
Received February 11, 2019, accepted March 12, 2019, date of publication March 15, 2019, date of current version April 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2905428

FEther: An Extensible Definitional Interpreter
for Smart-Contract Verifications in Coq
ZHENG YANG , (Member, IEEE), AND HANG LEI
School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

Corresponding author: Zheng Yang (zyang.uestc@gmail.com)

ABSTRACT Recently, blockchain technology has been widely applied in the financial field. Therefore,
the security of the blockchain smart contracts is among the most popular contemporary research topics.
To improve the theorem-proving technology in this field, we are developing an extensible hybrid verification
proof engine, denoted as FEther, for Ethereum smart contract verification. Based on Lolisa, which is a large
subset of solidity mechanized in Coq, FEther guarantees the consistency between smart contracts and its
formal model. Combining symbolic execution with higher order logic theorem-proving, FEther contains a
set of automatic strategies that execute and verify the smart contracts in Coq with a high level of automation.
Besides, in FEther, the verified code segments also can be reused to assist in the verification of other
properties. The functional correctness of FEther was verified in Coq. The execution efficiency of FEther
has far exceeded that of the interpreters that are developed in Coq in accordance with the standard tutorial.
To the best of our knowledge, FEther is the first definitional interpreter of the solidity language in Coq.

INDEX TERMS Symbolic execution, formal verification, smart contract, Coq, etheruem, definitional
interpreter.

I. INTRODUCTION
Blockchain technology [1], which adds records to a list using
cryptographic links, is among the most popular contemporary
technologies. Ethereum is a widely adopted blockchain sys-
tem that implements a general-purpose, Turing-complete pro-
graming language called Solidity [2]. Ethereum enables the
development of arbitrary smart contracts that can automate
blockchain transactions in a virtual runtime environment,
namely, the Ethereum Virtual Machine (EVM). Here smart
contracts refer to the applications and scripts (i.e., programs)
that execute the blockchain. The growing use of smart con-
tracts has necessitated increased scrutiny of their security.
Smart contracts can include particular properties that expose
them to deliberate attacks causing direct economic loss. Some
of the largest attacks on smart contracts are well known,
such as the attacks on decentralized autonomous organiza-
tions [3] and parity wallet contracts [4]. Many classes of
subtle bugs, ranging from transaction-ordering dependencies
to mishandled exceptions, exist in smart contracts [5]. There-
fore, the security and reliability of smart-contract programs
must be verified as rigorously as possible. The properties of

The associate editor coordinating the review of this manuscript and
approving it for publication was Yang Liu.

programs can be rigorously verified by proving higher-order
logic theorems. In the standard approach, a formal model
for the target software system is manually abstracted using
higher-order theorem-proving assistants. Such formal verifi-
cation technology provides sufficient freedom and flexibility
for designing formal models based on higher-order logic
theories, and can abstract and express very complex systems.
However, when applied to smart contract verification, the
advantages of theorem-proving technology are suppressed by
automation, reusability, consistency and efficiency problems.

The above issues can be resolved by a formal sym-
bolic process virtual machine (FSPVM) [6], which directly
and symbolically executes real-world smart-contract pro-
grams using higher-order theorem-proving assistants. The
program’s properties are then automatically verified by the
execution result. To this end, we are developing an FSPVM
named FSPVM-E [7] for smart contracts deployed on the
Ethereum platform. FSPVM-E is programed in Coq (a formal
proof-management system) and inspired by KLEE, a high-
coverage test generator for complex-systems programs [8].
Similarly to [9], the symbolic execution of FSPVM-E is ver-
ified in FEther, a hybrid proof engine that supports multiple
types of symbolic execution. FEther, however, is designed for
higher-order theorem proving, and its verification process is

37770
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-0165-0000

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

founded on Hoare [10] and reachability [11] logic. Therefore,
the successful implementation of an FSPVM must overcome
several challenges [6].

Some of these challenges have been addressed in our
recent studies. In [6], we noted the lack of a versatile formal
memory model for constructing the logic operating environ-
ment within a higher-order theorem-proving system. We thus
developed a general, extensible, and reusable formal mem-
ory (GERM) framework based on higher-order logic using
Coq [12]. In our previous work, we presented an applica-
tion extension of Curry-Howard isomorphism (CHI) [13] to
combines theorem proving and symbolic execution technol-
ogy. Herein, it is denoted as execution-verification isomor-
phism (EVI) and takes the basic theory of FSPVM.

Finally, we developed an extensible large subset of the
Solidity programing language, denoted as Lolisa [14], which
equivalently formalizes real-world programing languages as
an extensible intermediate programing language.

The present paper completes the FSPVM-E by overcom-
ing the final challenge: developing its proof engine. Our
contributions are as follows. First, we develop a defini-
tional interpreter in Coq’s specification language (Gallina).
This interpreter symbolically executes the smart contracts of
Ethereum written in Lolisa on the GERM framework. The
execution results are represented by a GERM logic memory
state, which can be verified in Coq. Next, we implement a
set of automatic evaluation strategies based on the Ltac [12]
mechanism, by which FEther finishes the execution and veri-
fication process. The correctness of FEther is then certified
in Coq. The present FEther is the optimized version with
higher evaluation efficiency than the interpreters developed
in Coq using standard tutorial approaches. To our knowledge,
FEther is the first hybrid proof engine specification that auto-
matically and symbolically executes and verifies Ethereum
smart contracts in Coq.

The remainder of this paper is structured as follows.
Section 2 describes the difference between the FEther and
other relevant works. Section 3 introduces the foundations
of the present work, including the prototype, the basic envi-
ronment of Lolisa, and the preparatory modification of the
GERM framework. Section 4 describes the theoretical design
and implementation of FEther, and its self-correctness certi-
fication. Section 5 verifies FEther in a real-world case study
and analyzes its benefits. Section 6 discusses the advan-
tages and limitations of FEther. The study concludes with
Section 7.

II. RELATED WORK
The security of smart contracts has been seriously researched
since 2015. The security of smart contracts and similar
lightweight programs can be rigorously guaranteed by formal
methods. Our symbolic executor has several novel features
that distinguish it from other approaches. This section intro-
duces the interesting achievements already reported in this
field.

The EVM execution is formally described in Yellow
Paper [15]. This official document also provides the data,
algorithms, and parameters required for building consensus-
compatible EVMclients and Ethereum implementations. Yel-
low Paper, however, does not always clarify the operational
behavior of the EVM. In such cases, it is often easier to
consult an executable implementation for guidance.

Most of the recent researches have concentrated on EVM
security. The C++ implementation Cpp-ethereum plays a
dual role of security and defector semantics in EVMs. Lem
semantics [16] is a Lem [17] implementation of EVM pro-
viding executable semantics of EVM, which formally ver-
ifies smart contracts. However, the Lem semantics do not
precisely capture the inter-contract execution. KEVM [18] is
a formal semantics for EVMs, resembling Lem but written
in the K-framework. As KEVM is executable, it can run the
validation test suite provided by the Ethereum foundation.
According to Hildenbrandt et al. [18], the KEVM reference
interpreter passes the full 40,683-test EVM compliance suite.
Nevertheless, self-correctness cannot be proven completely
or even certified in KEVM. Moreover, none of the above
approaches satisfies the de Bruijn criterion [19].

Mythril [20] is a security analysis tool for Ethereum smart
contracts. Mythril detects various problems by concolic anal-
ysis, but whether the tool effectively increases the reliability
of smart contracts has not been proven.

The above researches adopt the bytecode of Solidity. The
consistency between Solidity and bytecode after compiling
cannot be guaranteed. However, high-level formal specifica-
tions and relevant formal verification tools of Solidity, which
are important for programing and debugging smart contract
software, have received little attention.

Finally, some of these works focus on a specific domain.
Their complex architecture is inflexible and not easily
extendible to new relevant problems.

III. FOUNDATIONAL CONCEPTS AND DEFINITIONS
The present paper builds upon our recent previous works.
Therefore, prior to defining the formal specifications of
FEther, we first define the basic environment.

A. PREDEFINITIONS
To be specific, first of all, the EVI is an application exten-
sion of CHI. Briefly, CHI proposes that a deep correspon-
dence exists between the worlds of logic and computation.
To avoid ambiguity in the following discussion of EVI,
we use program to represent programs written in Gallina or a
similar specification language based on CHI and programfrw
to represent the formal version of real-world programswritten
in Lolisa. This correspondence can be expressed according to
three general principles as follows:

types correspond to propositions;

proofs correspond to a program;

proofs correspond to the evaluation of programs.

VOLUME 7, 2019 37771

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

The deep correspondences applied in CHI make it very
useful for unifying formal proofs and program computation.
The that programs, implemented in the proof assistants sup-
porting CHI such as Coq, are first-class citizens of their logic
can be directly evaluated in higher-order theorem proving
system that supports CHI, and this process corresponds to the
propositions proof of programs in corresponding theorems.
However, most mainstream programming languages are not
designed based on lambda calculus and cannot be analyzed
in a higher-order logic environment. Programs written in
these languages are very difficult or impossible to verify
directly and automatically using CHI. The execution engine,
such as FEther that executes programfrw, is developed in a
formal system that supports CHI based on formal operational
semantics and is a kind of special program; this forms the
basis of EVI, which extends the formal relations of CHI
to include three corollaries: evaluation of program corre-
sponds to execution of programfrw, properties correspond to
types, and verifications correspond to proofs. Based on these
corollaries, the correspondences of CHI can be extended to
obtain a fourth general principle: verifications correspond to
execution of programfrw, denoted as EVI. More details are
introduced in [6].

TABLE 1. Basic memory-management APIs employed in the formal
memory model.

GERM The GERM is a general, extensible, and reusable
formal memory framework. It simultaneously supports dif-
ferent formal verification specifications, particularly at the
code level. This framework simulates the physical memory
hardware structure, including a low-level formal memory
space, and provides a set of simple, nonintrusive application
programing interfaces (APIs). The proposed GERM frame-
work is independent and customizable, and was verified
entirely in Coq. Table 1 summarizes the top-level interface
of FEther, where mvaluemvalue and a represent a memory
value of type value and a memory address of type Laddress,
respectively. In the specific formal specification, a formal
memory state has type memory. Finally, binfor represents the
block information for environment checking.
Lolisa The FL is Lolisa, a large subset of the Solid-

ity programing language. Assisted by generalized algebraic
datatypes (GADTs) [21], the formal syntax of Lolisa adopts
a stronger static-type system than Solidity, which enhances
the type safety. Lolisa includes contract declarations (Con-
tract), modifier declarations (Modifier), variable declarations
(Var), structure declarations (Struct), assignments (Assign),

TABLE 2. State functions in the dynamic semantic definitions.

TABLE 3. Helper functions.

Convention 1. Formal Struct datatypes.

returns (Return), multi-value returns (Returns), throws
(Throw), skips (Snil), function definitions (Fun), while loops
(Loopwhile), for loops (Loopfor), function calls (Funcall), and
conditional (If) and sequence statements.

Table 2 summarizes the helper states used in the dynamic
semantic definitions, and Table 3 lists the helper functions for
calculating commonly needed values in the current program
state. All of these state functions will be encountered in
the following discussion. The components of specific states
will be denoted by appropriate Greek letters subscripted by
the state of interest. In Table 2, M , σ, and E denote the
contexts of the formal memory space, a specific memory
state, and the execution environment, respectively. The proof
evaluation is executed in the proof contexts, denoted as 0,
01, . . . For brevity, we hereafter represent the overall formal
system by F , the current execution environment by env, and
the super-environment of type env by fenv.

In the following sections, we introduce the relevant analy-
sis and solutions that improve the computation efficiency of
FI in higher-order theorem-proving assistants.
To simplify the verification process and the development

of the respective formal verified Lolisa interpreter in Coq,
we maintained the Lolisa programs as structural programs.
For this purpose, the semantics of Lolisa were forced to
adhere to the following Program Counter axiom. The con-
ventions of the Struct datatypes are defined in Convention 1.
The Program Counter axiom is a FEther design principle that
maintains Lolisa as a structural language.
Axiom (Program Counter): If statement s is the next execu-

tion statement, it must be the head of the statement sequence
in the next iteration.

To avoid infinite loops in the programs, FSPVM also
imports bounded model checking (BMC) [22]. Fortunately,
the EVM does not support infinite execution processes,
as each execution step costs the gas of the smart contract
owners. If the gas balance cannot satisfy the limitation,

37772 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

TABLE 4. Encapsulation functions in the optimized FEther.

the execution terminates. This design well suits the BMC
concept. Therefore, our implementation uses gas to limit the
execution of the Solidity programs.

In the following contents, we represent other arguments by
the wildcard ‘‘∗’’ and by the symbol |∗ 7−→ ∗|}. E is the
syntax of constructor pattern matching of the λ-expression
E [23]. To avoid ambiguity in the following discussion of
FEther, the functions represent the programs and functions
written in Gallina, and RWprogram represents the real-world
programs written in general-purpose programing languages.

B. MODIFCATIONS FOR OPTIMIZATION
As mentioned previously, when analyzing the current prob-
lems, the computational efficiency of the definitional inter-
preter based on the FSPVMmay be extremely low. The three
essential problems are call-by-name termination(CBNT),
information redundancy explosion (IRE), and concurrent
reduction (CR). To optimize the low-level computations of
the evaluation problems, we incorporate the respective solu-
tions in [24] into the implementation details of FEther.

First, the sequence statement s is implicitly replaced by an
equivalent list rather than explicitly defined, which avoids the
CBNT problem. Second, the pattern matchings and reusable
functions are encapsulated as optimization helper functions.
Some of these functions are summarized in Table 4. To avoid
the CR problem, we finally impose a limitation K (indepen-
dent of the gas constraint) on the expression and value layers.

IV. FETHER IMPLEMENTATION
FEther is the bridge that connects the GERM framework,
the Lolisa programing language, and the trusted core of

Coq (TCOC). As demonstrated in our previous work and
elaborated in the following subsections, FEther can be totally
built in Coq.

A. ARCHITECTURE
Figure 1 shows the overall structure of the FEther framework.
Thewhole FEther is constructed in the trusted domain of Coq,
and logically comprises three main components: a parser,
an ISA based on Lolisa semantics, and a validation checking
mechanism (see left, center and right blocks in Figure. 1,
respectively). The parser analyzes the syntax of the FRWpro-
grams written in Lolisa. According to EVI theory, FEther is
essentially a huge function written in Gallina. In this sense,
it differs from the real-world virtual machines of high-level
programing languages such as Smalltalk, Java, and .Net,
which support bytecode as their ISA and are implemented
by translating the bytecodes of commonly used code paths
into native machine code. Instead, the ISA of FEther com-
prises the Lolisa semantics, which specify the semantics of
the syntax tokens that govern the respective behaviors. The
validation checking mechanism includes two parts: checking
the result validation (including thememory states and values),
and checking the execution condition. First, because all func-
tions are vulnerable to undefined situations, they are devel-
oped with the help of effect programing. More specifically,
all functions are tagged by an optional type. A valid result is
returned in the form Some t; an invalid result is returned as
an undefined value None. The symbol [[t]] denotes that term t
is tagged by an optional type. In the second part, the gas and
K limitations are validated by the helper functions envcheck
and pumpcheck , respectively.

FEther inherits the low-coupling property from Lolisa.
Within the same level, the executable semantics are wholly
independent, and are encapsulated as modules connected by a
set of interfaces. In different levels, the higher-level semantics
can access the lower-level semantics only via the interfaces,
and the implementation details of the lower-level semantics
are transparent to the higher-level semantics (indicated by
dotted lines in Figure 1). Moreover, the implementation of
the higher-level semantics does not depend on the lower-level
semantics.

Figure 1. Architecture of FEther.

VOLUME 7, 2019 37773

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Figure 2. Workflow of FEther.

Figure 3. Translation process from Solidity into Lolisa.

The workflow of FEther is outlined in Figure 2. The user
first sets the initial memory state and the targetFRWprograms
by initializing the formal memory space of GERM and apply-
ing the translator. Note that the translator is an auxiliary com-
ponent of Lolisa introduced in [14]. As shown in Figure 3,
it converts the Solidity program of (a) into the FRWprograms
written in Lolisa of (b) by searching the abstract syntax tree of
Lolisa, binding the variable identifiers with a unique memory
address, and declaring the ML modules. Next, the FEther
parser analyzes the formal model of smart contracts accord-
ing to the Lolisa abstract syntax tree, and invokes the respec-
tive executable semantics. The TCOC handles the evaluation
requirements, and the results are validated by the valida-
tion mechanism. Although the validation module is logically
independent of the other parts (as mentioned above), it is
implemented separately in the Formal Interpreter and Formal
Semantic modules in real cases. Therefore, the validation
module is not explicitly defined in Figure 3. The final formal
memory state will be assumed in the property theorems.

Lolisa is defined by GADTs, which guarantees well-
formed constructions of the syntax specifications. Thus,
the side conditions of syntax correctness do not need check-
ing by help functions defined in FEther. The type safety can
be checked by the type-checking mechanism of Coq. The
complete workload of constructing a FEther framework with
100 memory blocks is itemized in Table 5.

B. INSTRUCTION SET ARCHITECTURE OF FETHER
The ISA of FEther is the core of the proof engine, which fol-
lows the big-step operational semantics of Lolisa. As shown
in Figure 1, the FEther ISA is separated into three layers.
FEther is implemented as described in Appendix A.

TABLE 5. Workload statistics for constructing the FEther framework with
100 memory blocks.

Value layer This project aims to formalize a mechanized
syntax and semantics for a subset of the Solidity language,
which can be directly executed and verified in higher-order
logic theorem-proving assistants. Therefore, the Solidity val-
ues must be evaluated like the native values in the formal
system. Ideally, the values of Solidity or some main-
stream high-level programing language would be explicitly
employed in the formal system. Due to the strict typing
system of the trusted core and the adoption of different
paradigms, however, Gallina (Coq) does not directly sup-
port array, mapping, and other complex values. Therefore,
we must define an interlayer between the values of the real-
world language and the native values of the formal system.
This interlayer directly represents the real world-values by an
equivalent syntax, and translates them into the native values
using formal semantics.

After evaluating the Lolisa value by formal executable
semantics, the native value information is computed or
derived in the base formal system, and the respective GERM
memory values are determined. In the following sections,
ESV represents the entry point of calling the value semantics,
which is abstractedly defined by Rule 1 below.

ESVZ → (∀τ : type, valτ)

→ memory→ Blc→ Env→ option value (1)

Here, the metavariable val incorporates the Lolisa value
val and the mapping value valmap. Apart from lacking def-
initions related to mapping type, valmap has the same static
typing rule as val, so the two values can be combined. The
mapping relation between each Lolisa value and its unique
memory value is expressed as ≈.

First, we define the computational semantics of the con-
stant values. In Lolisa, the constant values are the set of
normal-form values, and the set of metavariables vconst . The
vconst evaluation process generates the respective memory
values for directly recording the native value information
of the formal system. For example, consider the constant
variable Vbool (b) : Tbool ∈ vconst . The computational
semantics of Vbool (b) are defined by Rule 2. We then define
ESVconstbool

(
n, env, binfor

)
≈ Vbool (n).

ESVconstbool
≡ λ (n : bool) .λ (env : Env) .λ

(
binfor : Blc

)
.Vbool (n)

⇒ Some Bool
(
n, env, binfor

)
(2)

37774 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

The computational semantics ESVconst are summarized
in Table 11 of A. The correctness of ESVconst is certified by
Theorem 1 (the constant-mapping theorem).
Theorem 1 (Constant Mapping): For all Lolisa values

vconst (n), environment values env, and block information
binfor , the mapping ESconst

(
n, env, binfor

)
≈ vconst (n) holds.

We then define the semantics of the reference values (the
array, mapping, structure and field access values), which are
needed for accessing the formal memory space and match
indexes. The respective values are defined as follows, and the
semantics ESVarray of the array values are defined in Table 12
of A. Particularly, idsearch is a subsidiary function for index
evaluation. To be specific, the Lolisa language supports an
n-dimensional array (by Rule 4), so idsearch is a special
subsidiary function that searches the memory block indexed
by the current n-dimensional array index. idsearch is also
used in the initvar function. Below we introduce the specific
implementations of idsearch. The abstract function of idsearch
implementations is given by Rule 3.

idsearch :: type→ Laddress→ emory→ Env

→ option address (3)

Tarray
[
id0Tarray

[
id1Tarray

[
. . .
[
Tarrayidnτfinal

]]]]
(4)

The mapping value is stored as a singly linked list struc-
ture in the GERM memory model, and in the form Map :
Laddress → option

(
prodvaluemapvalue

)
→ typemap →

type → option address → Env → Blc → value in
Lolisa. In the above expression, the first parameter stores the
initial address, the second parameter stores the paired key and
indexed values, the third and fourth parameters record the
key value and indexed value types, respectively, and the fifth
parameter represents the next address. TheMap can be briefly
abstracted as Figure 4. In this design, the structure supports
the n-dimensional mapping datatype.

Figure 4. Abstract structure of a mapping-type memory block.

At the value level, a Struct memory value is represented
by a struct datatype. Therefore, it resembles a normal-
form value, and can be extracted directly by readcheck (see
Table 14).

The semantics of field access are very flexible in Solid-
ity and comprise contract member access and struct field
access. If the contract member access is derived from an
inheritance relationship or a special identifier, such as this,
contract members can be directly accessed based on the
ML module system. For the second part of the field access
semantics, Lolisa supports all kinds of struct field access.
However, as convention 1 is introduced, wherein middle
members cannot be functions. To simulate the behavior of
the functions for user node communication, such as send

and call, these communication functions must modify the
corresponding communication logic addresses. For example
given as follows, the filed member address is an implicit
parameter of send function.

pledges[i].address.send(pledges[i].amount)

≡ send(pledges[i].address, v,mss).

Therefore, in Table 15, if memsfind successfully evaluates
variable ainit with type atype, it returns the pair
(Dad,mv), where Dad refers to the address of mem-

ber memn−1.
Expression Layer The executable semantics of expres-

sions are the rules that acquire the results of the value layer
and evaluate the Lolisa expression in the memory value
of GERM. The evaluation requires the left-value (l-value)
and right-value positions, representing the memory addresses
and the specific memory value, respectively. In the following
contents, the entered pointer of the expression layer ESE is
defined by Rules 5 and 6.

ESE l :: Z → (∀τ0τ1 : type, exprτ0τ1)→ memory

→ Blc→ Env→ option Laddress (5)

ESE r :: Z → (∀τ0τ1 : type, exprτ0τ1)→ memory

→ Blc→ Env→ option value (6)

In formal Lolisa semantics, the modifier expression is a
special one that cannot be evaluated in the expression layer (as
will be later explained in the statement semantics). The com-
putational semantics are defined as ESE lmodi ≡ ESE rmodi ≡
Error .
Expressions in the l-value position: The following rules

define the semantics of evaluating the expressions in the
l-value position (i.e., the corresponding memory address).
The expressions in the l-value position, which can be con-
structed by the Econst constructor, represent Lolisa val-
ues at the expression level. Specifically, the left values can
be assigned as the Econst specified by Varray and Vmap.
Asmentioned previously,Varray andVmap are address point-
ers to values stored in specific memory blocks. For instance,
as shown in rule 7, an array used as the left value in an
assignment statement is commonly used in most general-
purpose programing languages.

A [i] = a. (7)

Thus, Varray and Vmap can represent not only memory
values, but also memory addresses. Note that the remain-
ing values (Vstruct and Vfield) are also address pointers by
specifying the Econst constructor, but cannot represent the
expressions in the l-value position. Because Evar can repre-
sent any variables address using any types, including structure
and field access values. To avoid confusion between Evar and
Econst specified by Vstruct and Vfield, we set the convention
that Vstruct and Vfield represents only the memory value at
the value level.

In both Solidity and Lolisa, Vfield admits many special
structures, such as msg and block, whose members cannot

VOLUME 7, 2019 37775

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Figure 5. Structure of a 2-dimensional mapping value stored in GERM.

be changed at will. In rare cases, Solidity allows field-access
expressions in the left position. Therefore, to ensure that
Lolisa remains well-formed and well-behaved, the left value
in expressions cannot be evaluated by Vfield. The fields of
structures can be changed by invoking Estruct to change
all fields, or by declaring a new field, as explained below.
Although the limitations of Vstruct and Vfield are inconve-
nient for programmers and verifiers, they avoid any potential
risk.

Besides, if the constructor is Varray, the semantics are cho-
sen as ESE lexprarray (defined in Table 16); if the constructor is
Vmap, they are chosen as ESE lexprmap (Table 17). The other
constructors return None directly. The semantics of the left
constant value ESE lexprconst at the expression level are then
given in Table 18 of A. The IRE problem is avoided by
introducing a special helper function lexprcheck ,which encap-
sulates the matching tree for obtaining the value information
recorded in valid constructors.

The reference expressions Evar, Efun, Econ, and Epar
need only to return their addresses directly. In Table 19
of A, these reference expressions are summarized as
Eaddr ([[name]]) : expreaddr ([[name]]) eaddr ([[name]]).
The Estruct, Ebop, and Euop expressions can only be
assigned as right expression values, so their semantics are
banned by the lexprcheck function (which returns an undefined
result None).
Expressions in the r-value position: The following func-

tions describe the semantics of evaluating expressions in the
r-value position (i.e., the respective memory values). The
evaluation of constant expressions is given in Table 20 of A.
Assisted by ESVvalue, the ESE rexprconst directly provides the
respective memory value.

According to Convention 1, the struct constructor Estruct
represents an expression value at the right position, which is
the only way to initialize or modify struct-type terms. The
semantics of the right struct value are defined in Table 21
of A. The helper function evalstr contains the type match-
ing and value evaluation. The type matching part checks
whether the type of each value satisfies the respective field.

The second part recursively invokes ESVvalue to evaluate the
values in the respective memory values. If the evaluation
process yields a None message, the Estruct evaluation has
failed. Otherwise, the members’ value set is retrieved and the
respective struct memory value is returned.

Finally, the semantics of the binary and unary operations
are defined in Tables 22 and 23 of A, respectively. Because
of the static-type limitation in the formal abstract syntax
definition based on GADTs, all expressions, sub-expressions
and operations are well-formed, and the semantics do not
need to check the type dependence relation. Therefore, sub-
sidiary assist functions are not required. The functions evalbop
and evaluop take the results of the expression evaluations
and the required operations as arguments, and combine them
to generate new memory values. In the present version of
FEther, the above definition forbids mixed arithmetic oper-
ations, such as ‘‘int + float,’’ because Solidity does not com-
pletely support the float datatype, and float values are rarely
employed in smart contract programs. Therefore, mixed-
arithmetic operations would add unnecessary complexity
and computational burden when implementing the formal
interpreter.
Statement Layer Having defined the semantics, we can

now define the statement layer. Statement semantics parse
the FRWprograms written by Lolisa, and evaluate the new
memory states. The semantics of the sequence statements are
not explicitly defined, and the relevant statement definitions
are modified to improve the extremely low computational
efficiency of solving the CBNT problem. We express the
evaluation process of a statement asESS, and give its abstract
definition as Rule 8.

ESS :: Z → memory→ option (list value)

→ Env→ Env→ statement → option memory

(8)

Most statement evaluations employ the helper func-
tion envcheck, which takes the current environment env and
the super-environment fenv as arguments, and checks the

37776 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

conditions (gas limitation and execution-level validity). For
example, if the domains in env and fenv are equal but have
different execution levels, the program is terminated and env
is reset by fenv. If envcheck returns a true result, the current
statements are executed; otherwise, the program is terminated
and the initial memory state is restored.

Contract declarations are among the most important Solid-
ity statements. Contract declaration in Lolisa involves two
operations. First, the consistency of the inheritance infor-
mation is checked using the helper function inheritcheck,
which determines whether the current inheritance rela-
tion inherits is stored in the current module context C.
The function inheritcheck is defined as a sum type in Rule 9.

inheritcheck ≡ ∀ (inherits inhertisc : list address) ,

{inherits = inhertisc} + {inherits 6= inhertisc}

(9)

Second, the initial contract information, including all
member identifiers, is written into a designated memory
block by the assistant functionwritedir . The formal semantics
of the contract declaration are defined in Table 24 of A.

Variable declaration is a basic task in Lolisa. The function
initvar is a special case ofwritedir , with type given by Rule 10.

initvar :: memory → Env→ Blc→ option access

→ type→ address→ option memory

(10)

This function takes the current memory state, variable type,
indexed address, and environment information as parameters,
and initializes the respective memory block. Being based on
the GERM memory model, the initialization and location
processes of this term with the array datatype differ from
those in standard researches on formalizing array types. The
function initvar calls the initarray function to initialize the
respective terms.

In [14], normal types are datatypes whose typing rules dis-
allow recursive definition. A normal type is assigned as τfinal .
The type τfinal is the recursive base of a multidimensional
array. In other words, if the τ of the current element is τfinal ,
it represents the final dimension of the recursive definition of
the current multidimensional array.

Particularly, because each memory block in the GERM
memory model directly stores all logic information with
type value [6], regardless of the sizes of the array elements,
we only need to calculate the number of logic elements in
the array. In order to illustrate the evaluation process, we take
the following three-dimensional array a [2] [3] [2] with type
[iAconstid(2)Tarray[iAconstid(3)Tarray[iAconstid(2)τfinal]]] as
a simple example. The full tree structure of this array is given
in Figure 6, and the mathematical evaluation process is shown
as follows:

(size1 + size1 ∗ (size2 + size2 ∗ size3))

= (2+ 2 ∗ (3+ 3 ∗ 2))

= 20.

Figure 6. Example of a 3-dimensional array.

Note that this array requires a memory allocation of
20 blocks.

The array-size calculation can be summarized as Rule 12.
Using this formula, we can implement the subsidiary function
idarray to calculate and return the number of blocks allocated
to arrays in each dimension. The abstract of this assignment
is defined in Rule 13. Note that size1 in Rules 11 and 13 rep-
resents the size of the current dimension rather than the size
of the first dimension. For example, to calculate the arraysize
of the second dimension of a [2] [3] [2], we should replace
size′1 = 2 in Rules 12 and 13 with size′2 = 3.

arraysize ≡ size1 + size1 ∗ (size2 + size2
∗ (. . . (sizen−1 + sizen−1 ∗ sizen)))

≡

∑n

i=1

∏i

j=1
sizej (11)

groupsize ≡ arraysize/size1

≡

(∑n

i=1

∏i

j=1
sizej

)
/size1 (12)

idarray :: indexarray → memory→ Env→ option Z (13)

Figure 7 shows the initialization process of a [2] [3] [2] ,
which follows its tree structure. In step (1), FEther searches
a continuous memory space with a total size of 20 blocks,
according to Rule 11. The algorithm Tree Initialization then
classifies a [2] [3] [2] as two initial trees, indexed by a [0]
and a [1]. The elements in both groups are then recursively
initialized by initarrray in sequence. For example, in the recur-
sion of a [0], idarray calculates the size of the group indexed by
a [0] as

(
size′1 + size

′

1 ∗
(
size′2 + size

′

2 ∗ size
′

3

))
/size

′

1= 10
blocks from Block0 to Block9. Step (2) allocates the memory
blocks. Because a [0] is also the beginning address of the
whole array, it is allocated to Block0 (deep blue block in
Step (2) of Figure 7). To allocate the memory blocks of
the second dimension, initarrray must proceed to the next
level and recursively initialize the sub-groups indexed by
a [0] [0], a [0] [1] , and a [0] [2]. In Step (3), the information
of the group indexed by a [0] [0] is stored in Block1, which
requires

(
size′2 + size

′

2 ∗ size
′

3

)
/size′2= 3 blocks from Block1

VOLUME 7, 2019 37777

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Figure 7. Array value initializing process (see text for details), and final structure of the a[2][3][2] array in GERM memory space.

to Block3 (green block in Step (3) of Figure 7). To allocate
the memory blocks of the third dimension, initarrray contin-
ues the deep recursion in Steps (4) and (5), which initialize
a [0] [0] [X] ,X ∈ {0, 1}. The elements in a [0] [0] [X] are of
type τfinal , so this is the leaf-node level with a group size of
size′3/size

′

3 = 1. In other words, a [0] [0] [0] and a [0] [0] [1]
are single-element groups. Both groups are contiguously
stored in Block2 and Block3 (orange block in Step (4) of
Figure 7). Steps (6)–(8) restore the memory state mstate0
to the recursion level of the second dimension, and repeat
Steps (3)–(5) for a [0] [1] [X]. This process repeats for the
remaining groups, until the whole array information has been
stored into respective memory blocks. The final structure of
a [2] [3] [2] in the memory space, from Block0 to Block19
in Figure 7. Here, the left column (9) is the real structure and
the right column (10) is the group classification.

The id search can be implemented by a similar algo-
rithm. However, as id search directly locates the indexed
group rather than searching each group, its core proce-
dure is addressoffset (+, offset, initaddr). The offset formula is
given as Rule 14. For example, when locating the block of
a [0] [1] [1], the offset is calculated as 0 ∗ 10 + 1 ∗ 3 + 1 ∗
1 + 2 = 6, and the initial address is Block0. Therefore, the
information of a [0] [1] [1] is stored in Block6.

offset ≡
∑n

i=1
indexi ∗ groupsizei + (n− 1) (14)

Generally, if validarray (τ) ∧ alloc (mstate, arraysize) =
Some initaddr , the array space can be initialized by Table 6,
called Tree Initialization.
After running this algorithm, the symbolic execution in

FEther more accurately simulates the initialization and allo-
cation behavior of an n-dimensional array in real hardware
than other formalizations using the list datatype. An array can
be abstracted by a number of interesting algorithms, such as

TABLE 6. Algorithm of the initarray function.

tree structure mapping [25] or graphic mapping [26], but the
advantages of these algorithms are partially offset by disad-
vantages. For example, although they can represent an infinite
memory space, their specifications and formal structures are
very complex and difficult to extend. Moreover, to modify
an array element, an operation must search each node one by
one, and the overflow problem is difficult to check without a
dependent type. In an algorithm based on the GERMmemory
model, the array is stored in a fixed-size contiguous memory
space without assistance by a dependent type [27]. Verifiers
can formally simulate the address offsetting process, check
the array overflow problem by checking the head Flag stored
in the memory block, and modify an array block directly by
indexing the respective memory address. Consequently, the
verification process becomes easier and more accurate.

Assuming that the current logic context based on GERM
has sufficient logic memory space, and that each identi-
fier has a valid and free address, initvar represents the first
time of setting the indexed memory block, and writedir is

37778 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

always successful. The variable declaration semantics in this
scenario are defined in Table 25 of A.

The semantics of the structure datatype declaration are
defined in Table 26 of A. By Convention 1, the structure
declaration at the statement level declares a new structure
type with address identifier strτ . The field member list of
strτ is memsτ . As an example, Figure 8 defines the built-in
address datatype of Solidity rewritten by Lolisa. The _0xad-
dress is the strτ , and the remaining fields are the memsτ . The
ESSstr records the struct type information directly into the
memory block with address strτ .

Figure 8. Address type declaration in Solidity, and its equivalent special
struct type in Lolisa syntax.

In Lolisa, a function call statement unfolds the function
body stored in the respective memory address. The semantics
of a function call ESScall are given in Table 27 of A. In the
first step, the function call attempts to read the function dec-
laration statements stored in the respective memory address.
If the readout is successful, the second step sets the current
execution environment level to 0, and (with the assistance
of setenv) sets the domain as the called function identifier.
In the final step, the function body is executed with the
new env’.

Modifier declarations are special function declarations
requiring three steps, and including a single limitation. The
parameter values are set by the setpar predicate. As defined
by Table 28 in A, the first step initializes and sets the
parameters. The second step stores the modifier body into
the respective memory block, and the third step attempts to
initialize the return address 3fun. Under the rules of Solidity,
the modifier body can return the checking flag, but cannot
change the memory states. Therefore, in FEther, we add a
special Boolean-type memory block in the GERM frame-
work, indexed by _0xmodifer. If the modifier checking is
successful, the block is set to true and assigned as σmtrue;
otherwise, it is set to false and assigned as σmfalse, meaning
that other blocks cannot be modified.

To guarantee the type safety, Lolisa separately defines
the single- and multi-return value functions. As shown in
Table 29 of A, however, we combine them such that the return
type and modifier limitation are both defined as lists. The
evaluation is completed by the repeat function. Unlike mod-
ifier semantics, the function semantics check the modifier
limitations restricting the function. Specifically, all modifiers
restricting the function are executed before the function is
invoked. If the modifchck result of a modifier evaluation is
true, the function is executed; otherwise, it is terminated.
Particularly, if modifchck finds a modified memory state,
the execution is discarded.

Assignment-statement semantics are based on the
expression-evaluation semantics. If the result of evaluating
an r-value expression is a function pointer generated by a
field access, then the return values are evaluated by function
call semantics. The semantics of assignment statements are
defined in Table 30 of A.

C. THE FETHER PARSER
To analyze the syntactic units of FRWprograms, the seman-
tics must be integrated into a parser that is easily implemented
on the ISA. As shown in Figure 2, the parser has three layers
for parsing the three syntax layers. The functions of these lay-
ers are validating the environment, deconstructing the input
syntactic units, mapping the syntactic units Si into the respec-
tive semantics ESi, and transmitting the information stored
in the Si to the ESi. As an example, consider the value layer
in Table 7. First, the ESV checks the K limitation. It then
deconstructs the input value v into specific constructors by
pattern matching. Finally, the logic data are transmitted into
their respective semantics.

TABLE 7. Simple example of the value-layer parser.

Therefore, the parsers can be summarized as the typing
judgements 15 and 16, where valid denotes the validation
process.

E ` env, fenvM ` σ, binfor
valid (K , env, fenv) = true
Si ≈ ESi

E,M ,F ` Si (args)⇒ ESi
(
σ, env, fenv, binfor , args

) (15)

E ` env, fenvM ` σ, binforF ` K
valid (K , env, fenv) = false
Si ≈ ESi
E,M ,F ` Si (args)⇒ None

(16)

The information in Si needs to be partially preprocessed
before transmission to ESi. First, we must check whether the
constructor of ESrexpreaddr is Efun. If true, we must transmit
the respective3fun instead of name. This action is recorded as
|Efun (oaddr, τ, ∗) 7−→ readchck

(
σ, env, binfor ,3fun

)
|}.e.

As mentioned above, after evaluating ESSre and ESSres,
we must then change the current environment into a super-
environment for stopping the function execution. More-
over, as semantics such as ESScall , ESrexprbop and ESrexpruop

VOLUME 7, 2019 37779

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

TABLE 8. Algorithm of the FEther entering point.

recursively invoke ESE rexpr , the specific ESE rexpr and ESS
must be defined as recursive functions. Finally, the parser
statement level integrates the two lower levels, and also
defines the entering point of FEther (see the FEther_enter_
point algorithm given as Table 8).
The rules governing the execution of a Lolisa program in

FEther are defined by the rules (EXE-F) and (EXE-IF), as
shown at the bottom of this page, where the symbol∞ refers
to infinite execution, and T is the termination condition set of
a finite execution.

D. AUTOMATION TACTICS
Automated theorem proving is a core topic in formal veri-
fication research. Many higher-order theorem-proving assis-
tants provide tactics or similar mechanisms that simplify the
program evaluation process and construct proofs automat-
ically. With manual modeling technology, different formal
models with significantly different structures and verification
processes can be constructed in various programs. Hence,
designing a set of tactics that automatically verifies models
in different programs is nearly impossible.

The above problem is circumvented by FEther. According
to EVI theory, the FEther symbolic execution corresponds
to both the function evaluation and the program verification
(see Rule 17). In other words, it unifies the verification pro-
cesses of different programs in higher-order theorem-proving
assistants by simplifying the program evaluation process in
FEther. Because the situations of FEther execution consti-
tute a fixed and finite set {s0, s1, . . . , sm}, we can design

Figure 9. An abstract automatic tactic working process.

sufficiently many sub-tactics for all situations. Exploiting this
advantage and assisted by the Ltac mechanism, we designed
primitive automatic tactics for the FEther. The tactic strategy
model is constructed from three parts: memory operating,
K costing and semantics simplifying.

�,M ,F `ins Pexe ≡ Peval ≡ Pverify (17)

The workflow is defined in Figure 9. When the proof
universe of Coq is open, the observe function scans the cur-
rent context C to obtain the current goal. In sequence, each
part attempts to capture the operation characteristic of the
current goal and choose the matching tactics. The selected
tactics are combined into a solution tactic Ltaci that solves
the goal in TCOC. The new context C ′ is compared with C
in contextdec. IfC ′ andC are identical, the current tactics can-
not solve the goal automatically, and the tactic model is ter-
minated. Otherwise, the tactic model continuously attempts
to simplify the goal of C ′.

The expression 18 states the unfold_modify tactic, a sub-
tactic of the memory operation part. This sub-tactic captures
parts of the operation characteristic of the writedir function,
and evaluates the scanned writedir using basic built-in tactics.

Ltac unfold_modify :=

match goal with

|[| − context[?Y(?X : memory)(?Z : value)]]

⇒ unfold Y in∗; cbn in∗

end. (18)

The average ratios of contract size to proof size are shown
in Table 9. Smart contracts exceeding 500 lineswere excluded
from this analysis, because the size of large contracts were

E ` env, fenvM ` σ, binforF ` oparsE,M ,F ` P (stt) E,M ,F ` lib
env = setgas (initenv (P (stt))) fenv = initenv (P (stt))
σ = initmem (P (stt) , lib)

E,M ,F ` FEther
([[
m′state

]]
, env′, fenv, args,P (stt)

) execute,T
H⇒ 〈σ ′, env′, fenv〉

(EXE-F)

E ` env, fenvM ` σ, binforF ` oparsE,M ,F ` P (stt) E,M ,F ` lib
env = setgas (initenv (P (stt))) fenv = initenv (P (stt))
σ = initmem (P (stt) , lib)

E,M ,F ` FEther
([[
m′state

]]
, env′, fenv, args,P (stt)

) execute,∞
H⇒ 〈σ ′, env′, fenv〉 ∨ env′. (gas)

→ (¬fenv. (gasLimit))
execute,T
H⇒ 〈σ ′, env′, fenv〉

. (EXE-IF)

37780 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

TABLE 9. Ratios of proof size to contract size in theorem-proving tactics.

limited by the gas cost. The second and third columns of
Table 9 list the ratios using Coq’s built-in tactics and our
automatic tactics, respectively. Obviously, the automatic tac-
tics reduce much of the proof workload. Moreover, according
to our experimental results, the ratio floats in a range is
influenced by the complexity of the target contract. Specif-
ically, the ratios obtained by the built-in tactics range from
approximately−0.5 to+10.0, whereas those of the automatic
tactics range from approximately −0.1 to + 0.3. Therefore,
the automatic tactics possess a better universal property than
the directly applied built-in tactics.

E. SELF-CORRECTNESS CERTIFICATION
The FEther interpreter is entirely constructed in Coq, which
confers a natural advantage over other program verifications
and analysis tools. The core of Coq is the trusted computation
base (TCB) [28], which satisfies the de Bruijn criterion.
In almost all program analysis tools, TCB self-verification
is arguable and paradoxical, so whether the TCB of a pro-
gram verification (analysis) tool satisfies the de Bruijn cri-
terion is an important indicator of the trustworthiness of the
verification.

The correctness of FEther is certified by its consistency
between the relational and computational definitions, the cor-
rectness of its essential properties, and the meta-properties of
its semantics.

First, we must prove that the operational semantics [29]
of Lolisa (the inductive relational forms) are equivalent to
the operational semantics (the executable function forms).
As desired in the CompCert project [25], we check whether
each evaluation in the relation semantics corresponds to the
symbolic execution in the executable semantics. For this
purpose, we construct a simulation diagram. Under identical
conditions, the relational and executable semantics must have
the same observable effect (same traces of the evaluation
process). This requirement is embodied in the following sim-
ulation diagram theory.

Theorem (simulation diagram) Let E,M ,F `ins σ, opars,
env, fenv, binfor be the initial evaluation environment, and let
Req represent the equivalence relationship between two terms.
Then, any relational semantic Srel and executable semantic
Sexe must satisfy the following simulation diagram:

Second, we must certify the correctness of the foundation
behavior of the executable semantics. As a simple instance,
we construct Lemma test_lemma_if_false, which certifies the
correctness of the following execution: For all statements s
and s′, if the if statement condition is false, FEther must exe-
cute the statement s′ of the false branch. By a similar process,
we certified that almost all of the executable semantics exhibit
standard behaviors.
Lemma (Test_Lemma_If_False):

∀ if false if state s s
′ n env pass,

if false = Econst (Vbool false)→

if state =
(
If if false s s

′
)
→

n > 0→(
FEther n initm pass env env if false

)
=

(FEther n init_m pass setgas (env) env s′).

Finally, we prove the meta-properties of these semantics.
The most basic properties in each layer are the progress and
preservation properties, which maintain the static-type safety
of the specification. For example, the progress and preserva-
tion of the expression layer are defined in Lemma expression
type safety. Because Lolisa is a strongly typed language
defined in terms of GADTs, the progress and preservation
properties of expressions are easily proven by simplifying
the semantics function. The progress and preservation prop-
erties of other layers are certified similarly. Besides the
meta-properties, we proved the execution determinism of all
semantics in Coq. The Lemma execution determinism is one
example of the relevant proofs.
Lemma (Expression Type Safety):
1. If e : exprτ0τ1 and e 7−→ e′, then e′ : exprτ ′0τ1 .
2. If e : exprτ0τ1 , then either e (v) or some e′ exists such

that e 7−→ e′.
Lemma (Execution Determinism):
∀sm

[[
mfinal

]] [[
m′final

]]
nenvpass,

FEther n m pass env env s =
[[
mfinal

]]
→

FEther n m pass env env s =
[[
m′final

]]
→

mfinal = m′final

At present, the core functions have been completely veri-
fied. The correctness certification includes 74 theorems and
lemmas, and approximately 4000 lines of Coq proof code.

V. FORMAL VERIFICATION OF SMART
CONTRACT BY FETHER
To demonstrate the power of FEther in real-world practice,
this section takes a smart contract extracted from the contract
demonstration [2] as a case study to illustrate the verification
process and features using FEther. Next, we will compare
FEther with other similar works. The experimental environ-
ment was five identical personal computers with equivalent
hardware of 8 GB memory and a 3.20 GHz CPU. All com-
puters were run on Windows 10 and CoqIDE 8.8.

VOLUME 7, 2019 37781

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Figure 10. Formal version of the wallet function.

A. CASE STUDY: HYBRID VERIFICATION
At the beginning, the .sol file of smart contract is automati-
cally translated line-by-line from Solidity into Lolisa with the
assistant of translator. As a simple example, we consider the
wallet function encoded in Appendix B. This function, which
executes initial coin offering, is a segment of the Solidity
contract extracted from [2], and its formal model is translated
into Figure 10. As the comparison between Figure 10 and
Appendix B, the consistency of smart contract is guaranteed
strictly.

One of the most important requirements (not in time) of
wallet is the application time validation. Clearly, it is invalid
that the current time now is below privilegeOpen or above
privilegeClose. Hence, if the current time now in the wallet
function is outside the range open to close, the smart contract
must be discarded.

According to EVI theory, verification in the proposed
FSPVM is founded on simultaneous Hoare logic and
reachability logic. Meanwhile, verification in FEther com-
bines higher-order theorem proving and symbolic execution.
By virtue of FEther, programmers can mechanically define
theHoare style properties following the formula abstract (19),
where the wildcard ‘‘∗’’ represents other specific arguments.

P {minit}FEther (minit,FRWprograms, ∗)Q {mfinal} (19)

According to the reachability logic, the Hoare logic deriva-
tion is equivalent to the trusted operational semantics exe-
cution. Therefore, the execution of FEther can be seen as
a derivation based on Hoare logic. The inference process
is given by expression (20). The specific initial memory
state minit is the precondition of the program verification.

Guided by the semantics of each statement cici, FEther logi-
cally modifies the current memory state mi−1 to a new post-
conditionQi {mi} (i.e., the precondition of cici). The theorems
need only judge wither the final output memory statemn after
executing the final statement matches the correct memory
state mfinal . Most importantly, this verification procedure is
automated in the proposed FSPVM.

P {minit} c0
FEther(minit,c0,∗)
−→ Q0 {m0} c1

FEther(m0,c1,∗)
−→ Q1 {m1} c2→→ cnQn {mn}

?
←→ Q {mfinal} (20)

During this process, verifiers can alter the verification
patterns (including static, concolic, and selective symbolic
execution) by defining the preconditions in different ways.
For example, programmers can vary the wallet function by
the following three approaches.

1) STATIC SYMBOLIC EXECUTION
The basic verification pattern is static symbolic execution.
When the initial arguments are inductively defined with
quantifiers such as ∀ and ∃, the traditional symbolic exe-
cution will traverse all cases. For example, the Lemma
no_in_time defined in Figure 11 marked by red box defines
(INT I64 Unsigned?X) and (INT I64 Unsigned?Y) by defin-
ing ?X and ?Y as inductive values representing all possi-
ble situations of time as ∀ (x : Int) (INT I64 Unsigned x) and
∀ (y : Int) (INT I64 Unsigned y). And they will be written
into the initial memory state m3 defined in the figure. Next,
the requirement on time of wallet function should be defined
under first-order logic as (t < x ∧ y > t) ∨ (t > x ∧ y < t).

37782 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Figure 11. Execution and verification of wallet with abstract symbol arguments using.

Figure 12. Manual verification of the wallet function.

Obviously, the expected final memory state should be smart
contract termination.

Finally, as shown in Figure 11, using the automatic tac-
tics designed for FEther, the wallet function and corre-
sponding lemma can be automatically executed and verified
under only 1 line proof code within 5.772 s. As shown
in Figure 12, if users directly invoke the built-in tactics
of Coq, the lemma is verified with 21 lines proof code,
even though the proof code has been simply optimization.
Compared with the manually verification using the built-in
tactics provided by Coq, FEther has a higher level automated
degree.

2) CONCOLIC EXECUTION
Second, FEther supports concolic symbolic execution that
gets real inputs. To accurately simulate execution processes
on real world hardware, FEther is built in a virtual execution
environment. Therefore, a FEther execution can be regarded
as a special dynamic analysis. As shown in Figure 13,
the entering points test and code wallet are unmodified, and
privilegeOpen, proviledgeClose and now are replaced with
specific values 0, 3, and 4, marked by blue box. The other
constraints are still inductively defined as abstract symbols.
The function correctness of concolic execution with specific
inputs is then proven by the no_in_time lemma. Because the

VOLUME 7, 2019 37783

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Figure 13. Concolic verification of the wallet function.

Figure 14. Selective symbolic execution of the wallet function.

inputs are specified, the number of possible execution paths
is limited, and the execution time reduces to 5.534 s.

This pattern leaves the extensible space for testing. Pro-
grammers can develop assistant tools to generate automatic
test scripts that modify the input values.

3) SELECTIVE SYMBOLIC EXECUTION
Third, the wallet function can be varied by exploiting
the selective symbolic execution of FEther. As shown in
Figure 14, programmers can extract the core code segment
if (now < open||now > close){throw(); } from the wal-
let function and represent it by a new definition such as
msp’ in red box, which can be individually verified by the
msp_correct lemma. After combining the verified msp’ into

the wallet function, the verification of the no_in_time lemma
can be finished by invoking the msp_correct lemma. Clearly,
the msp_correct can also assist the proofs that use the msp’
code segment.

In this manner, the verified code segment can be invoked
repeatedly by new properties’ verification and improve
the reusability of theorem proving technology. Besides,
the FEther can also simplify loop proofs. In the standard
approach of higher-order theorem proving, program loops are
proven by manually identifying the invariants. Searching the
loop invariants of simple loops, however, is a tedious process.
By combining symbolic execution and higher-order theorem
proving, we simultaneously facilitate the use of BMC and the
search for loop invariants. Employing BMC, we first limit

37784 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Figure 15. Debugging of the wallet function in Coq.

TABLE 10. Feature comparison of FEther semantics and existing software quality tools.

FEther to K or fewer executions of FRWprogram. In general,
if L executions (where L ≤ KL ≤ K) of an FRWprogram
can generate the corresponding final memory state, the loops
existing in the FRWprogram can be directly unfolded as a set
of identical normal-sequence statements within finite time, as
inferred from Rule 21. If the FRWprogram fails to generate
the corresponding final memory state after K executions,
we can set the loop statement as a breakpoint (by virtue of the
selective symbolic execution) and separate the FRWprogram
into two parts, denoted as the head and tail parts. Next,
we must locate the loop invariants and encapsulate them into
an invariant memory state I {mi}, which serves as the final
memory state of the head part and the initial memory state of
the tail part. This procedure is embodied in Rule 21 below.

P {minit} c0→→ ciI {mi} (head)

and

ciI {mi} →→ cnQ {mfinal} (tail) (21)

Under the composition rule of Hoare logic, we have
P {minit} c0 →→ cnQ {mfinal}. In this way, simple loops can
be proven automatically, reducing the workload of searching
loop invariants. Moreover, complex loops that cannot be ver-
ified by model checking and symbolic execution technology
can be proved by higher-order theorem-proving technology.

4) DEBUG MECHANISM
Finally, the FEther provides a debug mechanism for users.
Because FEther is developed in the GERM memory model,
it provides debug tactics such as step, which enables step-by-
step debugging of a smart contract. The formal intermediate

memory states obtained during the execution and verification
process of a Lolisa program using FEther are shown in the
proof context (right panel of Figure 15). In this manner,
programmers can follow the intermediate memory states to
locate the bugs.

Clearly, users of FEther can flexibly choose the most suit-
able method for verifying their programs.

B. FEATURE COMPARISON OVERVIEW
FEther is the first hybrid symbolic execution engine for
Ethereum smart contracts. To illustrate the advantages of
FEther over the solvers of other tools, we require a compelling
benchmark, such as a testing suite or analysis time. Given that
FEther is constructed on Coq, however, and directly executes
and verifies the Solidity source code of smart contracts rather
than compiling Solidity at the bytecode level, such a bench-
mark is difficult to find. For a fair comparison, we instead
compared the presence and absence of various features in
FEther and in other tools. The compared features are listed
and defined below:

• Spec.: Suitable as a formal specification of the EVM
language

• Exec.: Executable on concrete tests
• Certif.: Certifiable self-correctness
• Verif.: Verifiable properties of EVM programs
• Debug.: Provision of an interactive EVM debugger
• Gas.: Tools for analyzing the gas complexity of an EVM
program

• Level.: Analysis or verification level of code
• Logic.: Type of essential logic supported
• Hybrid.: Support for hybrid verification methods

VOLUME 7, 2019 37785

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Figure 16. Detailed architecture for extending Lolisa to other
general-purpose programing languages.

Table 10 overviews the results of the feature comparison.
Obviously, only FEther, the core of KEVM, and Mythril
support the Spec, Exec, Verif, Debug, and Gas features.
The Certif feature of FEther is ‘‘verifying’’ rather than ‘‘test-
ing,’’ which improves the reliability of FEther (at least in
theory) over testing methods such as KEVM and Mythril.
Moreover, the execution and verification level of FEther
is ‘‘Solidity’’ rather than ‘‘byte code,’’ which avoids the
error risk during compiling. FEther also supports higher-
order logic, which improves the expressive ability. Moreover,
the fundamental verification theory of FEther is the calculus
of inductive construction instead of the satisfiability modulo
theories or Boolean satisfiability problem. Therefore, the sit-
uations that cannot be evaluated and verified do not exist.
Finally, FEther is the only tool that supports hybrid formal
verification.

According to our previous experimental results [24],
the symbolic execution time of the optimized current version
of FEther is approximately 0.03 s per statement when the

initial arguments are specified and approximately 0.07 swhen
the initial arguments are inductively defined by quantifiers.
The execution efficiency of FEther far exceeded that of the
interpreters that are developed in Coq in accordance with the
standard tutorial developed in Coq. The current version also
supports the verification of smart contract models adhering to
the Ethereum ERC20 standard.

VI. DISCUSSION
A. CONTRIBUTIONS
This article overcomes the final challenge noted in our
previous work: completing the proof engine of FSPVM-E.
We now highlight the significant contributions of the present
work. First, we confirmed that FEther maintains consistency
between the Solidity source code and the respective formal
specifications. To our knowledge, FEther is the first proof
engine of Ethereum that supports the hybrid verification tech-
nology of Coq. Second, it provides a debug mechanism by
which programmers can directly debug target smart contracts
in Coq. Third, the correctness of FEther has been completely
certified in Coq, implying that FEther is a reliable proof
engine. Fourth, we provided a proprietary set of automatic
tactics for FEther, which will help programmers to finish
their property verifications with a high degree of automation.
Finally, we optimized the high-level evaluation efficiency of
FEther. We confirmed the utility of our previous works in
building a certified executable proof engine in Coq.

B. EXTENSIBILITY AND UNIVERSALITY
Obviously, the definitional interpreter of an intermediate
must faithfully capture the intended behaviors of programs
written in real-world programing languages. From a flexibil-
ity perspective, the same interpreter should also be applicable
to multiple programing languages. Therefore, extensibility
and universality were considered in the FEther design from
the beginning of its development.

As mentioned in [14], we deliberately incorporated exten-
sible space in Lolisa. This space is sufficient for expanding
features such as pointer formalization and for implementing
independent operator definitions. It can easily incorporate the
features of mainstream programing languages by adding new

TABLE 11. Semantics of constant Lolisa values.

TABLE 12. Semantics of array types at the value layer.

37786 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

TABLE 13. Semantics of mapping values.

TABLE 14. Semantics of struct at the value layer.

TABLE 15. Semantics of field access at the value layer.

TABLE 16. Semantics of left array values at the expression layer.

TABLE 17. Semantics of field access at the value layer.

TABLE 18. Semantics of left constant values at the expression layer.

TABLE 19. Semantics of reference expressions Evar, Efun, Econ, and Epar at the expression layer.

typing rule constructors in the formal abstract syntax and
the respective formal semantics. Moreover, the formal syntax
of Lolisa is simplified by encapsulating it in syntax sugar
notations N . As shown in Rules 22 and 23, Lolisa is treated

as the core formal language, which is transparent to real-
world users. The formal syntax and semantics of Lolisa are
logically classified into a general component G and n special
components Si (see Rule 22 below). A general-purpose

VOLUME 7, 2019 37787

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

TABLE 20. Semantics of right constant values at the expression layer.

TABLE 21. Semantics of right struct values at the expression layer.

TABLE 22. Semantics of right binary operations at the expression layer.

TABLE 23. Semantics of right unary operations at the expression layer.

TABLE 24. Semantics of contract declarations.

TABLE 25. Semantics of variable declarations.

TABLE 26. Semantics of struct declarations.

programming language Li can be formalized identically to
the Lolisa subset G∪Si, whereLi is symbolically represented
by the syntax sugar notation Ni. Here, the syntax symbols
are nearly identical to the original syntax symbols of Li.
This method assigns each Li with a respective notation set
Ni that satisfies Ni ⊆ Lolisa. This relation, defined by

Rule 23 below, also improves the extendibility of Lolisa.

Lolisa
def
= G ∪

(⋃n

i=0
Si
)

(22)
∀i ∈ N.Li ↔ Ni ≡ G ∪ Si (23)

As the respective definitional interpreter of Lolisa, FEther
inherits the extensibility advantages of Lolisa, and supports

37788 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

TABLE 27. Semantics of function call statements.

TABLE 28. Semantics of modifier statements.

TABLE 29. Semantics of function statements.

TABLE 30. Semantics of assignment statements.

all of its syntaxes and semantics. Moreover, at the same
level, any executable semantic ��i is independent of any other
semantic, and all same-level semantics are encapsulated into
an independent module M (see Rules 24 and 25 below).
Higher-level semantics can access the APIs of lower-level
semantics in different Ms, but the implementation details
are transparent among the levels. Therefore, as shown in
Figure 16, FEther is also easily extendible to new executable
semantics in Lolisa without affecting the old semantics.

ModuleK
[
∀i, j ∈ N, i 6= j.��i

⋂
��j = ∅

]
(24)

��hm :=Ma. (Ii]��i])⊕Mb.
(
Ij
]
��j
])
. . .⊕Mq. (In]��n]) (25)

C. LIMITATIONS
Although the novel features in the current version of FEther
confer many advantages, some limitations remain.

First, the FEther operates at the Solidity source-code
level. Although it will not import vulnerabilities in the
compiling process, it cannot guarantee the correctness of
the bytecode when the compiler is untrusted. One possi-
ble solution is developing a low-level version of FEther
that executes the bytecode generated by the compilation.
One must then prove equivalence between the Solidity exe-
cution results and the respective execution results of the
bytecode.

VOLUME 7, 2019 37789

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

Second, similar to other symbolic execution tools, the
FEther traverses all possible execution paths, which risks the
path explosion problem. Given that Ethereum smart contracts
are lightweight or even featherweight programs, however,
the path explosion problem is almost precluded. Moreover,
in situations that domeet the path explosion problem, the exe-
cutions can be merged as invariants by the theorem-proving
technology, and provenmanually. This solutionwould exploit
the selective symbolic execution pattern of FEther.

Finally, although the current version of FEther achieves
property verifications by a few simple automatic tactics, it is
not yet fully automated. In occasional situations, program-
mers must analyze the current proof goal and choose suitable
verification tactics. Fortunately, this goal can be achieved by
optimizing the design of the tactic evaluation strategies.

VII. CONCLUSIONS AND FUTURE WORK
This paper tackled the final challenge of the FSPVM
blueprint: developing a definitional interpreter in Coq. The
interpreter, called FEther, supports hybrid symbolic execu-
tions of Ethereum smart-contract formal verifications. Based
on the GERM memory model, FEther accurately simulates
the execution behaviors of Solidity in Coq, and guarantees the
consistency between source code and corresponding formal
models. For evaluating complete situations during the FEther
execution process, we also designed a set of tactics based
on the Ltac mechanism of Coq, and combined them into a
huge automatic tactic. Using this tactic, the FEther can semi-
automatically execute and verify different smart contracts in
a symbolic virtual machine with high-level automation and
reusability. To demonstrate the power of FEther in the real
world, a sample smart contract was verified by conventional
symbolic executions in FEther (simultaneous concolic and
selective symbolic executions). We also compared the essen-
tial features of FEther and the cores of relevant tools. The
self-correctness of FEther had been already confirmed by
certifying the main functions in Coq. The current version of
FEther supports the verification of smart contracts following
the ERC20 standard. Finally, we discussed the extensibility
and universality of FEther, and proposed an initial scheme for
systematically simplifying and extending it, thus supporting
the formalization of multiple general-purpose programming
languages.

We hope that FSPVM-E will become sufficiently pow-
erful and user-friendly for easy program verification by
general programmers. Currently we are formalizing higher-
level smart-contract development languages of the EOS
blockchain platform [30]. We are also aiming to extend and
optimize the current version of FEther. Future versions will
support the assembly language of Solidity and corresponding
bytecode such as [31]. Next, we will extend the FSPVM-E
to support the Ethereum and EOS simultaneously. A formal
verified interpreter of these languages will be developed
based on the GERM platform. We will then build a general
formal verification toolchain for blockchain smart contracts
based on the EVI. Finally, we will build a general formal

Algorithm 1 Partial Source Code of Wallet Smart Contract.
Function wallet() public payable {
uint index= indexes[msg.sender];
uint open; uint close; ui nt quota; uint rate; uint partiLimit;
uint totalLimit; uint finaiLimit;

if (privileges[msg.sender]) {
open= privilegeOpen;
close = privilegeCiose;
quota= privilegeQuota;
rate = RATE_PRf VlLEGE;
} else {
open = ordinaryOpen;
close = ordinaryCiose;
quota= ordinaryQuota;
rate = RATE_ORDINARY;
}

if(now < open II now > close) {
revert();
}
if (subscription >= TOKEN_TARGET_AMOUNT) {
revert();
}
if (index= 0) {
revert();
}
if(deposits[index]>= quota) {
revert();
}
if(msg.val ue = O) {
revert();
}
if(msg.val ue% 1000000000000000000 != 0) {
revert();
}
partiLimit =quota- deposits[index];
total Limit = ((TOKEN_TARGET_AMOUNT - subscription)
- (TOKEN_TARGET_AMOUNT- subscription)% rate) / rate*
1000000000000000000;

if(parti Limi t <= totaiLimit) {
final Limit = partiLimit;
} else {
final Limit = total Limit;
}

if(msg.value <= final limit) {
safe.transfer(msg.value);
deposits[index] += msg.value;
subscription += msg.val ueI I 000000000000000000 * rate;
Transfer(msg.sender, msg.value);
} else {
safe.transfer(fi naiLi mit);
deposits[index] += finallimit;
subscription += final Limit I I 000000000000000000 *rate;
Transfer(msg.sender, finaiLimit);
msg.sender.transfer(msg.vaI ue- fi naI Limit);
}
}

verification toolchain for blockchain smart contracts based
on EVI, with the ultimate goal of automatic smart-contract
verification.

37790 VOLUME 7, 2019

Z. Yang, H. Lei: FEther: An Extensible Definitional Interpreter for Smart-Contract Verifications in Coq

APPENDIX A
The executable semantics of FEther are given in Table 11 to 30.

APPENDIX B
See Algorithm 1.

ACKNOWLEDGMENTS
The authors wish to thank Marisa for the kind assistance in
the verification of this experiment, and Enago for its linguistic
assistance during the preparation of this manuscript.

REFERENCES
[1] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Accessed:

2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf
[2] Ethereum Solidity Documentation. Accessed: Jul. 2, 2018. [Online]. Avail-

able: https://solidity.readthedocs.io/en/develop/
[3] (2016). The DAO Attacked: Code Issue Leads to $60 Million Ether

Theft. Accessed: Jun. 17, 2017. [Online]. Available: https://www.coindesk.
com/dao-attacked-code-issue-leads-60-million-ether-theft/

[4] Ethereum Parity Hack May Impact ETH 500,000 or $146
Million. Accessed: Dec. 2, 2017. [Online]. Available: https://www.
crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-
impact-eth-500000-146-million/

[5] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart
contracts smarter,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secu-
rit, New York, NY, USA, Oct. 2016, pp. 254–269.

[6] Z. Yang and H. Lei. ‘‘A general formal memory framework in Coq for
verifying the properties of programs based on higher-order logic theorem
proving with increased.’’ Accessed: Mar. 27, 2018. [Online]. Available:
https://arxiv.org/abs/1803.00403

[7] Z. Yang and H. Lei, ‘‘Formal process virtual machine for smart contracts
verification,’’ Int. J. Performability Eng., vol. 14, no. 8, pp. 1726–1734,
Aug. 2018.

[8] C. Cadar, D. Dunbar, and D. Engler, ‘‘KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,’’ in Proc.
OSDI, 2008, pp. 209–224.

[9] B. Ekici et al., ‘‘SMTCoq: A plug-in for integrating SMT solvers into
Coq,’’ in Proc. Int. Conf. Comput. Aided Verification, 2017, pp. 126–133.

[10] V. R. Pratt, ‘‘Semantical consideration on floyo-hoare logic,’’ in Proc.
SFCS, Oct. 1976, pp. 109–121.

[11] G. Roşu and A. Ştefănescu, ‘‘From hoare logic to matching logic
reachability,’’ in Proc. Int. Symp. Formal Methods, vol 7436, 2018,
pp. 387–402.

[12] The Coq Proof Assistant Reference Manual. Accessed: Jul. 23, 2018.
[Online]. Available: https://coq.inria.fr/distrib/current/refman/

[13] P. Wadler, ‘‘Propositions as types,’’ Commun. ACM, vol. 58, no. 12,
pp. 75–84, Dec. 2015.

[14] Z. Yang and H. Lei. ‘‘Lolisa: Formal syntax and semantics for a subset
of the solidity programming language.’’ Accessed: Apr. 1, 2018. [Online].
Available: https://arxiv.org/abs/1803.09885

[15] G. Wood. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Accessed: Apr. 2018. [Online]. Available: http://yellowpaper.io/

[16] Y. Hirai, ‘‘Defining the ethereum virtual machine for interactive theorem
provers,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur., vol. 10323,
vol. 2017, pp. 520–535.

[17] D. P. Mulligan, S. Owens, K. E. Gray, L. Ridge and P. Sewell, ‘‘Lem:
Reusable engineering of real-world semantics,’’ in Proc. ICFP, Sep. 2014,
vol. 49, no. 9, pp. 175–188.

[18] E. Hildenbrandt et al., ‘‘KEVM: A complete formal semantics of the
ethereum virtual machine,’’ in Proc. IEEE 31st Comput. Secur. Found.
Symp. (CSF), Jul. 2018, pp. 204–217.

[19] H. Barendregt and E. Barendsen, ‘‘Autarkic computations in formal
proofs,’’ J. Autom. Reasoning, vol. 28, no. 3, pp. 321–336, Apr. 2002.

[20] Mythril Documentation and User’s Manual. Accessed: Apr. 23, 2018.
[Online]. Available: https://github.com/b-mueller/mythril/

[21] H. Xi, C. Chen, and G. Chen, ‘‘Guarded recursive datatype constructors,’’
ACM SIGPLAN, vol. 38, no. 1, pp. 224–235, Jan. 2003.

[22] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, ‘‘Symbolic model checking
without BDDs,’’ in Proc. TACAS, Amsterdam, The Netherlands, 1999,
pp. 193–207.

[23] P. Barbara, ‘‘Semantics of typed lambda-calculus with constructors,’’
in Logical Methods in Computer Science. Braunschweig, Germany:
Technische Universität Braunschweig, 2011, pp. 561–576. [Online].
Available:https://lmcs.episciences.org/page/lmcs-ev

[24] Z. Yang and H. Lei, ‘‘Optimization of executable formal interpreters
developed in higher-order logic theorem proving systems,’’ IEEE Access,
vol.5, pp. 70331–70348, 2018. [Online]. Available: https://ieeexplore.ieee.
org/document/8531607

[25] The CompCert C verified Compiler: Documentation and User’s Man-
ual. Accessed: Apr. 23, 2018. [Online]. Available: http://compcert.
inria.fr/man/manual.pdf

[26] R. O’Connor, ‘‘Simplicity: A new language for blockchains,’’ in Proc.
Workshop Program. Lang. Anal. Secur., New York, NY, USA, Oct. 2017,
pp. 107–120.

[27] A. Bove and P. Dybjer, ‘‘Dependent types at work,’’ in Proc. LNCS, 2009,
pp. 57–99.

[28] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, ‘‘Authentication in
distributed systems: Theory and practice,’’ ACM Trans. Comput. Syst.,
vol. 10, no. 4, pp. 265–310, Nov. 1992.

[29] D. Miller, ‘‘Formalizing operational semantic specifications in logic,’’
Electron. Notes Theor. Comput. Sci., vol. 246, pp. 147–165, Aug. 2009.

[30] EOS Blockchain Platform. Accessed: Apr. 23, 2018. [Online]. Available:
https://eos.io/

[31] S. Amani, M. Bégel, M. Bortin, and M. Staples, ‘‘Towards verifying
ethereum smart contract bytecode in Isabelle/HOL,’’ in Proc. 7th ACM
SIGPLAN Int. Conf. Certified Programs Proofs, Jan. 2018, pp. 66–77.

[32] I. Sergey, A. Kumar, and A. Hobor. (2018). ‘‘Scilla: A smart contract
intermediate-level language.’’ [Online]. Available: https://arxiv.org/abs/
1801.00687

ZHENG YANG received the bachelor’s degree
from the School of Information and Software
Engineering, University of Electronic Science and
Technology of China, in 2017, where he is cur-
rently pursuing the Ph.D. degree. His research
interests include programming language theory,
formal methods, and program verification.

HANG LEI received the Ph.D. degree in computer
science from the University of Electronic Science
and Technology of China, China, in 1997. After
graduation, he conducted research in the fields of
real-time embedded operating systems, operating
system security, and program verification, as a
Professor with the Department of Computer Sci-
ence, University of Electronic Science and Tech-
nology of China, where he is currently a Professor
(a Doctoral Supervisor) with the School of Infor-

mation and Software Engineering. His research interests include big data
analytics, machine learning, and program verification.

VOLUME 7, 2019 37791

	INTRODUCTION
	RELATED WORK
	FOUNDATIONAL CONCEPTS AND DEFINITIONS
	PREDEFINITIONS
	MODIFCATIONS FOR OPTIMIZATION

	FETHER IMPLEMENTATION
	ARCHITECTURE
	INSTRUCTION SET ARCHITECTURE OF FETHER
	THE FETHER PARSER
	AUTOMATION TACTICS
	SELF-CORRECTNESS CERTIFICATION

	FORMAL VERIFICATION OF SMART CONTRACT BY FETHER
	CASE STUDY: HYBRID VERIFICATION
	STATIC SYMBOLIC EXECUTION
	CONCOLIC EXECUTION
	SELECTIVE SYMBOLIC EXECUTION
	DEBUG MECHANISM

	FEATURE COMPARISON OVERVIEW

	DISCUSSION
	CONTRIBUTIONS
	EXTENSIBILITY AND UNIVERSALITY
	LIMITATIONS

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	ZHENG YANG
	HANG LEI

