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ABSTRACT The flux-linkage characteristics of bearingless induction motors (BIMs) are nonlinear, and the
models established by the general analytical method cannot accurately reflect the actual characteristics of
BIMs. Thus, a novel method for nonlinear modeling of BIM flux linkage is proposed in this paper. The
main objective of this method is to improve the accuracy of the flux linkage model based on the least square
support vector machine (LSSVM) technique by applying the gray wolf optimization (GWO) algorithm to
determine the optimal kernel parameter and regularization parameter of the LSSVM automatically. In this
method, all BIMsflux linkage data are obtained from the finite-elementmethod. In this paper, the relationship
between input and output of the nonlinear flux linkage model is studied, and the precision model of
GWO-LSSVM flux linkage is obtained. The simulation results demonstrate that the GWO-LSSVM model
has high prediction accuracy and strong prediction ability. In addition, the GWO-LSSVMmodel is compared
with other models. From this simulation comparison, it can be concluded that GWO-LSSVM modeling has
the characteristics of higher accuracy.

INDEX TERMS Bearingless induction motor, gray wolf optimization, least squares support vector machine,
nonlinear model, finite element analysis.

I. INTRODUCTION
In modern industrial production, such as high-speed machine
tools, turbo-molecular pumps, centrifuges, compressors,
electromechanical energy storage and some military fields,
there is an increasing demand for high-speed drive perfor-
mance of motors. Therefore, high-speed ultra-fine processing
technology has become the most important part of advanced
manufacturing technology [1]–[3]. When the rotor is running
at high speed, the frictional resistance caused by the mechan-
ical bearing increases, and the wear is intensified, resulting
in heat generation of the motor. This reduces the operating
efficiency of the motor, shortens the service life of the motor
bearing, and increases the burden on the maintenance of
the motor bearing. Because of the limitations of mechanical
bearings, ordinary motors cannot operate normally in ultra-
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high-speed working environments [4], [5]. The bearingless
motor is an emerging model of suspension motor that has
developed rapidly in recent years. The bearingless motor
not only has the characteristics that the rotor does not need
mechanical bearing support during the operation, but also
inherits the characteristics of non-lubrication, no wear and no
mechanical noise of the magnetic bearing motor [6]. In terms
of structure, the bearingless motor has a certain similarity
with the related structure of the magnetic bearing and the
AC motor [7]. The windings generating the suspension force
are superimposed on the stator of the motor, so that the
suspension force winding and the armature winding of the
motor are combined into a whole [8]. The basic principle of
a bearingless motor can be realized in various conventional
motors, such as induction motors, reluctance motors, perma-
nent magnet motors, etc [9]–[12]. Among the various types
of bearingless motors, the bearingless induction motor (BIM)
has many merits such as simple construction, low cost and
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highmechanical strength, which has attracted extensive atten-
tion of scholars. It is one of the earliest andmost popular types
of bearingless motors [13], [14].

A portion of the air gap magnetic field of the BIM is
generated based on the torque winding of the original induc-
tion motor. Another portion of the air gap magnetic field
is generated by the introduction of the current into the sus-
pension force winding [15], [16]. The two magnetic fields
are superimposed on each other, so the air gap magnetic
field distribution is very complex, which leads to the serious
nonlinear characteristics of the magnetic linkage of the BIM.
In order to realize the steady suspension and operation of
BIM, the real-time control of electromagnetic torque and
radial suspension forces which are obtained by setting the
partial derivatives of themagnetic energy according to the vir-
tual displacement method are indispensable [17]. However,
the magnetic energy is obtained by the inductance matrix of
the flux linkage and the winding. Thus, obtaining an accurate
flux linkagemodel is essential to accurately describe the elec-
tromagnetic and mechanical relationships of the BIM. Tradi-
tional analytical methods cannot express their real qualities
in mathematical modeling, affecting the control precision and
running performance of the BIM [18]. The method presented
in this paper effectively compensates for these defects.

In recent years, the neural network has been successfully
used to predict the accuracy of nonlinear modeling [19].
However, in the practical application, when the neural net-
work is in the modeling process, it often encounters the
problems of overfitting and local optimization [20], [21].
In order to overcome the shortcomings of neural networks,
the support vector machine (SVM) has been developed and
widely used. SVM is a newmachine learning algorithm based
on statistical learning theory and structural risk minimization
principle [22]. In the limited sample information, the best
compromise between the model complexity and the ability
to identify samples is achieved to obtain the expected gener-
alization ability. SVM has made great progress in the iden-
tification, classification and regression analysis of linear and
nonlinear systems. It has the advantages of no dimensionality
disaster and avoiding local minima and better generalization
performance [23], [24]. However, the major drawback of
SVM is the need to solve quadratic programming problems
in practical applications. In order to solve the above problem
of SVM, least square support vector machines (LSSVMs)
have been developed. Compared with the SVM algorithm,
the LSSVM algorithm uses the square term in the optimiza-
tion index, changes the inequality constraint to the equality
constraint, and transforms the quadratic programming prob-
lem into a linear equation solving problem, which simplifies
the calculation [25]. However, during the modeling process,
the key parameters in the LSSVM cannot be effectively opti-
mized, which will not achieve the desired results [26]. The
paper uses the gray wolf optimization (GWO) algorithm to
solve this knotty optimization problem [27].

Mirjalili et al. [28] put forward GWO in 2014, which
is a new swarm intelligence optimization algorithm.

This algorithm is derived from the simulation of the pre-
dation behavior of the gray wolf population. The goal of
optimization is achieved through the tracking, enclosing,
and hunt the prey by the wolves. The GWO algorithm has
the characteristics of simple principle, easy implementation
and strong global search ability [29]. Compared with some
proposed intelligent optimization algorithms, such as genetic
algorithms (GA) and particle swarm optimization (PSO),
GWO has significant advantages in convergence speed and
solution accuracy. At present, it has been successfully applied
in the fields of job shop scheduling, engineering optimization,
support vector machine classification and economic dispatch
assignment, effectively solving a variety of optimization
problems. Therefore, GWO algorithm has a broader appli-
cation prospect.

In [30], in order to develop a new and effective prediction
system, this study explores the full potential of SVM by using
the improved GWO strategy. An improved GWO algorithm
is proposed to identify the most recognizable features of
the main prediction. Firstly, the PSO algorithm is used to
generate diversified initial positions, and then the current
position of the population in the discrete search space is
updated by GWO, so that the optimal feature subset based
on SVM is obtained to achieve better classification. In [31],
from the perspective of computation, it is proved that the
reliability optimization problem of complex systems with
nonlinear programming properties is a difficult problem in
non-deterministic polynomials. In this work, few complex
reliability optimization problems are solved by using a new
natural-inspired meta-heuristic GWO algorithm. This com-
parative study shows that GWO is superior to some traditional
optimization algorithms. In [32], an innovative fuzzy control
system adjustment method is proposed, which uses the GWO
algorithm to reduce the parameter sensitivity. The GWO
algorithm is used to solve the optimization problem, where
the objective function includes an output sensitivity function.
The motivation for GWO is based on its low computational
cost.

In this paper, the GWO is applied to optimize the ker-
nel function parameter and the regularization parameter of
LSSVM. The nonlinear modeling of the flux linkage model
using the sampled data set obtained from the experimental
prototype by the finite elements method is showed. The
results show that the model can effectively reflect the mag-
netic properties of BIM. The paper is organized as follows.
Section II introduces the nonlinear flux linkage modeling
analysis. Section III shows the regression theory of LSSVM.
Optimization of LSSVM parameters based on GWO is dis-
cussed in Section IV. The Section V describes the simulation
research of the BIM nonlinear modeling based on GWO-
LSSVM, followed by the conclusion in Section VI.

II. NONLINEAR FLUX LINKAGE MODELING ANALYSIS
BIM adds a set of the suspension winding to the stator
slots of the original induction motor [33], [34]. Assume that
the pole-pair numbers of the torque winding is Pt and the
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magnetic field current frequency isωt. The pole-pair numbers
of the other set of the suspension winding is Ps and its
magnetic field current frequency is ωs [35]. The magnetic
fields produced by the torque winding and the suspension
winding interact with each other, and then BIM produces a
controllable suspension force. It should meet the following
conditions

1) Pt = Ps ± 1,
2) ωt = ωs
3) Themagnetic fields generated by the windings have the

same direction of rotation.
The nonlinear model function of the BIM flux linkage is as

follows

ψ = ψ(θ, it, is, l0) (1)

where ψ is the flux linkage of the BIM, θ is the rotor angle
of BIM, it is the torque winding current, is is the suspension
winding current and l0 is the eccentric distance of the BIM
rotor. As can be seen from the above equation, ψ is a nonlin-
ear function composed of θ , it, is and l0. In addition, the exact
mathematical model of the flux linkage cannot be obtained
from common analytical methods [36]. Therefore, this paper
adopts the GWO to optimize the parameters in the LSSVM,
and establishes the exact nonlinear model of the flux linkage.

III. REGRESSION THEORY OF LSSVM
SVM is a new and potential classification technology pro-
posed by Vapnik and Corinna Cortes. The role is to solve the
convex optimization problem [37]. LSSVM is an extension
of SVM. The inequality constraint is replaced by equality
constraint, avoiding solving the quadratic programming prob-
lem. The LSSVMs proposed by Khalil and El-Bardini [38]
and Suykens et al. [39] can solve the linear KKT system.
In this section, the regression theory of LSVSVM is briefly
introduced.

The LSSVM problem can be described as follow, given the
training set of l group data {xi, yi}li=1, Among them, xi ∈ Rn

is the input data, yi ∈ R is the output data. The LSSVMmodel
is expressed in the feature space as the following function

y(x) = wT8(x)+ b (2)

where w ∈ RH is a weight vector, the nonlinear mapping
function 8: Rn → RH maps the input space to the high
dimensional Hilbert space, and b ∈ R is a bias term. Note
that the dimension of feature space cannot be infinite when
it is not specified. Although LSSVM can be used to estimate
functions, the optimization problem is described below

min J (w, ξ ) =
1
2
‖w‖2 +

1
2
γ

l∑
i=1

ξ2i (3)

Subject to the equality constraints

yi = wT8(xi)+ b+ ξi i = 1, . . . , l (4)

where J is the objective function, γ is the regularization
parameter and ξi is the relaxation factor. LSSVM defines

a loss function that is different from standard SVM. The
inequality constraints are changed to equality constraints,
and w can be obtained from the dual space. In order to deal
with the optimization problem of formula (3), the Lagrange
function is established as

L(w, b, ξ, α) = J (w, ξ )−
l∑
i=1

αi[wT8(xi)+b+ξi − yi] (5)

where α = (α1, α2, α3, . . . αl)T is a vector with a Lagrange
multiplier, which is also called a support vector.

According to the KKT optimal condition, the calculated
method is expressed as

∂L
∂w
= 0→ w =

l∑
i=1
αi8(xi)

∂L
∂b
= 0→

l∑
i=1
αi = 0

∂L
∂ξi
= 0→ αi = γ ξi i = 1, 2, . . . l

∂L
∂αi
= 0→ wT8(xi)+ b+ ξi − yi = 0

(6)

After eliminating variables ξi and w by replacement, the
optimization problem can be transformed into solving the
following linear equations[

0 1Tl×1
1l×1 �+ γ−1I

] [
b
α

]
=

[
0
y

]
(7)

where y = [y1, y2, y3, · · · yl]T , 1l×1 = [1, 1, · · · 1]T , I =
diag[1, 1, · · · 1], � =

{
�ij
}
l×l , and �ij = 8(xi)8(xj), i =

1, 2, 3, · · · l. The kernel function K (xi, x) = 8T (xi) ·8(x) is
defined as a symmetric function satisfying the Mercer theory.
The common kernel function forms are linear, radial basis,
polynomial and so on. Since the radial basis kernel function
can make the classifier correctly predict the unknown data
with high precision, the kernel function of this paper selects
the following radial basis kernel function

K (xi, x) = exp
(
−|xi − x|2

2σ 2

)
(8)

where σ is a constant defining the kernel width. Then we can
obtain the decision function of LSSVM regression as follows

y(x) =
l∑
i=1

αiK (xi, x)+ b (9)

It can be seen that in order to achieve the best predictive
performance of LSSVM, it is important to optimize the reg-
ularization parameter γ and the kernel function parameter σ .
The regularization parameter γ mainly controls the trade-off
between the smoothness of the function and the accuracy of
the approximation error. The kernel parameter σ primarily
affects the distribution complexity of the sample data in the
high dimensional feature space. Therefore, the GWOmethod
is introduced to optimize the parameters (γ , σ ) of the LSSVM
to improve the generalization ability.
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IV. OPTIMIZATION OF LSSVM PARAMETERS
BASED ON GWO
A. GWO ALGORITHM
The Gray Wolf Optimization Algorithm (GWO) is a bio-
logical heuristic optimization algorithm whose essence is to
imitate the social hierarchy and hunting nature of the Gray
Wolf family. Gray wolves are social animals that establish a
strict gray wolf pyramid level [40], [41].

FIGURE 1. Social hierarchy of gray wolves.

From Figure 1, the social priority of the gray wolves is
shown. The alpha (α) wolves, who are at the top of the
pyramid, have supreme authority and lead other wolves. The
α wolves are primarily responsible for predation and decision
making, and other wolves must follow their orders. The beta
(β) wolves, who are at the second layer of the pyramid,
are second only to the α wolves. The β wolves are mainly
responsible for assisting the α wolves in making decisions.
The β wolves can control other individuals and feedback
information about other wolves to the α wolves. The delta
(δ) wolves, at the third layer of the pyramid, are mainly
responsible for decision implementation of α wolves and β
wolves. The status of δ wolves is higher than that ofωwolves.
The omega (ω) wolves, at the bottom of the pyramid, are
mainly responsible for helping to capture their prey. In GWO,
the α wolves lead gray wolves to search and catch prey.
When the wolves are very small from the range of prey, the
α wolves command the β and δ wolves to siege the prey and
let the surrounding ω wolves track and hunt until they finally
succeed in capturing their prey.

For the mathematical modeling of the GWO algorithm,
the hunting behavior of the gray wolf is simulated. Figure 2
shows the location update of the gray wolves. We need to
randomly produce a pack of wolves in the search area. The
wolves with a higher social hierarchy search for estimate
the location of the prey. The wolves with the lowest priority
are instructed to approach the prey and surround the prey,
eventually capturing it successfully.

The modeling of GWO is as follows: in a K -dimensional
search space, a group with N wolves is generated. After

FIGURE 2. Gray wolf position update.

determining the position of the prey, the wolves first surround
the prey. In the process, the distance between the prey and the
gray wolves can be expressed as

ED = | EC · EXp(t)− EX (t)| (10)
EX (t + 1) = EXp(t)− EA · ED (11)

where t represents the number of iterations, EX is the current
position vector for the gray wolves after t iterations, and EXp
is the current position vector of the prey after t iterations.
In every case of ametaheuristic algorithm, a randomwalkwill
be incorporated to find the global optimum solutionwithmost
accuracy or also closer to the expected solution. In GWO,
the random is incorporated through the coefficient vectors
given by the following equations:

EA = 2Ea · Er1 − Ea (12)
EC = 2 · r2→ (13)

where Er1 and Er2 are random vectors in [0, 1].With the increase
of iteration time, Ea is linearly decreased from 2 to 0. There-
fore, the value of EA also randomly varies between [-a, a].
Moreover, when the random value of EA is in [1, +1] the gray
wolves will attack the prey, in dicating that the next location
of the wolves will be closer to the prey. In the process of
hunting, the function of EC is seen as the effect of an obstacle
approaching the prey in nature.

Surrounding the prey in the GWO algorithm is an impor-
tant stage in the hunting process, which provides the best
solution for moving to the prey in the search space. The
simulated whole group of wolves was led by the α wolves.
In each iteration, we can achieve the location of the α, β, and
δ wolves, and force the lowest level wolves to update their
location. The following equations illustrate the mathematical
representation of such hunting actions:

EDα = | EC1 · EXα − EX | (14)
EDβ = | EC2 · EXβ − EX | (15)
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EDδ = | EC3 · EXδ − EX | (16)
EX1 = EXα − EA1 · ( EDα) (17)
EX2 = EXβ − EA2 · ( EDβ ) (18)
EX3 = EXδ − EA3 · ( EDδ) (19)

EX (t + 1) =
EX1 + EX2 + EX3

3
(20)

In summary, the α, β, and δ wolves are gained by calcu-
lating the corresponding fitness, and the best three solutions
can be used to estimate the possible location of the prey. The
method for updating the location of the other wolves is shown
in equations (14)–(20).

B. THE COMPUTATIONAL COST
An interesting part of using the GWO is the computational
cost. In terms of function optimization, GWO has obvious
advantages compared with other cluster intelligent optimiza-
tion algorithms [42]. The artificial bee colony (ABC) opti-
mization algorithm, simulated annealing (SA) algorithm and
GWO are discussed to compare the running time. The ABC
algorithm is also a novel optimization algorithm proposed in
recent years. According to the related literature, its perfor-
mance is better than traditional optimization algorithms such
as genetic algorithms (GA) and particle swarm optimization
(PSO). Then, the above three optimization algorithms are
used to optimize formula (9).

The method of collecting data is the average running time
of the algorithm running 30 times independently. The maxi-
mum number of iterations is used as the algorithm termina-
tion condition, and the population size of each algorithm is
the same, that is, the maximum function evaluation times are
the same. When the computational time of the function is the
same, the different running time can reflect the difference of
the structure of each algorithm. The running times of ABC,
SA and GWO are 0.939s, 1.104s and 0.848s, respectively.
It can be concluded that the selected GWO has certain advan-
tages in terms of computational cost. The results show that
compared with the other two algorithms, GWO has a faster
speed of optimization. The ABC and SA use serial computing
to calculate fitness function values, while the GWO design
can adopt the large-scale operation mode, which greatly
improves the running speed of the algorithm. Social hierarchy
plays an important role in the process of wolves effectively
catching prey, which can accelerate the convergence speed
and reduce the calculation cost. In summary, GWO is used to
optimize the parameters in the LSSVM.

C. GWO-LSSVM
It is well known that the values of the regularization parameter
γ and the kernel parameter σ directly affect the accuracy of
the LSSVM prediction model [43]. Therefore, in this paper,
the above two parameters of LSSVM are optimized by GWO
method. The specific steps of GWO-LSSVM are summarized
as follows:

Step 1: Set the parameters range associated with GWO, γ
and σ in the LSSVM.
Step 2: Initialize the wolf population and use γ and σ to

describe the location vector for each wolf.
Step 3: Learn the training data and the test data using the

initialized LSSVM, and then evaluate the fitness value of the
individual gray wolf.
Step 4: Classify gray wolves to identify the location of α

wolves, β wolves, δ wolves and ω wolves.
Step 5: Accurately update the location of each wolf in

order to create new populations, evaluate the fitness value,
and compare it with the previous iteration.
Step 6: Confirm if the maximum iteration is achieved, and

if so, end the iteration and get the optimized γ and σ . Other-
wise, skip to step 3 to optimize the parameters continuously.
Step 7: Employ the optimized γ and σ of LSSVM to set

up the prediction model, and predict the test data.
The flowchart of the GWO-LSSVM model is shown

in Fig.3.

FIGURE 3. Flowchart of the GWO-LSSVM model.

V. NONLINEAR MODELING OF BIM BASED ON LSSVM
A. INTRODUCTION TO BIM SPECIFICATIONS
In this paper, Matlab R2016a is used to realize the nonlinear
modeling of BIMs flux linkage by GWO-LSSVM algorithm.
A BIM nonlinear model with rated power of 3kW and rated
voltage of 380V is obtained with GWO-LSSVM. Due to
the limited experimental conditions, there is no correspond-
ing experimental equipment to measure the flux linkage.
Therefore, when researching the method of BIM nonlinear
modeling, the flux linkage values under three conditions are
obtained by finite element analysis. However, the model built
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will lay a solid foundation for the actual magnetic flux mod-
eling in the future, creating conditions for further improving
system performance and real-time control [44], [45]. The
main specifications of BIM are shown in Table 1.

TABLE 1. Motor specifications and major dimensions.

B. ANALYSIS OF GWO-LSSVM MODELING RESULTS
In the simulation, εRMSE is defined as the root mean square
error and εMAXE is defined as the maximum absolute error.
εRMSE and εMAXE are used as indicators for evaluating the
predictive performance of the flux linkage model. εRMSE is
used as the objective function of GWO algorithm

εRMSE =

√√√√1
l

l∑
i=1

(yi − ŷi)2 (21)

where yi and ŷi are the actual value and the output value
respectively, i = 1, 2, 3 · · · l. When εRMSE reaches the min-
imum value, the regularization parameter γ and the kernel
function parameter σ achieve the optimal parameters
Another parameter εMAXE is defined as follows

εMAXE =
N

max
j=1
|yj − ŷj| (22)

where yj and ŷj are the actual value and the output value
respectively, j = 1, 2, 3 · · ·N .

Table 2 shows the selected parameters of the GWO algo-
rithm. Before starting the optimization process, some param-
eters of GWO should be selected. The size of the wolves will
directly affect the timing and accuracy of the optimization.
More wolves will consume more time, but too few wolves
may not find the best gain matrix. According to the informa-
tion contained in the wolves, the number of wolves is chosen
to be 30. To ensure that the gain matrix can be selected over
a wide range of values, the upper and lower limits are chosen
to be 1e06 and 1e-03. The maximum number of iterations is a
key parameter in the simulation andmust be carefully chosen.

The optimal values of LSSVM parameters optimized by
GWO are γ = 1000 and σ = 4.2. To compare models
performance, the LSSVM, GWO-LSSVM SA-LSSVM and
ABC-LSSVM are used to set up the nonlinear model of the
BIM flux linkage. When the number of maximum iterations
is set to 40, εRMSE and εMAXE of the selected test data are

TABLE 2. Selected parameters of GWO.

TABLE 3. Comparison of prediction effects between four models.

compared. The result is shown in Table 3. After the LSSVM is
used to model the BIM flux linkage, the values of εMAXE and
εMAXE are large, indicating that the model’s prediction per-
formance is poor. Using GWO-LSSVM can reduce the error
by three to four times. The values of εRMSE and εMAXE of flux
linkage model established by SA-LSSVM are also relatively
large, and the prediction performance is not ideal. In addition,
it is worth mentioning that ABC-LSSVM modeling has high
prediction accuracy, but slightly inferior to GWO-LSSVM
modeling. It can be seen that the nonlinear model of the BIM
flux linkage has better fitting ability and prediction accuracy
by using GWO algorithm to optimize LSSVM parameters.

The SA algorithm is a relatively traditional optimization
algorithm, and its idea has been proposed as early as 1953.
The ABC algorithm is also a new optimization algorithm
proposed in recent years, which has good optimization perfor-
mance. The GWO algorithm has the characteristics of simple
operation, less adjustment parameters, and easy program-
ming. The iterative convergence of the three optimization
algorithms is compared. Figure 4 shows the comparison of the
iterative convergence performance of these algorithms.When
the number of iterations using SA-LSSVM is 27, the fitness
value tends to be stable. The number of iterations using
ABC-LSSVM is 23, and the fitness value tends to be stable.
However, the number of iterations using GWO-LSSVM is 20,
and the line of fitness value tends to be smooth. From the
comparison results, it can be found that the GWO-LSSVM

FIGURE 4. Comparison of iterative convergence.
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model has higher convergence accuracy. Then, from table 3
and Figure 4, it can be concluded that GWO-LSSVM has bet-
ter robustness, prediction accuracy and optimization speed.

In order to study the GWO-LSSVM model of the BIM
flux linkage, the sample data is first collected from the finite
element method. At each 5-degree rotor position, a set of data
was measured and a total of 73 sets of data were measured.
Among them, the 37 sets of flux linkage data for even rotor
position angle numbers are used for training, and 36 sets of
flux linkage data for odd rotor position angle are used for
testing. In addition, the rotor angle θ , torque winding current
it, suspension winding current is and rotor eccentricity l0 are
the inputs of GWO-LSSVMmodel, while the flux linkage of
the BIM is the output of the model. So the nonlinear model
of flux linkage is five-dimensional, but it cannot be expressed
in a plane coordinate. In this paper, the relationship between
variables and flux linkage is expressed in a two-dimensional
coordinate plane.

The GWO-LSSVM model of the BIM flux linkage was
established under three different conditions as follows. In the
figure, the hollow dots and asterisks are represented as
training data or test data, and the dotted lines are regarded
as fitting output or predicting output. The following fig-
ures show the comparison of the training and test output
results of the model, respectively. When the suspension force
winding current is is fixed at 3A and the torque winding
current it is 2A and 4A, the comparison results are shown
in Fgures.5 and 6. Figure 5 shows the comparison between
the training data value and the model output value (fitting
value). Figure 6 shows the comparison between the testing
data value and the model output value (predicting value).
The current of suspension force winding is fixed, the cur-
rent of torque winding increases from 2A to 4A, and the
magnitude of flux linkage curve increases a lot. It can be
seen from the figure below that when is = 3 and it = 5,
the flux linkage is sinusoidal, while is = 3 and it = 2,
the flux linkage has no rule of the former. BIM flux linkage is
nearly sinusoidal, which can obtain stable suspension force.
If the error of modeling is large, it will affect the control of
suspension force. Therefore, it is very important to obtain

FIGURE 5. Comparison results of training data and fitting output.

FIGURE 6. Comparison results of tested data and predicting output.

FIGURE 7. Comparison results of training data and fitting output.

FIGURE 8. Comparison results of tested data and predicting output.

reliable flux model. The fitting and predicting values are in
good agreement with the actual values, which shows that
the model has high prediction accuracy. When the torque
winding current it is fixed at 3A and the suspension force
winding current is is 3A and 5A, the comparison results are
shown in Figures.7 and 8. Figure 7 shows the comparison
between the training data value and the fitting data value.
Figure 8 shows the comparison between the testing data value
and the predicting data value. When is = 3 and it = 3,
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FIGURE 9. Comparison results of training data and fitting output.

FIGURE 10. Comparison results of tested data and predicting output.

the flux linkage has a sinusoidal shape, and when is = 5
and it = 3, the flux linkage is not an ideal sinusoidal shape.
The method of obtaining the flux linkage by GWO-LSSVM
can also obtain good prediction performance under the con-
dition that the flux linkage data is not ideal. The comparison
results of the nonlinear flux linkage curves when the rotor is
eccentrically 0.4 mm and the rotor is not eccentric are shown
in Figures.9 and 10. Figure 9 shows the comparison between
training data value and fitting output value. Figure 10 shows a
comparison between testing data value and predicting output
value. Due to the influence of gravity and eccentricity of the
BIM rotor, the unilateral magnetic pull force will be caused.
In order to ensure stable operation, a large enough suspension
force is required to stably support the rotor. In other words,
the radial suspension force generated by the suspension force
winding current can overcome the unilateral magnetic pulling
force. However, the winding current has not changed. There-
fore, the following highly accurate rotor eccentric flux link-
age model can be obtained.

It can be seen from the Figure5 to Figure 10 that the
results of the fitting output and the predicting output are
quite consistent with the data obtained by the finite element
analysis. The root means square error of the test sample and
the model test output is 0.000263, and the maximum absolute

error is 0.000064, which indicates that the model has better
robustness and prediction accuracy.

VI. CONCLUSION
A novel GWO-LSSVM modeling method is proposed in this
paper. By this method, a nonlinear flux linkage model is
introduced in the BIMflux linkageψ(θ , it, is, l0). Besides, the
training data, the model does not need any knowledge of the
magnetic characteristics of the motor. Therefore, this method
is suitable for modeling of the BIM with strong nonlinear
characteristics. The primary novelty is using the proposed
GWO-based approach, which aims at optimizing the param-
eters of the LSSVM. From the simulation results, it can be
concluded that the nonlinear model built by GWO-LSSVM
has superior generalization ability, which makes the model
have high precision and strong predictive ability. In addition,
it is interesting to note that the modeling process and basic
idea of the GWO-LSSVM model are universal and can be
applied to nonlinear modeling of other types of bearingless
motors.
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