established ML techniques,
algorithms, and tools available and there is no distinct best
candidate for a specific task. The particular selection how-
ever, affects and usually involves a trade-off between several
factors including but not limited to prediction accuracy,
performance, and the training dataset size depending on the
nature of the problem. In this section, we discuss how we
gave considerable thought to this decision by sharing our
comparative review of the state-of-the-art machine learning
tools currently available and how they apply to our problem.
Table 2 contains the comparison of different machine learning
algorithms based on training time and accuracy.

TABLE 2. Comparison of machine learning algorithms for classification.

A. DRAWING INSPIRATION FROM MACHINE LEARNING
FOR SDN SECURITY ANALYSIS
We draw CyberPulse inspiration by observing that in SDN
the controller has access to a large volume of important
traffic statistics that may be collected at specific time inter-
vals. Specifically, statistics regarding the individual flows are
made available by OF switches. The precise time interval for
statistics collection is an important determining factor where
a small interval increases overhead, similarly, a large interval

increases the detection time. A machine learning classifier
can then be utilized to help the classifier identify the flood
traffic source. As a first step, a classifier is developed where
an algorithm is used to build the classifier model using the
provided training dataset. The model is then employed for
the classification where the accuracy is determined by the
percentage of test data records that are correctly classified.

B. MACHINE LEARNING TOOL SELECTION
For our research, we preferred having several key features in
our ML tool of choice. These features in decreasing order of
priority are as follows: (1) freely available, (2) classification
accuracy, (3) better performance for medium-sized datasets,
availability of documentation, and portability. In this regard,
we conducted a comprehensive survey of the ML tools avail-
able in the market and examined the pros and cons. In Table 3,
we have compared WEKA, D4J (Deep Learning4J), Tensor
Flows, and Encog3 based on the following parameters:
source code, help and support, license type, programming
language support, compatibility, documentation, and perfor-
mance. Details description of comparison parameters is given
below:

1) Source Code: It corresponds to the underlying
language used for the development of the machine
learning tool.

2) Help & Support: Help correspond to the publicly
available assistance online and support refers to the
help provided by the machine learning tool provider
himself.

3) Performance: We have compared performance of the
tools based on the training time taken to perform the
classification task, on a scale of 0 through 10 with
10 being the maximum.

4) Documentation: Availability of documentation,
guides developers to use the tool in the required circum-
stances, it has been rated in a range from 0 to 10 with
10 corresponds to a maximum score.

5) Programming Language: Over the period of time,
new programming languages are developed hence, sup-
ported programming languages play an important role
in the selection of a machine learning tool.

6) Compatibility: Sometimes models developed using
an older version of a programming language, are not
supported by the newer version of the available tool.
A good tool supports backward compatibility.

7) Dataset Size:CertainML tools tend to support big data
processing at reasonable performance depending on the
design and the models used.

8) Development Mode: Some ML tools tend to have
a steeper learning curve and experience required for
model development as compared to the others.

Encog3 is a CSharp based framework that can accommo-
date a range of ML techniques for medium sized datasets.
Support is however limited and the learning curve is steep.
TensorFlow is based on Python and also supports a range of
ML techniques. In addition, it is suitable for large datasets

34888 VOLUME 7, 2019



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

TABLE 3. A comparison of state of the art machine learning tools used in research.

FIGURE 3. Machine learning algorithm selection for LFA classification.

and the computational accuracy is also very high. The model
development process involves handling graph data structures
which can be time-consuming. The learning curve is also
comparatively high. D4j is a java-basedmachine learning tool
which requires high-performance computing machines for a
successful operation. It supports all the available machine
learning tasks and is suitable for medium and large sized
datasets. PyTorch is a lua-based deep learning framework,
it works on the basis of tensor which considers everymodel as
a directed acyclic graph. In TensorFlow the graph is statically
defined before a model can run and the input is extracted from
the outer world by tf .Session and tf .Placeholder interfaces.
On the other hand, PyTorch is more dynamic where nodes of
the directed acyclic graph can be defined, changed, and exe-
cuted dynamically. No session and placeholder interfaces are
explicitly required. This framework is tightly coupled with
python. WEKA is based on Java and supports classification
and clustering. It works efficiently for small to medium sized
datasets and includes a rich set of ML algorithms. WEKA
has extensive help and support available and supports models
developed using older versions of the tool.

In summary, WEKA is suitable for small datasets classifi-
cation and clustering tasks. Encog3 can be utilized machine

learning tasks onmedium sized datasets. D4j and TensorFlow
can be deployed for big datasets and complex machine learn-
ing tasks.WEKA seemed to be the closest to our requirements
and therefore we chose it for our implementation.

C. MACHINE LEARNING ALGORITHM SELECTION
Numerous algorithms are available to choose from when we
come across a ML classification problem. The selection of
an algorithm depends on the type of problem we are dealing
with, however, the algorithmic performance depends on the
size and the structure of data. Fig. 3 shows the classification
algorithm selection strategy. Initially, when an ML task is
assigned, the first question to ask is that how many num-
bers of classes is to be predicted, if there are two classes,
then further decision depends on multiple aspects i.e. accu-
racy, training time, and performance. In the next step,
the analysis is performed to assess accuracy and training time.
In CyberPulse, we select the ANN technique as the fore-
most priority for flooding attacks classification was accuracy
because if the malicious traffic can be accurately classified,
then it can be easily mitigated.

Table 2 further compares different ML algorithms
based on their training time and classification accuracy.

VOLUME 7, 2019 34889



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

Fig. 3 shows two class and multi-class categories in the
start. In the multi-class, classification categories, both neural
networks and decision forests perform classification tasks
with fast training time and high accuracy. Multi-class and
two class neural networks consume more training time but
yield good classification results. Therefore we select artifi-
cial neural networks for flooding attack traffic classification
because the classification accuracy was of more importance
than the training time. In the Table 2, the performance
attributes have been assigned as either low, high, slow,
or fast.

IV. CYBERPULSE ARCHITECTURE AND DESIGN
To address the problem discussed in section III, we propose
CyberPulse an extension application module in the SDN
controller to secure SDN against LFA. While the CyberPulse
design is generic, our prototype implementation resides on
application plane of the Floodlight controller and performs
the LFAmitigation process. We, therefore, refer to Floodlight
when we discuss the design of the controller in the rest of
this document. The prime purpose of CyberPulse is to detect
and eliminate LFA on the control channel. In this section, we,
discuss the detailed architecture of CyberPulse.

A. OVERALL CYBERPULSE ARCHITECTURE
CyberPulse exploits the northbound REST API of the SDN
controller [22] to communicate with the controller and
perform the operation. As shown in Fig. 4, CyberPulse
is an extension module in the application layer of the
SDN controller. It works concurrently with other modules
of SDN in order to provide the required functionality.
CyberPulse incorporates three modules which includes Link
Listener, Flood Detection, and Flood Mitigation. CyberPulse
uses the REST API to connect with the controller and in-turn
the controller uses Southbound OF API to communicate with
the data plane switches [27].

FIGURE 4. The overall architecture of CyberPulse showing CyberPulse
modules.

B. CYBERPULSE MODULES
It can be observed from Fig. 4 that there are three modules
in CyberPulse. Each module performs a specific operation in
order to accomplish the cumulative task of LFA mitigation.
CyberPulse only requires modifications in the software and
no hardware is required for its operation. It can, therefore,

be easily integrated with the existing Floodlight controller.
CyberPulse modules are explained here:

1) LINK LISTENER MODULE
The process starts with the Link Listener module which
continuously inspects the control channel and constantly pro-
vides traffic flow statistics to the Flood Detection module.
Table 4 shows the traffic statistics that can be extracted by the
Link Listener. Some statistics are directly extracted, however,
some of them are calculated based on other statistics. Flood-
light exposes a Java-based REST API to extract network
statistics, which is employed by this module to retrieve the
required statistics.

2) FLOOD DETECTION MODULE
Flood Detection module inspects the statistics and performs
flow classification. This module incorporates the statistics
pre-processing component which eliminates the packet head-
ers information such as ack , syn−ack packets from the statis-
tics and presents only traffic flows to the Flood Detection
module. These statistics are consumed as features by a deep
learning sub-module that uses Artificial Neural Networks
(ANN) a type of ML algorithm to classify the network traffic.
The steps involved in the Flood Detection module are given
in Algorithm 1.

Algorithm 1 LFA Classification Using MLP
Require: Traffic Flow F , packet statistics, dataset T
Ensure: Flow Class: Flooding, Legitimate
1: Get traffic flows
2: for Flow f ∈ F do
3: Get Flow Statistics
4: Extract Features
5: end for
6: Pre-process T
7: Train ANN-MLP model using T
8: Classify flows using ANN-MLP
9: Export classification
10: return Flow Class: Flooding, Legitimate

The ANN classification module builds a training model
by utilizing flooding attack datasets. Subsequently, based on
this trained model, it performs the classification process. The
classifier outputs the benign and the attack flows.

3) FLOOD MITIGATION MODULE
Results of the classification are forwarded to the Flood Mit-
igation module which drops the attack flows using the null
routing technique. The operation of CyberPulse is explained
in the Algorithm 1. A Null route creates a block-hole, which
is a kernel routing table entry leading to nowhere. Packets
matching a null route will be dropped.

34890 VOLUME 7, 2019



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

V. MULTILAYER PERCEPTION IN CLASSIFYING
LFA TRAFFIC
This section delves into the detailed design of the deep
learning based nonlinear Multilayer Perception (MLP) back-
ward propagation structure used for network traffic classifi-
cation. The basic computation units of theMLP are illustrated
in Fig. 5. A node calculates the weighted sum of inputs,
incorporates a node threshold and forwards the results to a
nonlinear function. MLP is characterized by an input, an out-
put, and one or more hidden layers that are interlinked with
each other. Oppositely, there is no connection between the
nodes in the same layer, moreover, there are no bridging
connections either. The role of the backward propagation and
the hidden layers in MLP are discussed next.

FIGURE 5. The MLP configuration used in the experiment.

1) Backward Propagation: The backward propagation
process in this algorithm is used to continuously adjust
weights of the layers in order tominimize the difference
between actual output and the desired output. It is used
to calculate a gradient descent which is subsequently
used to calculate weights and finally used to train the
MLP model.

2) Hidden Layers: Hidden layers are the neuron nodes
that reside between inputs and the outputs, which cor-
respond to the number of intermediate connections that
are used in the experiment, and by default this number
is selected as 1. The number of hidden layers depends
on the mean value of the input and output layers. When
data is linearly separable, the number of hidden layers
to use is 0. These layers actually transform the single
layer perception into multilayer which is denoted by
h : (h1, h2, . . . , hn). Where hidden layer comprised up
of 1 to a maximum number of n layers. Each neuron has
an associated weight, which is its contribution towards
the actual output of the classification.

3) Output Layer: Output layer is the number of possible
classes in the dataset that we want to predict and is
denoted by y. In our experiment, this is equal to two
for Legitimate and Flooding. W is the weight learned
from the training set by iteratively minimizing the error
using gradient descent as can be seen in the equation 1.
The gradient used in the equation can be determined by
using the backward propagation algorithm.

Wnext = W +1W (1)

1W = −learning rate× gradient

×momentum×Wprevious (2)

The change in weight 1W can be calculated by employing
the equation 2 which multiplies gradient decent by the learn-
ing rate and adds the previous change in weightWprevious. The
input layer is associated with the number of attributes in the
dataset and it is denoted with x. Input dataset is designated
as the (x1, x2, . . . , xm) features having influence on the final
output of the flood traffic classification where subscripts 1
to m denotes the number of features of the input layer. The
reason behind using notation of n for hidden layers and m for
input layers was that, the number of hidden layers neurons
may differ from the number of input data. If we have m input
data features, we multiply it with weights (w1,w2, . . . ,wm)
we get the equation 3.

W .X = w1x1 + w2x2 + . . .+ wmxm. (3)

Subsequently, the input dataset is multiplied with the hid-
den layer neurons weights to get the result z(w1

1,w
1
2, . . . ,w

1
m),

z =
∑m

i=1 wixi + bias adding this value to the activation
function f (z) to get the output of the first hidden neuron
for the whole dataset. The superscript 1 denotes the current
hidden layer, if there are multiple hidden layers then the
superscript is used to identify the hidden layer number. In this
example, all the weights have superscript 1 which shows
that they are weights of the hidden layer 1. This process is
applied to all the features of the training dataset. For the
final output, a dot product of hidden layer output and hidden
layer weights wh is performed. The set of weights consist of
w1h : (wh11 ,wh12 , . . . ,wh1n ), with nweights as n corresponds to
n hidden layer inputs. Finally, a bias value is added to obtain
the result and is given in the equation 4 similarly equation 5
contains the final output of the MLP algorithm. The value
of z is fed to an activation function to get the output for the
output layer.

z =
n∑
i=1

wh1i=1 × h
1
i + bias (4)

rŷ = f (z) (5)

VI. IMPLEMENTATION DETAILS
In this section, we describe how we conducted simulations
and analysis to evaluate the performance of CyberPulse in
two conditions including flooding attack and in normal net-
work operation scenario. As a way of discussion we build a
case based on our evaluation results that while the traditional
SDN environment offers no flooding attack defense mecha-
nism, CyberPulse bridges that gap and is an effective exten-
sion to the SDN environment. Fig. 6 represents an example
how we use some hosts as adversaries to simulate an actual
LFA environment. This example is based on the adversary
model outlined earlier targeting the control channel. In this
figure, we can observe a small tree topology consisting of 8
hosts where the adversaries are sending traffic towards the tar-
get link to flood it and obstruct the legitimate traffic. By using
this strategy, any link in the network can be congested which
will result in causing legitimate traffic delays. Fig. 7 shows

VOLUME 7, 2019 34891



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

FIGURE 6. An example of adversaries sending attack traffic.

FIGURE 7. Flow diagram of CyberPulse operation.

the flow diagram of CyberPulse process, it starts by setting-
up a Mininet network and generating network traffic. Subse-
quently, statistics of switches and ports are extracted using
REST API. Data preprocessing is performed to extract only
data packets removing extra header packet information, then
machine learning module performs the traffic classification
and identifies the malicious flows. Finally, the malicious
flows are mitigated using null routing technique.

A. EXPERIMENTAL SETUP
As it has been discussed in Section IV that CyberPulse
consists of three modules, we study the working principle
of all of these modules in this section with the help of experi-
mental analysis. A virtual network is designed using a single
desktop computer to implement CyberPulse in an emulated
network environment. In our case the computer specifica-
tions were as follows: Intel(R) Xeon(R) CPU E3-1225 v5 @
3.30GHz and 16 GB RAM. Windows 10 was running on
the host machine and Ubuntu 14.0.4 was running on an
Oracle VM Virtualbox. We used Floodlight open-source
controller, programmed in the Java language. In this section
initially, we present the parameters for network creation and
traffic generation. The Link Listener module consists of a
statistics collector which performs the network surveillance
and collects statistics. In our experiment, we use Wireshark

to get network statistics which are classified by the Flood
Detectormodule. Subsequently, we present the deep learning-
based MLP parameters used in the experiment. Algorithm 1
explains the classification procedure, the algorithm takes
input of traffic flows set F and training dataset (T ). The
algorithm gets the traffic flows and for each flow, traffic
statistics are computed, after the extraction of all the features,
the preprocessing is performed. Subsequently, the classifier is
trained using ANN-MLP algorithm, finally, the trainedmodel
is utilized to classify the captured network statistics into final
classes as Flooding or Legitimate.
The dataset used in our research was downloaded from

the UCI machine learning repository for Burst Header Packet
(BHP) flooding attacks which consisted of 22 feature [28].
After careful investigation of the dataset and proposed prob-
lem, we selected 14 features for the training and testing of
the traffic. The features information of the dataset is given
in Table 4. The behavior of each flow is inspected and
a point is identified where it was misbehaving. The MLP
classifier model performs its operation by classifying the
incoming traffic flows into possible classes, i.e. Legitimate
and Flooding. It is worth mentioning here that the train-
ing set consisted of Legitimate and Flooding class flows,
88% instances related to Legitimate and 12% to Flooding.

TABLE 4. Features used in the research and the statistics collected.

Previous studies [29], [30] suggest that a utilization ratio
of more than 40% indicates network performance degrada-
tion. In the same way, link utilization percentage is another
indicator of possible threats to the network. Node utilization
is calculated using equation 6.

utilization(%) =
datasetsize

Bandwidth× interval
× 100 (6)

In the experiment, the number of input neuronswas 14 and the
output neurons were equal to 2 corresponding to the desired
output of the experiment i.e. Flooding and Legitimate. The
model building parameters are given in Table 5. The training
time was set to 500 secs having a training and test set size
of 60% and 40% respectively which was later changed in the
data split experiment. The experiment was performed using
10 fold cross-validation. In experiment 8 hidden neuronswere
used which is the average of the input and output layers.
The learning rate was set to 0.3 as on this learning rate the
algorithm was behaving efficiently in terms of accuracy and

34892 VOLUME 7, 2019



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

FIGURE 8. Emulated topology using Mininet and Floodlight controller.

TABLE 5. Model building parameters and their values.

time constraint. The experiment was performed using one
hidden layer and a momentum of 0.2.

The network topology was designed as shown in the
Fig. 8. The figure represents a tree topology with three levels
consisting of 16 hosts and 12 OF switches. The reason behind
using this topology is that it is always a cost-security trade-
off when employing a network topology, since installing an
out-of-band channel may constitute significant infrastructure
cost if the SDN controller needs to be connected to every
available switch. SDNs typically used in large scale ISPs
may span few hundreds switches which can pose a significant
cost. This topology is created in Mininet running on the

Ubuntu operating system. The remote controller running
on Windows 10 machine is utilized and accessed from the
Ubuntu machine using port 6634. The iperf tool is used to
send flood as well as legitimate traffic to multiple hosts in
the network and plot graphs to show the effect of flood traffic
on the links. The emulated network topology consisted of the
parameters given in Table 6.

TABLE 6. Parameters for topology creation.

1) FLOOD TRAFFIC CAPTURING
The test-bed network comprised of 12 OF switches, and
16 hosts, connected with the controller each having a link
capacity of 1000 Mbps as shown in the Fig 8. To present
the LFA attack model in the experiment bots and decoy

VOLUME 7, 2019 34893



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

servers are deliberately given the roles utilizing the available
16 hosts. Subsequently, low rate traffic is generated towards
target hosts. Iperf is an open source tool to create and mea-
sure network traffic. We use iperf − s command to start a
TCP server connection. Using this command the server will
start listening on TCP port 5001. Subsequently, any host can
connect to the server using the command: iperf − s −
c 10.0.0.1 − t 15, which specifies the IP address of the
server to connect and time duration for which the connection
is requested. At the end of connection a summary of data
transfer and bandwidth is displayed on both client and server
terminals. After a TCP connection completion, the server
keeps on listening to the port creating an opportunity for any
other host to connect with the server.

Experiments are performed by sending flood traffic
towards the target servers and analyzing the link bandwidth.
The following Mininet command is used to create a tree
topology and fixing the bandwidth of the links to 1000Mbps.
sudomn−−controller = remote,
ip < ip of windows 7 machine : port >

−− topo = tree, 3 link tc, bw = 1000
Traffic is manipulated by opening a separate terminal for

every attack node in the Mininet Ubuntu machine. During
the flows generation,Wireshark [31] network packet statistics
analysis tool has been utilized.

2) ATTACK SIMULATION
To simulate a real world LFA scenario, we manipulate dif-
ferent hosts in the network as bots to send low rate traffic to
attack the OF channel. Bandwidth of the links is measured
before and after sending the flood traffic. Hence, for instance
in one experiment H2 was acting as a decoy server and
H3, H4, and H5 were behaving as bots. In each experiment,
the number of decoy-bot pairs have been varied and band-
width consumption of the links is measured. The experiment

was performed with one, two, three, and up to 14 attackers
and all the traffic statistics given in Table 4 of the traffic are
measured.

The experiment was run multiple times and each time the
reported bandwidth was extracted using Wireshark. With the
increase in the number of attacking hosts, the bandwidth tend
to decrease. Fig. 9 shows the effect of LFA on available
bandwidth and packet drop rate in the network. Fig. 9a shows
the effect on available bandwidth with the increase in the
number of attackers. It can be observed from Fig. 9a that with
the increase of number of attackers, the bandwidth started
to saturate and when the number of attackers reached 14
the available bandwidth reduced to nearly a mere 50 Mbps,
which demonstrates the devastating effect of LFA on the SDN
control channel. Another phenomena was noted that with the
increase in the number of attackers the packet loss rate also
tends to increase as given in the Fig. 9b. It can be observed that
when the attack traffic was increased the packets drop rate
also increased. There was a rapid vertical shift in the packet
drop rate when the number of attackers increased to 14, which
shows that when the number of attackers has been increased
to a certain level, the packet drop rate increases exponentially.
After running the experiment, the flows were extracted for
every node in the network. After extracting all the traffic, data
preprocessing was performed and statistics for the individual
flows were captured. Subsequently, the training set was used
for building the model and subsequently, the trained model
was used to classify the statistics into benign and malicious
flows.

B. RESULTS
In this section, we discuss and analyze the results for the
experiments. The results are based on two scenarios: nor-
mal SDN traffic flow and during the attack. According to
previous studies [29], [30] when the utilization ratio of the

FIGURE 9. Effect of LFA on the link bandwidth saturation and packet drop rate.

34894 VOLUME 7, 2019



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

network is increased to more than 40 percent, it indicates that
the network performance has started to degrade. Similarly,
an increase in link utilization ratio also indicates that the
network is under LFA. We perform extensive experiments
and evaluate CyberPulse using three different accuracy eval-
uation parameters. Initially, three machine learning perfor-
mance evaluation metrics, i.e. precision, recall, and F1 score
were used for evaluation. Subsequently, the evaluation is per-
formed using data partitioning, attribute selection, and using
different classifiers.

1) CYBERPULSE EVALUATION USING PERFORMANCE
EVALUATION METRICS
Three metrics for accuracy evaluation were used, i.e.
precision, recall, and F1 score. Precision is the measure of
how close the predicted values are to the actual values. It is
the value of the number of relevant flows retrieved divided by
the total number of flows. The formula of accuracy is given
in equation 7.

Precision =
TP

TP+ FP
(7)

The results of accuracy evaluation metrics is given
in Fig. 10. Precision values close to one are considered to
be more accurate. It is pertinent to say that CyberPulse has
been able to classify the traffic correctly into two categories.
The accuracy of the two categories is more than 85%. Recall
can be defined as the total number of relevant flows classified
divided by the total number of retrieved flows. The formula
of recall is given in equation 8.

Recall =
TP

TP+ FN
(8)

FIGURE 10. Evaluation of the ANN classifier using accuracy metrics.

CyberPulse performed slightly lower in the case of recall
as compared to the precision. The Flooding flows were more
accurately classified as compared to the Legitimate flows.

The overall accuracy of the recall measure was around 95%.
F1 score is also an important evaluation measure as it com-
bines both precision and recall values. The formula for
F1 score is given in equation 9.

F1 score = 2×
Percision× Recall
Precision+ Recall

(9)

It can be observed from precision and recall in Fig. 10 that
the F1 scoremetrics performed slightly better as compared to
precision and recall. The values of flood traffic detection are
higher than that of recall. The overall accuracy of theF1 score
was around 76%. The accuracy of this metrics for legitimate
traffic detection was approximately the same as the values of
precision and recall metrics. Our results and analysis show
that CyberPulse was able to accurately classify the traffic.
Based on the classification values the Flood Mitigation mod-
ule was able to eliminate the flood traffic. Overall it can be
concluded that if the attacker is powerful and able to send high
volumes of flood traffic than the available bandwidth of the
system will be dropped as it can be observed from the Fig. 9a
In the same way, if the flooding attack is increased, the packet
drop rate will also tend to increase, severely affecting the
legitimate traffic in the network. It can also be noted that
CyberPulse effectively identifies the flows that are involved
in the flooding of the network.

2) CYBERPULSE PERFORMANCE EVALUATION USING DATA
PARTITIONING AND ATTRIBUTE SELECTION
Due to the novelty of our solution, we were unable to find
relevant LFA classification techniques to directly compare
with the proposed CyberPulse ML classification algorithm.
In order to achieve a fair comparison of the results of our work
we did however evaluate the accuracy of the system along
several dimensions. We employed different: (1) state-of-the-
art machine learning classification algorithms, (2) data parti-
tioning strategies and (3) classification features and compared
the results. Thereafter, we discuss the features of our solution
with the most closely related works we could find.

In this section, we first evaluate the CyberPulse using
different data splitting strategies and employing several
attributes selection techniques. Initially, the data was split
into multiple chunks and provided as input to the MLP algo-
rithm to evaluate the effect of data partitioning strategies
on the accuracy. The idea was to implement the best-suited
strategy for the classification of CyberPulse flood traffic.
We also perform evaluation by selecting critical attributes
that play important role in the classification of the network
traffic. We split data into three partitions with reference to
training and testing i.e. 50% each, 70% training, and 90%
training. Fig. 11 shows the evaluation results of data split,
algorithm, and feature selection experiments. Similarly, it can
be observed from the Fig. 11a that CyberPulse classifier per-
formed well when the size of the training set was increased.
There was a significant increase in the accuracy of the eval-
uation metrics when the training percentage of data was
increased from 50% to 70%. The precision metrics rapidly

VOLUME 7, 2019 34895



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

FIGURE 11. CyberPulse classifier evaluation using data split, critical features, and algorithm selection strategies.

increased to over 80%whichwas around 74%while 50% data
was used for training. This comparison provides an insight
for selecting a fair split of training and testing data to get
better results. As it can be observed from the Fig. 11b that the
correct selection of attributes plays a significant role in the
accuracy of the classifier. We first performed the experiment
by employing all the attributes and subsequently performed
analysis by removing attributes such as node, the percentage
of lost packet rate, lost bandwidth, packet size, and packet
received. It can be clearly observed that the accuracy of the
classifier was increased after removing those attributes.

3) CYBERPULSE PERFORMANCE EVALUATION USING
DIFFERENT CLASSIFIERS
In this section, we provide a comparative analysis of our
classification algorithm with respect to competing algorith-
mic approaches. In the MLP deep learning technique, there
are multiple layers including, the input sensory layer, output
layer, and one or more hidden layers that collaborate to
extract salient features of the problem space. MLP has the
ability to model and learn complex non-linear relationships
of the given domain. Therefore, it was best suited in our case
where some attributes of the network traffic were not linearly
dependent on each other such as maximum bandwidth and
packet drop rate. To validate the classifier, the comparison
was performed to analyze the validity of the results using the
MLP classifier with three different classification algorithms
i.e. Random Forest (RF), Simple Logistics Regression (SLR),
andNaïveBayes (NB). The reason for using theNB algorithm
for comparison was that it has been used as a baseline method
for several classification techniques in the past due to its
simplicity and ease of implementation [12].

SLR and RF have also been widely used for classifi-
cation of real-time data because of their good predictive
performance and excellent comprehensibility [32]. It can be
observed from Fig. 11c that the values of precision, recall,
and F1 score are approximately the same for all the algo-
rithms. We observed that the value of recall changed in case
of SLR and NB, where it dropped and increased respectively

in both algorithms. However, there is a big difference in other
performance metrics between the SLR, and NB algorithms.
It is also noted that the value of F1 score dropped in the
NB algorithm because the NB classifier considers all the
attributes to be independent and there is a very minor impact
on the value of accuracy when the attributes are dependent on
each other [33]. While NB provides the best Recall, overall
MLP performed better for all the accuracy metrics. As we
were interested in the classification of network traffic, there-
fore the overall accuracy of the classification was of foremost
importance. Therefore considering our requirements, MLP
algorithm was the best suited as it performed well and pro-
vided reasonably good cumulative results.

C. EFFECT ON LFA MITIGATION USING CYBERPULSE
After successful classification of the flood traffic, the respon-
sible flows are identified. This information is sent to the Flood
Mitigation module which terminates the flows using null
routing technique. The flows are dropped and not forwarded
to any further route by configuring the null route with a
route flag. Null routing technique was chosen because it is
a simplified technique and is available on all network routers
with no performance impact on the network.

VII. RELATED WORK
LFA is a dangerous flooding attack that has the ability to
congest SDN interfaces and links connecting to other layers.
It has also gained a lot of attention during recent years [34].
In SDN, the traffic path is decided by the controller where the
packets are forwarded according to the flow rules installed on
the switches. Hence, traditional LFA mitigation techniques
become invalid in such situations. CyberPulse intends to
provide defense against control channel LFAs. This section
discusses the existing LFA mitigation techniques and cate-
gorises as follows:

A. LFA MITIGATION USING LINK PROBING TECHNIQUES
Link probing techniques employ surveillance of the target
network links to probe for malicious flows. Wang et al.

34896 VOLUME 7, 2019



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

propose a link obfuscation mechanism applied at the time
of link creation. LinkScope has been proposed in [9] by
Xue et al. which inspects links that contain flows involved
in network congestion using hop by hop and end to end
network measurement. SPIFFY [11] temporarily increases
network bandwidth and measures the network flows before
and after the bandwidth expansion phase. Only legitimate
users adapt to the bandwidth change, however, the adversaries
end up consuming all their bandwidth during the expansion
phase allowing them to be easily detected. A downside to
this approach is that legitimate traffic that is unable to adapt
to the bandwidth expansion and compression step, will end
up being treated as malicious. The SDN HoneyNet tech-
nique [13] calculates the betweenness centrality of the links in
the network to identify the ones that can become a bottleneck.
Subsequently, it deploys a HoneyNet topology to provide
a fake link map to the adversaries. CoDef is based on the
collaboration among different Autonomous Systems (AS) in
the network where the AS that are not under attack handle the
legitimate traffic from attacked AS by creating a bypass link
around the attacked location [14].

B. LFA MITIGATION USING TRAFFIC ENGINEERING
PRINCIPLES
Traffic engineering is a popular mechanism for mitigating
a wide variety of network attacks. Takayuki et al. [16] pro-
pose increase in traceroute packets volume to detect LFA.
However, it is complex to distinguish between legiti-
mate and malicious traceroute commands in the network.
Liaskos et al. [15] propose a traffic engineering mechanism
which uses relational algebra principles for LFA mitigation.
When the attack occurs the defender reroutes the traffic to
avoid congestions. The defender keeps on repeating this pro-
cess until the attacker’s identity is exposed by knowing the
sources that are participating in network flooding multiple
times. Gillani et al. propose dynamic network resource allo-
cation using virtual networks placement during LFA [35].
Network resources are constantly migrated to alleviate LFA.
Kalliola et al. propose legitimate traffic features learning,
elastic capacity invocation, and blacklisting malicious hosts
to provide defense during LFA [36].

C. LFA MITIGATION USING SDN PRINCIPLES-BASED
APPROACHES
Some researchers utilize the benefit of having a centralized
controller with the ability to observe all the switches it
controls and their corresponding flows to avoid LFA in SDN.
A flow table inspection technique has been proposed by
Xiao et al. [37]. Flow table inspection is performed in order to
identify malicious flows where the bloom filtering technique
is utilized by a detector module to detect malicious adver-
saries. Adversaries create a link map of the network to select
a specific link. It is difficult for an adversary to locate target
link before the attack if the link information keeps on chang-
ing. Wang et al. [19] propose Woodpecker which employs
incremental SDN deployment to mitigate LFA. A network

probing technique is employed to locate LFA and subse-
quently, routers at that location are upgraded to SDN switches
to increase network connectivity. Finally, by employing SDN
principles of centralized network management, the traffic
is balanced in the network. SDN-based traffic maneuvering
technique has been proposed by Aydeger et al. [20]. Link
obfuscation is performed when a threat has been identified to
make it difficult for the adversary to create a correct link map
of the network. However, link obfuscation causes legitimate
traffic delays because new paths may not always be optimal.

Recently, an efficient DoS mitigation technique called
FloodDefender has been proposed by [38]. It eliminates
DoS attacks by table miss analysis, flow rule inspection,
and packet filtering techniques. However, such mechanisms
render invalid in case of LFA which uses low rate legitimate
traffic. In the same way, FloodDefender transfers table-miss
packets to neighbor switches in order to protect the commu-
nication link from being jammed. However, our approach is
based onMLwhereby the controller employs theML strategy
to decide whether the flows are malicious or not and takes
subsequent action.

In summary, most of the link probing techniques dis-
cussed above assume traditional networks. Researcher who
have performed experiments on SDN have merely used SDN
testbeds or SDN-based techniques to defend against LFAs
only. From the best of our knowledge there is no prior
technique that specifically addresses LFA on SDN backbone
networks context. We have identified this weakness in the
SDN architecture against LFA and proposed a solution that
can effectively alleviate LFA on control channel of SDN.
Therefore, we present CyberPulse a novel ML-based LFA
mitigation technique which employs link inspection mech-
anism to detect link congestion caused by LFA. CyberPulse
will help in providing efficient network infrastructure secu-
rity and enable virtualization.

The accuracy of our experimental results in terms of eval-
uation metrics is slightly lower because of the limitation of
the training dataset, it is a challenge to get dataset specially
managed for LFA. So, wemodified the dataset for BHPflood-
ing attacks [28] and utilized it for LFA classification. We are
performing extensive experiments to address this drawback
in order to increase the evaluation accuracy, and the outcome
will be published in the future work. This paper provides the
basis to design and architecture of a solution that collects
network statistics, performs training, and demonstrates poten-
tial to alleviate flood traffic. In this regard, we are further
developing an extended ML-based solution against LFA on
SDN which will work at line speed and perform LFA defense
and mitigation in real-time.

VIII. CONCLUSION
SDN continues to grow in popularity for the complex dat-
acenter, enterprise and more recently WAN environments.
The provision of separate data, control, and application
planes as well a control channel allows flexibility in man-
agement and application development for complex networks.

VOLUME 7, 2019 34897



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

However, this very strength also doubles as the single great-
est security weakness for this new paradigm in networking.
Link flooding attacks that have previously been identified as
dangerous for traditional networks become crippling if used
against the control channel in SDN. LFA control channel
attacks can be devastating because they are stealthy, are rel-
atively easy to conduct, and have the ability to completely
cripple the network. Moreover, they are very hard to detect
and mitigate by traditional means. The novel contribution of
this work is that it utilizes the power of machine and deep
learning and its ability to empower machines to automatically
learn about the telltale statistical features of an LFA attack and
then automatically identify the same in a network big data
during an actual attack.

In this paper, we have motivated the need to address
SDN-based LFA with the help of experiments that highlight
the impact of a successful attack. Furthermore, we proposed
CyberPulse, a lightweight SDN controller extension for
securing the SDN control channel against LFA that utilizes
machine learning and deep learning techniques. An early pro-
totype of CyberPulse is implemented on the application plane
to monitor the control channel for keeping track of ongoing
traffic flows. For each flow in the network, CyberPulse exam-
ines the statistics on the control channel and classifies the
network traffic using a deep learning multi-layer perception
technique. Finally, it is demonstrated to be able to effectively
drop the classified flows and facilitate the seamless operation
of the network using null routing. One of the main advantages
of CyberPulse is that it does not sacrifice the legitimate flows
in the network. Based on the evaluation it can be concluded
that CyberPulse accurately identifies traffic flows that exhibit
LFA characteristics and mitigates the attack efficiently.
A limitation, however, is the added complexity of employing
an ML approach. Nevertheless, the cost-benefit trade-off is
worth using this technique to safeguard current Software-
Defined internet infrastructure from LFAs. An extension of
the proposed framework is underway, and the detailed design
and evaluation will be presented in future work.

IX. ACKNOWLEDGMENT
This work was supported by the Deanship of Scien-
tific Research (DSR) at King Faisal University under
Grant 186147.

REFERENCES
[1] F. Hu, Q. Hao, and K. Bao, ‘‘A survey on software-defined network and

openflow: From concept to implementation,’’ IEEE Commun. Surv. Tuts.,
vol. 16, no. 4, pp. 2181–2206, 4th Quart., 2014.

[2] B. Görkemli, A. M. Parlakışık, S. Civanlar, A. Ulaş, and
A. M. Tekalp, ‘‘Dynamic management of control plane performance
in software-defined networks,’’ in Proc. IEEE Int. NetSoft Conf.
Workshops (NetSoft), Jun. 2016, pp. 68–72.

[3] R. Mohammadi and R. Javidan, ‘‘An adaptive type-2 fuzzy traffic engi-
neering method for video surveillance systems over software defined
networks,’’ Multimedia Tools Appl., vol. 76, no. 22, pp. 23627–23642,
2017.

[4] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[5] S. Agarwal, M. Kodialam, and T. V. Lakshman, ‘‘Traffic engineering
in software defined networks,’’ in Proc. IEEE Int. Conf. Comput. Com-
mun. (INFOCOM), Apr. 2013, pp. 2211–2219.

[6] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus net-
works,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[7] S. Scott-Hayward, S. Natarajan, and S. Sezer, ‘‘A survey of security in
software defined networks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 623–654, 1st Quart., 2016.

[8] L. Wei and C. Fung, ‘‘Flowranger: A request prioritizing algorithm for
controller DoS attacks in software defined networks,’’ in Proc. IEEE Int.
Conf. Commun., Jun. 2015, pp. 5254–5259.

[9] L. Xue, X. Ma, X. Luo, E. W.W. Chan, T. T. Miu, and G. Gu, ‘‘LinkScope:
Toward detecting target link flooding attacks,’’ IEEE Trans. Inf. Forensics
Security, vol. 13, no. 10, pp. 2423–2438, Oct. 2018.

[10] X. Ma, J. Li, Y. Tang, B. An, and X. Guan, ‘‘Protecting internet infrastruc-
ture against link flooding attacks: A techno-economic perspective,’’ Inf.
Sci., vol. 479, pp. 486–502, Apr. 2018.

[11] M. S. Kang, V. D. Gligor, and V. Sekar, ‘‘SPIFFY: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks,’’ in Proc. NDSS,
2016, pp. 1–15.

[12] X. Chen, G. Zeng, Q. Zhang, L. Chen, and Z. Wang, ‘‘Classification of
medical consultation text using mobile agent system based on Naïve Bayes
classifier,’’ in Proc. Int. Conf. 5G Future Wireless Netw. Beijing, China:
Springer, 2017, pp. 371–384.

[13] J. Kim and S. Shin, ‘‘Software-defined HoneyNet: Towards mitigating link
flooding attacks,’’ in Proc. 47th IEEE/IFP Int. Conf. Dependable Syst.
Netw. Workshop (DSN-W), Jun. 2017, pp. 99–100.

[14] S. B. Lee, M. S. Kang, and V. D. Gligor, ‘‘CoDef: Collaborative defense
against large-scale link-flooding attacks,’’ in Proc. 9th ACM Conf. Emerg.
Netw. Exp. Technol., 2013, pp. 417–428.

[15] C. Liaskos, V. Kotronis, and X. Dimitropoulos, ‘‘A novel framework
for modeling and mitigating distributed link flooding attacks,’’ in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016,
pp. 1–9.

[16] T. Hirayama, K. Toyoda, and I. Sasase, ‘‘Fast target link flooding
attack detection scheme by analyzing traceroute packets flow,’’ in
Proc. IEEE Int. Workshop Inf. Forensics Security (WIFS), Nov. 2015,
pp. 1–6.

[17] L. Xue, X. Luo, E. W. Chan, and X. Zhan, ‘‘Towards detecting tar-
get link flooding attack,’’ in Proc. 28th Large Installation Syst. Admin.
Conf. (LISA), 2014, pp. 90–105.

[18] D. Gkounis, V. Kotronis, C. Liaskos, and X. Dimitropoulos, ‘‘On the inter-
play of link-flooding attacks and traffic engineering,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 46, no. 1, pp. 5–11, 2016.

[19] L. Wang, Q. Li, Y. Jiang, and J. Wu, ‘‘Towards mitigating link flooding
attack via incremental SDN deployment,’’ in Proc. IEEE Int. Symp. Com-
put. Commun. (ISCC), Jun. 2016, pp. 397–402.

[20] A. Aydeger, N. Saputro, K. Akkaya, andM. Rahman, ‘‘Mitigating crossfire
attacks using SDN-based moving target defense,’’ in Proc. 41st IEEE Int.
Conf. Local Comput. Netw. (LCN), Nov. 2016, pp. 627–630.

[21] M-Team. (2018). A Virtual Network on Your Desktop. [Online]. Available:
http://mininet.org/

[22] (2018). Project Floodlight. [Online]. Available: http://www.
projectfloodlight.org/floodlight/

[23] R. Mohammadi, R. Javidan, and M. Conti, ‘‘SLICOTS: An SDN-based
lightweight countermeasure for TCP SYN flooding attacks,’’ IEEE Trans.
Netw. Service Manage., vol. 14, no. 2, pp. 487–497, Jun. 2017.

[24] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, ‘‘Is every flow
on the right track?: Inspect SDN forwarding with rulescope,’’ in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016,
pp. 1–9.

[25] X. Wen et al., ‘‘SDNshield: Reconciliating configurable application per-
missions for SDN appmarkets,’’ inProc. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., Jun./Jul. 2016, pp. 121–132.

[26] S. Hong, L. Xu, H. Wang, and G. Gu, ‘‘Poisoning network visibility in
software-defined networks: New attacks and countermeasures,’’ in Proc.
NDSS, vol. 15, 2015, pp. 8–11.

[27] O. N. Foundation. (2014). OpenFlow Specification. [Online]. Available:
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-
spec-v1.4.0.pdf

[28] D. Dheeru and E. K. Taniskidou. (2017). UCI Machine Learning Reposi-
tory. [Online]. Available: http://archive.ics.uci.edu/ml

34898 VOLUME 7, 2019



R. U. Rasool et al.: Cyberpulse: ML-Based LFA Mitigation System for SDNs

[29] NCT University. (2018). Estinet Network Emulator. [Online]. Available:
http://nsl.cs.nctu.edu.tw/NSL/nctuns.html

[30] HP Company. (1999). Utilization, HP Toptools for Hubs & Switches.
[Online]. Available: http://hp.com/rnd.htm

[31] SharkFest. (2018). Wireshark. [Online]. Available: https://www.
wireshark.org/

[32] A. De Caigny, K. Coussement, and K. W. De Bock, ‘‘A new hybrid
classification algorithm for customer churn prediction based on logistic
regression and decision trees,’’ Eur. J. Oper. Res., vol. 269, pp. 760–772,
Sep. 2018.

[33] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, ‘‘Tackling the
poor assumptions of naive Bayes text classifiers,’’ in Proc. ACM Int.
Conf. Assoc. Adv. Artif. Intell. Washington, DC, USA: AAI Press, 2003,
pp. 616–623.

[34] N. Z. Bawany, J. A. Shamsi, and K. Salah, ‘‘DDoS attack detection and
mitigation using SDN: Methods, practices, and solutions,’’ Arabian J. Sci.
Eng., vol. 42, no. 2, pp. 425–441, 2017.

[35] F. Gillani, E. Al-Shaer, S. Lo, Q. Duan, M. Ammar, and E. Zegura, ‘‘Agile
virtualized infrastructure to proactively defend against cyber attacks,’’ in
Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr./May 2015,
pp. 729–737.

[36] A. Kalliola, K. Lee, H. Lee, and T. Aura, ‘‘Flooding DDoS mitigation and
traffic management with software defined networking,’’ in Proc. 4th IEEE
Int. Conf. Cloud Netw. (CloudNet), Oct. 2015, pp. 248–254.

[37] P. Xiao, Z. Li, H. Qi, W. Qu, and H. Yu, ‘‘An efficient DDoS detection
with bloom filter in SDN,’’ in Proc. IEEE Trustcom/BigDataSE/ISPA,
Aug. 2016, pp. 1–6.

[38] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, ‘‘FloodDefender:
Protecting data and control plane resources under SDN-aimed DoS
attacks,’’ in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM),
May 2017, pp. 1–9.

RAIHAN UR RASOOL is currently a Fulbright
Alumnus with the University of Chicago, USA.
He is also with Victoria University, Melbourne.
His research interests include large-scale systems,
security and computer architecture. His research
work comprising over 60 articles published in var-
ious international conferences and journals.

USMAN ASHRAF received the B.S. degree in
computer science from FAST Lahore, in 2003,
and the M.S. and Ph.D. degrees in com-
puter networks from INSA Toulouse, France,
in 2006 and 2010, respectively. He is currently
with the College of Computer Science and IT,
King Faisal University. He has several publications
in prestigious international journals, including
the IEEE COMMUNICATIONS LETTERS and the IEEE
TRANSACTIONS ON MOBILE COMPUTING. He has more

than seven years of teaching and research experience. In his last position, he
chaired the Department of Computer Science, Air University Islamabad.

KHANDAKAR AHMED received the Ph.D.
degree from RMIT University, Australia, in 2014.
During his Ph.D., he was an Active Scholar with
the Network Research Group, School of Engi-
neering, where he explored data-centric storage
in wireless sensor networks. He is currently a
Lecturer with the Discipline of IT, School of
Engineering and Science, Victoria University,
Melbourne, Australia. Before joining Victoria
University, he was a Full-Time Lecturer with the

School of IT and Engineering (SITE), Melbourne Institute of Technol-
ogy (MIT), Melbourne, and a Researcher in Australia—India Research Cen-
tre for Automation Software Engineering (AICAUSE), RMIT University,
from 2016 to 2017. He has beenwith AICAUSE as a Postdoctoral Researcher
before he takes the full-time position with MIT, from 2015 to 2016. He is
also serving as a member of the Editorial Board for the Australian Jour-
nal of Telecommunications and the Digital Economy and TPC chair for
ITNAC2017. He has also been serving as a Reviewer for several international
A star journal’s and conferences.

HUA WANG received the Ph.D. degree in
computer science from the University of Southern
Queensland, in 2004, where he was a Professor,
from 2011 to 2013. He is currently a Full-Time
Professor with the Centre for Applied Informat-
ics, Victoria University. He has authored or co-
authored over 150 peer-reviewed research papers
mainly in data security, data mining, access
control, privacy and Web services, as well as
their applications in the fields of e-health and
e-environment.

WAJID RAFIQUE received the B.S. degree in
computer sciences degree from Virtual Univer-
sity, Pakistan, and the M.S. degree in software
engineering from the National University of Sci-
ences and Technology (NUST), Pakistan. He is
currently pursuing the Ph.D. degree in computer
sciences with the Department of Computer Sci-
ence and Technology, Nanjing University, China.
His research interests include big data services,
machine learning, mobile cloud computing, and
network security.

ZAHID ANWAR received the M.S. and Ph.D.
degrees in computer sciences from the Univer-
sity of Illinois at Urbana-Champaign, in 2005 and
2008, respectively. He was a Software Engi-
neer and Researcher with IBM, Intel, Motorola,
National Center for Supercomputing Applications
(NCSA), xFlow Research, and CERN on various
projects related to information security, operating
systems design, and data analytics. He holds Post-
doctorate experience from Concordia University.

In the past, he was a Faculty Member with the University of North Carolina
at Charlotte. He is currently a Faculty Member with the National University
of Sciences and Technology and an Associate Professor with Fontbonne
University.

VOLUME 7, 2019 34899


	INTRODUCTION
	SYSTEM AND ADVERSARY MODEL
	TAXONOMY OF LFA
	LFA ADVERSARY MODEL

	MACHINE LEARNING APPROACH AND ALGORITHM SELECTION
	DRAWING INSPIRATION FROM MACHINE LEARNING FOR SDN SECURITY ANALYSIS
	MACHINE LEARNING TOOL SELECTION
	MACHINE LEARNING ALGORITHM SELECTION

	CYBERPULSE ARCHITECTURE AND DESIGN
	OVERALL CYBERPULSE ARCHITECTURE
	CYBERPULSE MODULES
	LINK LISTENER MODULE
	FLOOD DETECTION MODULE
	FLOOD MITIGATION MODULE


	MULTILAYER PERCEPTION IN CLASSIFYING LFA TRAFFIC
	IMPLEMENTATION DETAILS
	EXPERIMENTAL SETUP
	FLOOD TRAFFIC CAPTURING
	ATTACK SIMULATION

	RESULTS
	CYBERPULSE EVALUATION USING PERFORMANCE EVALUATION METRICS
	CYBERPULSE PERFORMANCE EVALUATION USING DATA PARTITIONING AND ATTRIBUTE SELECTION
	CYBERPULSE PERFORMANCE EVALUATION USING DIFFERENT CLASSIFIERS 

	EFFECT ON LFA MITIGATION USING CYBERPULSE

	RELATED WORK
	LFA MITIGATION USING LINK PROBING TECHNIQUES
	LFA MITIGATION USING TRAFFIC ENGINEERING PRINCIPLES
	LFA MITIGATION USING SDN PRINCIPLES-BASED APPROACHES

	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	RAIHAN UR RASOOL
	USMAN ASHRAF
	KHANDAKAR AHMED
	HUA WANG
	WAJID RAFIQUE
	ZAHID ANWAR


