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ABSTRACT The extreme learning machine (ELM) represents one of the most successful approaches in
the field of machine learning recently, especially in solving classification and regression problems. A key
advantage of the multiple hidden layers’ ELM (MELM) is that the computational time required to train the
neural network is significantly lower because it uses random selection and analytical solution, respectively,
to determine the weights of the hidden nodes and output nodes. However, due to the use of too many or
too few hidden nodes during the training process, the phenomenon of over-fitting or under-fitting may
occur in the prediction process. Aiming at the design of MELM neural network architecture, this paper
applies the enhanced random search method to the MELM network model and proposes an incremental
MELM training algorithm based on the Cholesky decomposition, namely, random search enhancement of
incremental regularized MELM (EIR-MELM). The algorithm automatically determines the optimal MELM
network structure by increasing the hidden nodes one by one and calculates the output weights by flexibly
adopting the Cholesky decomposition method, which effectively reduces the computation burden caused by
the incremental process of the hidden layer neurons. However, some hidden nodes added to the network may
only have a weak influence on the final output of the network. Adding randomly generated nodes directly to
the network only increases the complexity of the neural network structure. Therefore, in the process of adding
hidden nodes, EIR-MELM adds a selection phase. According to the principle of structural risk minimization,
the optimal node is selected from multiple randomly generated nodes to be added to the network, so that
EIR-MELM has a more compact network structure. The experimental researches on the benchmark datasets
for classification problems show that EIR-MELM can effectively determine the optimal MELM network
structure automatically with high calculation efficiency.

INDEX TERMS Extreme learning machine, multiple hidden layers, incremental learning procedures,
Cholesky decomposition, random search enhancement.

NOMENCLATURE
N The total number of training samples.
X Set of input samples.
T Set of labeled samples.
M The number of hidden layers.
Lmin The minimum number of hidden nodes
Lmax The maximum number of hidden nodes.

The associate editor coordinating the review of this manuscript and
approving it for publication was Huanqing Wang.

L The number of used hidden nodes, which is
used as a subscript in the following symbols to
indicate there are L hidden nodes in the corre-
sponding hidden layer.

B1,L The bias matrix of the first hidden layer having
L hidden nodes.

B2,L The bias matrix of the second hidden layer hav-
ing L hidden nodes.

B3,L The bias matrix of the third hidden layer having
L hidden nodes.
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W1,L The input weightmatrix that links the input layer
to the first hidden layer having L hidden nodes.

W2,L The matrix of connection weights between the
first hidden layer and the second hidden layer
having L hidden nodes.

W3,L The connection weight matrix between the sec-
ond hidden layer and the third hidden layer hav-
ing L hidden nodes.

w1,j The weight vector that links the input nodes and
the jth node in the first hidden layer.

b1j The bias of the jth node in the first hidden layer.
β1,L The connection weight matrix between the first

hidden layer and the output layer having L hid-
den nodes.

β1,L+1 The connection weight matrix between the first
hidden layer and the output layer having L + 1
hidden nodes.

β2,L The connection weight matrix between the sec-
ond hidden layer and output layer having L
hidden nodes.

β3,L The connection weight matrix between the third
hidden layer and the output layer having L hid-
den nodes.

βM ,L The connection weight matrix between theM th
hidden layer and the output layer having L hid-
den nodes.

(β1,L)j The j-th row of the matrix β1,L , which indicates
the connection weights between the jth node in
the first hidden layer and the output nodes.

β+1,L TheMoore-Penrose (MP) generalized inverse of
the connection weight matrix β1,L .

β+2,L The MP generalized inverse of the connection
weight matrix β2,L .

H1,L The output matrix of the first hidden layer hav-
ing L hidden nodes.

H1,L+1 The output matrix of the first hidden layer hav-
ing L + 1 hidden nodes.

H2,L The prediction output matrix of the second
hidden layer having L hidden nodes.

H3,L The prediction output matrix of the third hidden
layer having L hidden nodes.

HM ,L The prediction output of the M thhidden layer
having L hidden nodes.

H+1,L The MP generalized inverse of the matrix H1,L .
H+2,L The MP generalized inverse of the matrix H2,L .
H2∗,L The expected outputmatrix of the second hidden

layer having L hidden nodes.
H3∗,L The expected output matrix of the third hidden

layer having L hidden nodes.
W2HE,L The learning parameter of the second hidden

layer having L hidden nodes.
W3HE,L The learning parameter of the third hidden layer

having L hidden nodes.
WMHE,L The learning parameter of theM th hidden layer

having L hidden nodes.

IL The L-order identity matrix, where L is the
number of hidden nodes.

IL+1 The L+1-order identity matrix, where L is the
number of hidden nodes.

ξL The expected learning accuracy used to deter-
mine the optimal number of hidden nodes,
where L is the number of hidden nodes.

ξM The expected learning accuracy used to deter-
mine the optimal number of hidden layers,
where M is the number of hidden layers.

R1,L The cost function of the EIR-MELM prediction
model having L hidden nodes and one hidden
layer.

RM ,L The cost function of the EIR-MELM prediction
model having M hidden layers and L hidden
nodes.

t(x) The final output of EIR-MELM neural network.

I. INTRODUCTION
Neural networks have been extensively used in many fields
due to their capabilities to approximate complex nonlinear
mappings directly from the input samples. There are many
different kinds of common network model, such as BP neural
network [1], RBF neural network [2] and Hopfield neural
network [3]. The strong learning abilities of the neural net-
works are achieved through the propagation of information
between neurons [4]. Seen from the viewpoint of the direction
of the neural network internal information transfer, two main
neural networks have been investigated: feedforward type
neural network and feedback type neural network. Extreme
Learning Machine (ELM) described in this paper is a novel
single hidden layer feedforward neural networks (SLFNs)
algorithm [5]–[7]. According to the network architectures,
SLFN network architectures can be divided into two cate-
gories: the SLFNs with additive hidden nodes and radial basis
function (RBF) networks [8], [9] which use RBF nodes in the
hidden layer.

Extreme Learning Machine (ELM) is an ideal regression
and classification algorithm due to its fast training speed
and better generalization performance. It mainly has the fol-
lowing characteristics. First of all, in the process of training
and testing, ELM is able to approximate the tag variable
of arbitrarily complex and nonlinear small set [10], [11],
and the error is almost close to zero. Secondly, ELM can
generate a unique optimal solution to avoid falling into the
local optimality during the training and testing of the neural
network models. Finally, a key advantage of ELM is that the
computational time required for training the neural networks
is significantly lower, because it uses random selection and
analytical solutions to determine the weights of hidden nodes
and output nodes, respectively. In order to further improve
the performance of ELM, the regularization extreme learning
machine (RELM) is put forward in [12] from the principle
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of structural risk minimization in statistical learning theory.
By introducing regularization parameters to weigh structural
risks and empirical risks, it allows ELM to have better gener-
alization ability [13], [14].

However, how to obtain the appropriate number of hidden
layer neuron nodes remains a challenging task. If too many
or too few hidden nodes are used in the training process,
it may lead to the phenomenon of over-fitting or under-
fitting during the prediction process. To design the neural net-
work architecture of ELM, the incremental Extreme Learning
Machine (I-ELM) is proposed in [15]. Different from the
traditional neural network theory, this algorithm adopts an
incremental form to add hidden nodes to the network one
by one. The function of SLFNs as a universal approximation
can be maintained by simply selecting the number of hidden
nodes and properly adjusting the connection weight matrix
between the hidden layer and the output layer. During the
execution of this improved ELM, the establishment of the net-
work model is completely automatic, and users do not need to
intervene in the learning process by manually tuning control
parameters. However, when the new hidden nodes are added
to existing networks, retraining the network model will take a
significant amount of training time. To solve the above prob-
lems, Feng et al. [16] proposed a simple and effective method
to automatically determine the number of hidden nodes
of ELM, which is called error minimized extreme learning
machine (EM-ELM). This method can add randomly gener-
ated hidden nodes to ELM one by one or group by group. For
the added group, its size can be arbitrarily changed. In the
growth of ELM network structure, the connection weight
matrix between the hidden layer and the output layer is grad-
ually updated in a progressive incremental manner. However,
recent research has shown that some hidden nodes added to
the network may only have a weak impact on the final net-
work output, and adding randomly generated nodes directly
to the model only increases the complexity of the structure.
Therefore, Lan et al. [17] proposed an enhanced EM-ELM
based on the random search method, namely EEM-ELM. The
algorithm adds a selection phase in the process of adding
hidden nodes. According to the principle of error minimiza-
tion, the optimal node is selected from a number of randomly
generated nodes and added to the network. Compared to
EM-ELM, EEM-ELMhas amore compact network structure.
However, EEM-ELM still has two problems in need of solu-
tion. Firstly, the initial hidden layer output matrix may not be
a full rank matrix, which will affect the accuracy of the calcu-
lation results. Secondly, due to over-fitting, EM-ELMmethod
cannot always maintain better generalization performance.
In order to effectively avoid the above problems, an improved
EEM-ELM is proposed in [18] based on the regularization
method, called the enhancement of incremental regularized
extreme learning machine (EIR-ELM). In each step of the
learning process to update the network structure, multiple
hidden nodes are randomly generated primarily, and then the
optimal hidden nodes are selected and added to the existing
network according to the principle of error minimization.

When new hidden nodes are added one after another,
EIR-ELM is always able to recursively update the connec-
tion weight matrix utilizing a fast computation format. The
number of hidden nodes determines the learning accuracy and
generalization ability of the regularization method, and it is
also a key factor that must be confirmed in advance when
designing the RELM network structure. In order to avoid
the disadvantages and difficulties in artificially selecting the
number of hidden nodes, Zhang and Wang [19] proposed
an incremental RELM training algorithm based on Cholesky
decomposition (CF-RELM), which can automatically seek
the optimal number of hidden nodes. The algorithm calcu-
lates the output weight by utilizing Cholesky decomposition
approach, and has the advantages of high prediction accuracy
and fast calculation speed, which is applicable to chaotic time
series prediction. In order to further expand the applicable
scope of the regularization method, an improved incremental
RELM (II-RELM) is put forward in [20]. The algorithm can
automatically search the optimal network structure by gradu-
ally adding new hidden nodes one by one, and update the con-
nection weight matrix with less calculation cost and higher
accuracy. The neural network generalized inverse (NNGI)
based on II-RELM is applied to two-motor synchronous
decoupling control. The simulation indicates that the pro-
posed algorithm has excellent performance in predictive con-
trol. It realizes the decoupling control between velocity and
tension.

When dealing with input data with complex noise signals
and high-dimensional information, or with more categories,
the accuracy of the model established by traditional ELM is
greatly declines. The literature [21] starts from the improve-
ment of its network structure. On the basis of the traditional
ELM three-layer structure, the number of hidden layers is
increased to form a neural network with one input layer,
multiple hidden layers and one output layer, namely multiple
hidden layers ELM (MELM). MELM inherits the idea that
ELM randomly initializes the weight matrix and bias vector
of the first hidden layer, and calculates the parameters of the
newly added hidden layer by forcing the actual output of
the hidden layer to be as close as possible to the expected
output, thus build a neural network model with multiple
hidden layers. Compared with the traditional ELM model,
MELM can effectively improve the prediction accuracy by
optimizing the transmission of network parameters layer by
layer between different hidden layers, and has the advantages
of proper approximate accuracy, high convergence speed and
not easily falling into local optimization. Despite the way
in which MELM randomly initializes the first hidden layer
parameters avoids the fact that the algorithm falls into local
optimum and over-fitting, but it also leads to the failure of
some hidden nodes in the model or the reduction of their
effect on the neural network, resulting in a large number of
redundant neuron nodes in the hidden layer. In addition, due
to the complexity of various training samples actually applied
in the training of MELM prediction model, it is difficult to
accurately give the optimal number of hidden nodes based on
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experience alone, so that MELM prediction model not only
has enough hidden nodes to ensure its learning accuracy, but
also has as few hidden nodes as possible to maintain its sim-
ple network structure, which often requires more reasonable
methods and theories for the selection of hidden nodes.

In order to realize the effective design of the MELM net-
work structure, simplify the calculation process and achieve
the desired accuracy requirements while reasonably selecting
the number of hidden nodes, the enhanced random search
method is applied to theMELMnetwork model. In this paper,
a recursive solution method for connection weight matrix
based on Cholesky decomposition is proposed, namely ran-
dom search enhancement of incremental regularized multiple
hidden layers ELM (EIR-MELM). The algorithm can adjust
the number of hidden nodes in the network and determine
the optimal network structure adaptively according to the
prediction data. In the process of increasing the number of
hidden nodes, a selection phase is added. According to the
principle of structural risk minimization, the optimal nodes
are selected from the randomly generated multiple hidden
nodes and added to the network, so that the EIR-MELM has
a more compact network structure. The benchmark datasets
of classification problems for different activation functions
of hidden nodes are used for empirical research. The results
show that compared with traditional MELM and other pop-
ular machine learning methods, EIR-MELM can produce
rapid response and robust prediction accuracy on a variety
of complex training datasets.

The rest of this paper is organized as follows: Section 2
presents a brief review of the basic concepts and related work
of multiple hidden layers ELM, Section 3 describes the pro-
posed EIR-MELM technique, Section 4 reports and analyzes
the experimental results, and finally, Section 5 summarizes
key conclusions of the present study.

II. BRIEF REVIEW OF MULTILAYER EXTREME
LEARNING MACHINE (MELM)
MELM tries to find a mapping relationship that makes the
output predicted by the extreme learning machine neural net-
work with multiple hidden layers infinitely close to the actual
given result. This mapping relationship will be specifically
reflected in the solution process of weight matrix and bias
vector of the hidden layer. In the training process of network
parameters, the number of hidden layers of MELM neural
network needs to be selected according to the change of
predicted data. In order to ensure that the final hidden layer
output is close to the expected hidden layer output, except
that the parameters of the first hidden layer are randomly
initialized, the parameters training process start from the
second hidden layer until all the parameters in the network
are calculated. In addition, during the process of solving
the model, the weight matrix and the bias matrix of each
hidden layer are acquired and recorded to calculate the final
predicted output result of the MELM neural network. In the
following algorithm flow, the solving process of the network
parameters will be explained in detail.

Consider N arbitrary distinct training samples {X ,T } =
{xi, ti} (i = 1, 2, · · · ,N ), there is an input sample X =
[x1, x2, · · · , xN ]T and a desired matrix T = [t1, t2, · · · , tN ]T

composed of labeled samples, where xi = [xi1, xi2,
· · · , xin]T ∈ Rn and ti = [ti1, ti2, · · · , tim]T ∈ Rm. Let
L denote the number of hidden nodes with activation func-
tion g(x). Meanwhile, it is assumed that all hidden layers
in MELM model contain the same number of hidden nodes.
During the execution of the MELM algorithm, the multiple
hidden layers in the network are first treated as a single
hidden layer, and then the parameters of the hidden layer
in MELM network containing only a single hidden layer
are randomly initialized, that is, the input weight matrix
W1,L = [w1,1,w1,2, · · · ,w1,L]T ∈ RL×n that links the input
layer to the first hidden layer, and the bias vector B1,L =
[b11, b12, · · · , b1L]T ∈ RL×N of the first hidden layer nodes.
SoH1,L ∈ RN×L is the output matrix of the first hidden layer,
it can be calculated as follows,

H1,L = g(W1,LX + B1,L)

=

 g(w1,1x1 + b11) · · · g(w1,Lx1 + b1L)
...

...

g(w1,1xN + b11) · · · g(w1,LxN + b1L)


= [ h1,1 · · · h1,L ] (1)

and whose scalar entries (h1,j)i = g(w1,jxi + b1j), (i =
1, 2, · · · ,N , j = 1, 2, · · · ,L) may be interpreted as the
output of the jth node in the first hidden layer with respect
to xi, where h1,j =

[
g(w1,jx1 + b1j) · · · g(w1,jxN + b1j)

]T ,
(j = 1, 2, · · · ,L),w1,j = [(w1,j)1, (w1,j)2, · · · , (w1,j)n]T is
the matrix of connection weights between n input nodes and
the jth nodes in the first hidden layer, and where b1j is the
bias of the jth node in the first hidden layer. Finally, the
matrix-vector productw1,jxi should be interpreted as the inner
product between matrix w1,j and vector xi.
The unique parameter to be calculated in the MELM is

the connection weight matrix β1,L between the first hidden
layer and the output layer, and which is detailed as β1,L =
[(β1,L)1, (β1,L)2, · · · , (β1,L)L]T ∈ RL×m, with the vector
components (β1,L)j = [(β1,L)j1, (β1,L)j2, · · · , (β1,L)jm]T

(j = 1, 2, · · · ,L) that represent the connection weight vector
between the jth node in the first hidden layer and m output
nodes. Utilizing the least-squares method it follows that

β1,L = H+1,LT (2)

where H+1,L is the Moore-Penrose (MP) generalized inverse
of the matrix H1,L , which can be obtained using the orthog-
onal projection method. That is, if (H1,L)TH1,L is nonsin-
gular, then H+1,L = (HT

1,LH1,L)−1HT
1,L , otherwise H

+

1,L =

HT
1,L(H1,LHT

1,L)
−1 when H1,LHT

1,L is nonsingular. A advan-
tage of adopting the MP method in the solution process is
that the above formula gains the solution matrix β1,L of
the least two-norm if (H1,L)TH1,L is nonsingular, a valuable
benefit when realizing that smaller weights may lead to better
generalization performance.
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Now the second hidden layer is added to the MELM neural
network, restoring the structure of neural network with two
hidden layers, and the two hidden layers are fully connected.
The prediction output matrix H2,L of the second hidden layer
can be obtained as

H2,L = g(W2,LH1,L + B2,L) (3)

where W2,L is the matrix of connection weights between the
first hidden layer and the second hidden layer. Since it is
assumed that the first hidden layer and the second hidden
layer contain the same number of neuron nodes, W2,L is
a square matrix. After the second hidden layer is added,
the notation H1,L denotes the output of the first hidden layer
with respect to all L hidden nodes. The matrix B2,L is the bias
of the second hidden layer.

According to the algorithm flow of MELM, it follows that
the expected output matrix H2∗,L of the second hidden layer
can be calculated as,

H2∗,L = Tβ+1,L (4)

where (β1,L)+ is theMP generalized inverse of the connection
weight matrix β1,L . The calculation method of (β1,L)+ is the
same as the previous discussion for H+1,L . In order to make
the predicted output of the second hidden layer in the MELM
neural network infinitely close to the expected output, it can
be assumed that H2,L = H2∗,L .
Subsequently we give the definition of the augmented

matrixW2HE,L = [B2,L W2,L ], which is the learning param-
eter of the second hidden layer and can be calculated as follow

W2HE,L = g−1(H2∗,L)H
+

2E,L (5)

where H+2E,L is the MP generalized inverse of the matrix
H2E,L = [ 1 H1,L ]T , 1 represents a one-column vector of
size N , and whose elements are the scalar unit 1. The symbol
g−1(x) denotes the inverse of activation function g(x) of
hidden nodes. The method to calculate H+2E,L is discussed
before.

In order to test the performance of MELM algorithm,
the experiments involved different activation functions for
classification and regression problems is conducted, and the
widely used Logistic sigmoid function g(x)=1/(1 + e−x) is
adopted.

When the connection weight matrixW2,L between the first
hidden layer and the second hidden layer and the bias matrix
B2,L of the second hidden layer are all solved, we can update
the predicted output matrix H2,L of the second hidden layer
to be

H2,L = g(W2,LH1,L + B2,L) = g(W2HE,LH2E,L) (6)

and then the connection weight matrix β2,L between the
second hidden layer and output layer is calculated as

β2,L = H+2,LT (7)

where H+2,L is the MP generalized inverse of the matrix H2,L ,
obtained using the approach described before.

Based on the above algorithm principle, we continue to
treat all the hidden layers in MELM neural network as two
hidden layers, that is, the first hidden layer represents one
hidden layer independently, and the subsequent hidden layers
are considered as one hidden layer. The parameters of the first
hidden layer including the weight matrix and the bias matrix
are randomly initialized. According to the calculation process
shown in the above formulas (1)-(7), the parameters and the
output matrix of the second hidden layer can be obtained.
Now the third hidden layer is added to theMELMnetwork,

which is restored to the neural network structure containing
three hidden layers. Since the neurons between each hidden
layer are all connected together, the prediction output matrix
H3,L of the third hidden layer can be calculated as

H3,L = g(W3,LH2,L + B3,L) (8)

whereW3,L is the connection weight matrix between the sec-
ond hidden layer and the third hidden layer, and B3,L is the
bias matrix of the third hidden layer. After the addition of the
third hidden layer, H2,L is considered as the predicted output
matrix of the second hidden layer.
When continuing the workflow of MELM algorithm,

the expected output matrixH3∗,L of the third hidden layer can
be calculated as follows

H3∗,L = Tβ+2,L (9)

where β+2,L is the MP generalized inverse of the connection
weight matrix β2,L , which can be obtained according to the
method discussed above. In order to meet the requirement
that the predicted output of the third hidden layer is infinitely
close to the expected output in the implementation ofMELM,
it can be assumed that H3,L = H3∗,L .
Given the augmented matrix W3HE,L = [B3,L W3,L ], it is

the learning parameter of the third hidden layer, where the
weight matrixW3,L and the bias matrix B3,L of the third hid-
den layer can be solved according to the following formula.

W3HE,L = g−1(H3∗,L)H
+

3E,L (10)

where H+3E,L is the MP generalized inverse of the matrix
H3E,L = [ 1 H2,L ]T , which is still obtained by the method
described above. 1 represents a one-column vector with N
elements, where each element is the scalar unit 1. The nota-
tion g−1(x) is the inverse of the activation function g(x) of
hidden nodes. Following the above calculation process, after
all the parameters of the hidden layer are solved, we can
update the prediction output matrix H3,L of the third hidden
layer as follows.

H3,L = g(W3,LH2,L + B3,L) = g(W3HE,LH3E,L) (11)

Therefore, the connection weight matrix β3,L between the
third hidden layer and the output layer can be calculated
according to the formula (12).

β3,L = H+3,LT (12)
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Finally, the final output t(x) ofMELMneural network with
three hidden layers can be expressed as

t(x) = H3,Lβ3,L (13)

In the MELM neural network, if the number of hidden
layers M ≥ 3, an iterative format can be adopted to imple-
ment the calculation process, that is, formula (3)-(7) is iter-
atively performed for M − 3 times until all hidden layer
parameters are solved. Finally, in order to better improve the
generalization ability of MELM neural network model and
make the network prediction output more stable, it should be
emphasized that the algorithm does not add all hidden layers
to the network at one time, nor does it calculate all hidden
layer parameters at one time, but adds one hidden layer after
another hidden layer to the network. Each time a new hidden
layer is added, the parameters of the newly added hidden
layer, including the weight matrix and the bias matrix, are
calculated immediately to prepare for the calculation of the
hidden layer parameters to be added next time.

III. RANDOM SEARCH ENHANCEMENT OF
INCREMENTAL REGULARIZED MULTIPLE
HIDDEN LAYERS ELM (EIR-MELM)
On the basis of the training process of MELM shown in
equations (1) to (13), its essence is to solve the connection
weight matrix βM ,L between the hidden layer and the out-
put layer, where the subscript M is the number of hidden
layers and the subscript L is the number of hidden nodes.
In view of equation (2), the solution of the connection weight
matrix given in [21] involves the inverse operation of the
higher-order matrix, the main drawback of this approach
lies in the use of a pseudo-inverse in the calculation (in the
Moore-Penrose sense), which can lead to numerical instabili-
ties if the effective training data set is not full rank. However,
this is unfortunately very often the case, with real-world
datasets. At the same time, during the training process of
optimizing the network structure, if he number of hidden
nodes L changes, it will take a large amount of computing
time to retain the network, thus the modeling efficiency of
MELM prediction model will be greatly reduced. The fol-
lowing approach proposes three improvements on the com-
putation of the original MELM: random search enhancement,
Tikhonov regularization and fast matrix calculations based on
Cholesly decomposition.

A. THE SOLUTIONS OF MELM BY
CHOLESKY DECOMPOSITION
Tikhonov [22] proposed a new method for solving ill-posed
problems, namely regularization method. Since then, reg-
ularization theory has always been the core thought of
many neural networks and machine learning algorithms.
Deng et al. [12] successfully applied the regularization
method to ELM, and further pointed out that ELM is estab-
lished based on the principle of empirical risk minimiza-
tion (ERM). When the sample size in the datasets is too
small, ELM is prone to over-fitting. According to the theory

of statistical learning [23], [24], the structural risk minimiza-
tion principle (SRM), which is equivalent to regularization,
is a strategy proposed to prevent over-fitting. On the basis
of ERM, It adds a regularization term to control the complex-
ity of the model. Therefore, the learning machine algorithm
with good generalization performance should consider using
SRM to replace ERM, and establish a model with better
prediction for both training data and unknown test data. It has
been proved in [25] that when the norm of the connection
weight matrix β1,L is small, the network tends to have bet-
ter generalization performance. Without loss of generality,
we assume that the number of hidden layers M = 1, and the
objective function L(β1,L) can be minimized as follows

minL(β1,L) =
∥∥H1,Lβ1,L − T

∥∥2 + C ∥∥β1,L∥∥2
= (H1,Lβ1,L − T )T (H1,Lβ1,L − T )+ CβT1,Lβ1,L (14)

where C > 0 is the tradeoff parameter between
∥∥β1,L∥∥2

and
∥∥H1,Lβ1,L − T

∥∥2. The partial derivative of the objective
function L(β1,L) with respect to the variable β1,L can be
obtained

∂L(β1,L)
∂β1,L

= −2HT
1,L(T − H1,Lβ1,L)+ 2Cβ1,L (15)

And set the partial derivative equal to zero and we get

2HT
1,LH1,Lβ1,L − 2HT

1,LT + 2Cβ1,L = 0 (16)

By further solving equation (16), we can obtain

(CIL + HT
1,LH1,L)β1,L = HT

1,LT (17)

where IL ∈ RL is the L-order identity matrix. When C > 0,
CIL is a positive definite matrix. It is easy to prove that
HT
1,LH1,L is a semi-positive definite matrix, as a result that

CIL +HT
1,LH1,L is a positive definite matrix. And because of

CIL + HT
1,LH1,L contains the item of CIL , it is also a non-

singular matrix. Therefore, we can get

β1,L = (CIL + HT
1,LH1,L)−1HT

1,LT (18)

The above regularization method adds L2 penalty term to
the cost function, namely L2 regularization (Tikhonov regu-
larization). Obviously, the traditional ELMmethod is just the
special case of the RELM method when C → 0.
On the basis of formula (17), let AL = CIL + HT

1,LH1,L ,
BL = HT

1,LT , then (17) can be rewritten as

ALβ1,L = BL (19)

Consequently, the process of solving β1,L can be transformed
into solving linear equations in the form of equation (19).
As the premise of applying Cholesky decomposition to solv-
ing the linear equations is that its coefficient matrix must
be a symmetric positive definite matrix. The above analysis
process indicates that the matrix AL satisfies the requirements
of symmetry and positivity, thus the solving process of the
connection weight matrix β1,L based on Cholesky decompo-
sition can be designed as follows.
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We first calculate the Cholesky decomposition result of the
matrixAL

AL = ULUT
L (20)

where UL is a lower triangular matrix with positive diagonal
elements. The non-zero element (uL)ij inUL can be calculated
by the element (aL)ij of AL according to equation (21).

(uL)ij =


((aL)ii −

i−1∑
n=1

(uL)2in)
1
2 i = j,

((aL)ij −
j−1∑
n=1

(uL)in(uL)jn)/(uL)jj i > j,

(21)

where i = 1, · · · ,L, j = 1, · · · ,L. By substituting equation
(20) into equation (19) and multiplying both sides of the
equation by U−1L , we can get the following results

UT
L β1,L = FL (22)

where FL = U−1L BL . So the process of solving β1,L is
equivalent to solving equation (22). Since FL = U−1L BL is
equivalent toULFL = BL , by comparing the elements on
both sides of the equation, the calculation formula of the
element (fL)i in FL can be obtained as

(fL)i =


(bL)i/(uL)ii i = 1,

((bL)i −
i−1∑
n=1

(uL)in(fL)n)/(uL)ii i > 1,
(23)

where i = 1, · · · ,L, (bL)i is the element at the corresponding
position of BL . Finally, on the basis of obtaining UL and FL ,
the elements of the connection weight matrix β1,L can be
calculated by the elements of UL and FL .

(β1,L)i =


(fL)i/(uL)ii i = L,

((fL)i −
L−i∑
n=1

(uL)i+n,i(β1,L)i+n)/(uL)ii i < L,

(24)

B. INCREMENTAL LEARNING PROCEDURES OF EIR-MELM
Suppose the initial number of the nodes in the first hidden
layer is L = 1, the output matrix of the first hidden layer
is H1,L , which has L hidden nodes. And the connection
weight matrix between the first hidden layer and the out-
put layer is β1,L . Compared with the solution method of
β1,L shown in (8), the calculation format of β1,L based on
Cholesky decomposition does not involve the inversion of
the higher-order matrix, and it can be achieved only by using
simple matrix four arithmetic operations. More importantly,
when the number of hidden nodes in EIR-MELM increases
from L to L + 1, the output matrix of the first hidden layer
changes from H1,L ∈ RN×L to H1,L+1 ∈ RN×(L+1), which
can be specifically expressed as follows

H1,L+1 =

[
H1,L

... h1,L+1

]
=

[
h1,1 · · · h1,L

... h1,L+1

]
(25)

where h1,j =
[
g(w1,jx1 + b1j) · · · g(w1,jxN + b1j)

]T , (j =
1, 2, · · · ,L + 1), then we can get

AL+1 = CIL+1 + HT
1,L+1H1,L+1

= C
[
IL 0
0 1

]
+

[
HT
1,L

hT1,L+1

]
[H1,L h1,L+1 ]

=

[
CIL + HT

1,LH1,L HT
1,Lh1,L+1

hT1,L+1H1,L C + hT1,L+1h1,L+1

]
=

[
AL QL+1
QTL+1 PL+1

]
(26)

where IL+1 ∈ RL+1 is the L+1-order identitymatrix,QL+1 =
[ hT1,L+1h1,1 · · · h

T
1,L+1h1,L ]

T , PL+1 = C + hT1,L+1h1,L+1.
Note that the purpose of introducing identity matrix IL+1 is
to get a positive definite matrix which is more stable in the
numerical calculation. Given the relationship between AL+1
and AL as shown in formula (26), we can make the following
judgment in accordance with the Cholesky decomposition
process shown in (21), the L(L + 1)/2 non-zero elements
(uL+1)11, (uL+1)21, · · · (uL+1)LL are equal to the non-zero
elements of UL in the Cholesky decomposition result UL+1
of AL+1, so there is no need to reevaluate. The matrix UL+1
can be obtained by calculating the L + 1 non-zero ele-
ments from (uL+1)(L+1)1 to (uL+1)(L+1)(L+1), and the specific
calculation process is as follows.

UL+1 =
[
UL 0
ūL+1 (uL+1)(L+1)(L+1)

]
(27)

where ūL+1 = [ (uL+1)(L+1)1 · · · (uL+1)(L+1)L ], according
to the solution methods of formula (20) and formula (26),
the following conclusions can be drawn

(uL+1)(L+1)j

= ((aL+1)(L+1)j −
j−1∑
n=1

(uL+1)(L+1)n(uL+1)jn)/(uL+1)jj

× (j = 1, 2, · · · ,L) (28)

(uL+1)(L+1)(L+1)

= ((aL+1)(L+1)(L+1) −
L∑
n=1

(uL+1)2(L+1)n)
1
2 (29)

where ((aL+1)(L+1)j (j = 1, 2, · · · ,L + 1) represents the
corresponding element in AL+1. At the same time we can get

BL+1 = HT
1,L+1T

= [H1,L
... h1,L+1 ]

TT

=

[
HT
1,LT

hT1,L+1T

]
=

[
BL

hT1,L+1T

]
(30)

Therefore, it can be known from the calculation method of FL
shown in equation (23)

FL+1 =
[
FL
fL+1

]
(31)
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And since

UL+1FL+1 =
[
UL 0
ūL+1 (uL+1)(L+1)(L+1)

] [
FL
fL+1

]
=

[
ULFL

ūL+1FL + (uL+1)(L+1)(L+1)fL+1

]
= BL+1

=

[
BL

hT1,L+1T

]
(32)

we can also figure out

fL+1

= (hT1,L+1T −
L∑
n=1

(uL+1)(L+1)n(fL)n)/(uL+1)(L+1)(L+1)

(33)

Finally, β1,L+1 is calculated according to equation (24).
From the calculation process described in equations (27)

to (33), it can be seen that EIR-MELM adopts the fast cal-
culation format, which can realize the incremental updating
of the connection weight matrix. In conclusion, FL+1 can be
obtained only by calculating fL+1, and there is no need to
recalculate from (fL)1 to (fL)L . The solution method of β1,L+1
based on Cholesky decomposition makes full use of the infor-
mation stored in the calculation of β1,L , so that UL+1 and
FL+1 can be obtained on the basis of UL and FL respectively.
Therefore, when the number of hidden nodes increases one
by one, the calculation of β1,L+1 can be carried out on the
basis of the calculation of β1,L , and it can be quickly achieved
only through simple four arithmetic operations. Under this
condition, if the method shown in formula (2) is used for cal-
culation, β1,L+1 needs to be recalculated in the way of higher-
order matrix inversion operation, and the solution can not be
obtained on the basis of the calculation of β1,L+1. Therefore,
EIR-MELM can further improve the training speed while
ensuring the learning accuracy. The incremental training pro-
cess of EIR-MELM based on Cholesky decomposition is as
follow.
Step1: The minimum number of hidden nodes in

EIR-MELM is set as Lmin, and the maximum number of
hidden nodes is set as Lmax. The expected learning accuracy
used to determine the optimal number of hidden nodes is ξL .
Let the number of hidden nodes L = Lmin, and calculate
A(k)L and B(k)L .
Step2: The Cholesky decomposition result UL of AL is

calculated in accordance with formula (21). Besides, UL and
BL are used to calculate FL according to formula (23).
Step3: According to formula (24), UL and FL are utilized

to calculate β1,L . On the basis of β1,L , the EIR-MELM pre-
diction model with L hidden nodes and one hidden layer is
established.
Step4: Calculate the cost function R1,L of the EIR-MELM

prediction model as follow.

R1,L =
∥∥H1,Lβ1,L − T

∥∥2 + C ∥∥β1,L∥∥2
= (H1,Lβ1,L − T )T (H1,Lβ1,L − T )+ CβT1,Lβ1,L (34)

Step5: Let L = L + 1, according to the principle shown
in formula (27)-(33), calculate UL and FL on the basis of
UL−1 and FL−1, and then go to Step 3. Determine from the
beginning of L = Lmin + 4 whether the following condition
is satisfied simultaneously∣∣∣∣R1,L−i − R1,L−i−1R1,max

∣∣∣∣ ≤ ξL (35)

where R1,max is the maximum value of R1,Lmin , · · · ,R(k)1,L ,
i = 0, · · · , 3. If the formula (35) is satisfied, the training
process is completed, L is determined to be the optimal
number of hidden nodes, and the corresponding EIR-MELM
prediction model is established. Otherwise, when L < Lmax,
keep increasing L until the condition L = Lmax is satisfied.

In the incremental learning process of EIR-MELM, the
number of hidden nodes increases successively from the ini-
tial value, and the expansion stops when R1,L is no longer sig-
nificantly reduced. At this point, even if the number of hidden
nodes continues to increase, the R1,L representing the learn-
ing accuracy and generalization ability of the EIR-MELM
will not be significantly improved. Instead, it will result in a
large number of redundant hidden nodes in the EIR-MELM.
Therefore, the number of hidden nodes of EIR-MELM is
optimal at this time.

C. PROPOSED EIR-MELM
When the number of hidden layer nodes included in the
EIR-MELM network model increases one by one, the net-
work structure of the model has changed, a simple and direct
method to establish the model is to retrain the network model
using the entire training data in the training dataset ℵ. How-
ever, such a program will inevitably lead to a serious waste
of training time. Therefore, an efficient and necessary alter-
native method is to make full use of the information acquired
in the training process of the EIR-MELM network model, the
updated network parameters are directly calculated according
to the network parameters obtained in the previous training
process.

Consider using the training dataset ℵ to complete the
prediction process of data Z . First, a EIR-MELM network
structure with multiple hidden layers, including one input
layer,M hidden layers and one output layer, is presented. And
each hidden layer contains the same number of hidden nodes,
so the output of EIR-MELM network with L hidden nodes
can be described as the following functional form

tL(x) =
L∑
j=1

(βM ,L)jg(wM ,j, bMj, x), x ∈ Rn (36)

Assuming that the number of training data N contained in
the given training dataset {X ,T } is far greater than the number
of hidden nodes L. The initial number of hidden nodes is
set as Lmin, the maximum number of hidden nodes is set
as Lmax, and the initial number of hidden layers is set as 1.
The expected learning accuracy used to determine the optimal
number of hidden nodes is set as ξL , and the expected learning
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accuracy used to determine the optimal number of hidden
layers is set as ξM .
Step1: Initialize the neural network phase:
1) Let L = Lmin, M = 1. Assign the connection weight

and the bias (w1,j, b1j), (j = 1, · · · ,L) of the nodes in
the first hidden layer randomly.

2) Calculate the output matrix H1,L of first hidden layer.
H1,L = H (w1,1, · · · ,w1,L , b11, · · · , b1L , x1, · · · , xN ).

3) Calculate AL and BL according to equation (19).
4) Calculate the Cholesky decomposition result UL of

AL according to the formula (21), and calculate FL
following the formula (23) using UL and BL .

5) Calculate β1,L according to equation (24) using UL
and FL , and establish the EIR-MELMpredictionmodel
with L hidden nodes and one hidden layer on the basis
of β1,L .

6) Calculate the sum of the empirical risk and the struc-
tural risk R1,L in the EIR-MELM prediction model
according to (34).

Step2: Update the network recursively by incremental
learning procedures. While L ≤ Lmax

1) Let L = L + 1. For each i = 1, 2, · · · , r , generate
a new hidden node (w(1,i), b(1i)) randomly and add it
to the existing network, where w(1,i) and b(1i) represent
the connection weight and the bias of the i− th hidden
node, respectively. Calculate U (i)

L and F (i)
L on the basis

of UL−1 and FL−1 according to the principle shown in
formula (26) -(33).

2) According to formula (24), update the output weight
matrix β(i)1,L using U (i)

L and F (i)
L .

3) Calculate the cost function R(i)1,L of the EIR-MELM

prediction model according to the formula (34). R(i)1,L =∥∥∥H (i)
1,Lβ

(i)
1,L − T

∥∥∥2 + C ∥∥∥β(i)1,L∥∥∥2
4) Let i∗ =

{
i| min
1≤i≤r

R(i)1,L

}
, choose the hidden node

(w(1,i∗), b(1i
∗)) that has a smallest cost function and

add it to the existing network, then w1,L = w(1,i∗),
b1L = b(1i

∗), UL = U (i∗)
L , FL = F (i∗)

L , β1,L = β
(i∗)
1,L ,

R1,L = R(i
∗)

1,L . Go to Step2 (1). Start from L = Lmin +

4 to determine whether the formula (35) is satisfied.
If the termination condition is met, the training process
is completed and L is determined to be the optimal
number of hidden nodes. Otherwise, when L < Lmax,
the number of hidden nodes L continues to increase
until the condition L = Lmax is satisfied.

5) Let M = M + 1. Calculate the expected output
matrix HM∗,L of the M th hidden layer according to
formula (11). HM∗,L = Tβ+M−1,L .

6) Calculate the learning parameter WMHE,L of the M th
hidden layer according to the equation (13).WMHE,L =

g−1(HM∗,L)H
+

ME,L .
7) Calculate the prediction output HM ,L of the M th

hidden layer according to formula (14). HM ,L =
g(WMHE,LHME,L).

8) Updated the connection weight matrix βM ,L between
theM th hidden layer and the output layer according to
the solving method shown in the formula (18)-(24).

9) Calculate the cost function RM ,L in the EIR-MELM
prediction model according to the formula (34), and
then go to Step2 (5). Start from M = 5 to determine
whether the following conditions are satisfied simulta-
neously ∣∣∣∣RM−i,L − RM−i−1,LRmax,L

∣∣∣∣ ≤ ξM (37)

where R1,max is the maximum value of R1,Lmin , · · · ,

R(k)1,L , i = 0, · · · , 3. If the formula (37) is met, the
training process is completed, and M is determined
to be the optimal number of hidden layers. Other-
wise, the number of hidden layers M is continuously
increased until the condition is satisfied.

10) According to the newly obtained connection weight
matrix βM ,L , establish the EIR-MELM prediction
model with the number of hidden layers M and
the number of hidden nodes L. Calculate the final
output results of the neural network tL(x) =
L∑
j=1

(βM ,L)jg(wM ,j, bMj, x) according to formula (36).

Therefore, the predicted value of data Z is tL(Z ).
To sum up, we have achieved the establishment of the

EIR-MELM neural network model through the training
dataset, and completed the prediction of the data Z with this
model.

IV. EXPERIMENT AND DISCUSSION
In this section, experiments of the proposed EIR-MELM
are conducted on benchmark datasets and coal spectral data
for classification problem. To explore the improvement of
classification accuracy and training time of our method,
original ELM, EIR-ELM are also evaluated. All simula-
tions in this experiment are performed under Windows 10;
Intel(R) Core(TM) i5-7500 CPU @3.40GHZ, 16GB RAM,
MATLAB 2016b. The activation function is the sigmoid
function.

A. CLASSIFICATIONS ACCURACY EVALUATION
OF EIR-MELM MODEL
We conduct the experiments from the following aspects.
Given a definite classification accuracy and the maximum
number of hidden nodes, how many hidden nodes are needed
to meet the expect classification accuracy, and how does
the classification accuracy change, when the hidden node is
added into the network one by one.

Figure 1 shows the classification accuracy of the
EIR-MELM model with different number of hidden nodes
and hidden layers on Diabetic Retinopathy Debrecen
dataset [26]. From Fig. 1(a) it can be seen that with the
increasing of the number of hidden nodes, the classification
accuracy of the model greatly improves. The model enters a
stable state when the number of hidden nodes is about 25.
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FIGURE 1. Classification accuracy of EIR-MELM with different number of
hidden nodes and hidden layers on Diabetic Retinopathy Debrecen
dataset.

According to Fig. 1(b), it can be concluded that the classifi-
cation accuracy of the model is also dramatically boost as the
number of hidden layers increases.

Figure 2 illustrate the classification accuracy of the
EIR-MELM model with different number of hidden nodes
and hidden layers on Image Segmentation dataset. From
Fig. 2(a) we can see that when the number of hidden
nodes increases, the classification accuracy of the model
dramatically promotes. When the number of hidden nodes
is about 35, the model enters a stable state. According to
Fig. 2(b), we can conclude that the classification accuracy
of the model is extremely enhanced through the number of
hidden layers increases.

The analysis now focuses on the coal spectral data as an
example. The results are reported in Figure 3, which presents
the classification accuracy of the EIR-MELM model with
different number of hidden nodes and hidden layers on coal

FIGURE 2. Classification accuracy of EIR-MELM with different number of
hidden nodes and hidden layers on image segmentation dataset.

spectral data. Form Fig. 3(a), it can be readily seen from the
figure that as the increasing of the number of hidden nodes,
the classification accuracy of the model extremely enhances.
When the number of hidden nodes reaches about 25, the
model can enter a stable state. According to Fig. 3(b), it can
be readily concluded from the figure that the classification
accuracy of the model is greatly improved with the increase
of the number of hidden layers.

According to the above analysis, we can conclude that the
EIR-MLEM algorithm can always achieve good classifica-
tion effect for benchmark datasets and coal spectral data.

Next, we investigate the improvement of classification
accuracy of the EIR-MELM algorithm in comparison with
original ELM and EIR-ELM.

For the classification problem, the classification accuracy
of different models is listed in Table 1. From these results we
can see that in general the EIR-MELM can always get higher
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FIGURE 3. Classification accuracy of EIR-MELM with different number of
hidden nodes and hidden layers on coal spectral data.

TABLE 1. Classification accuracy of different models.

classification accuracy than original ELM and EIR-ELM for
different datasets.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
OF EIR-MELM MODEL
In the following simulation, we compare the computation
complexity of the original ELM and EIR-ELM on benchmark
datasets and coal spectral data. While the hidden nodes are

added into the model one by one, and we need to retain the
network for original ELM and update the network output
weight matrix recursively for EIR-ELM each time.

FIGURE 4. The result comparison of training time of EIR-MELM and ELM
on Diabetic Retinopathy Debrecen dataset.

FIGURE 5. The result comparison of training time of EIR-MELM and ELM
on image segmentation dataset.

Figure 4 shows the result comparison of training time of the
EIR-MELM classification model and the original ELM clas-
sification model based on the Diabetic Retinopathy Debrecen
dataset. Figure 5 shows the result comparison of the training
time of the EIR-MELM classification model and the original
ELM classification model based on the Image Segmentation
dataset. Figure 6 shows the result comparison of the training
time of the EIR-MELM classification model and the tradi-
tional ELM classification model on coal spectral data. From
the simulation results, we can see that the original ELM
spends more time retraining the network and recalculating
the output weight matrix compared with EIR-MELM. And
the gap is even greater if the network has more hidden nodes.
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FIGURE 6. The result comparison of training time of EIR-MELM and ELM
on coal spectral data.

Experiments also illuminate that the EIR-MELM has greatly
improved the training speed of the model, and with the
increase of the number of hidden nodes, the advantage of
EIR-MELM is more obvious.

In conclusion, the EIR-MLEM model is an incremental
MELM training algorithm based onCholesky decomposition.
By updating the output weights in an incremental manner,
the training time of the model can be effectively reduced.

V. CONCLUSIONS AND DISCUSSION
(1) EIR-MELM weighs MELM’s structural risk and empir-
ical risk by introducing regularization parameters. As an
improvedmodel that can automatically determine the optimal
network structure, its generalization ability is significantly
improved compared with MELM. Experimental studies on
benchmark datasets for regression and classification problem
show that EIR-MELM can effectively determine the optimal
network structure of MELM, and has the advantages of high
prediction accuracy and fast calculation speed.

(2) EIR-MELM utilizes the Cholesky decomposition
method to effectively reduce the computational complexity to
solve the output weight matrix once. In addition, during the
process of increasing the number of hidden nodes, the cal-
culation of the output weight matrix can also be performed
on the basis of the previous calculation result, and it can
further reduce the amount of the calculation. Therefore, the
calculation efficiency of EIR-MELM is higher than that of
MELM.

(3) EIR-MELM adds a selection phase in the increas-
ing process of hidden nodes. In each step of learning pro-
cess, multiple hidden nodes are randomly generated at first.
According to the principle of structural risk minimization,
we select the optimal nodes form multiple randomly gener-
ated nodes and add it to the existing network. When new hid-
den layer neuron nodes are added one by one, the Cholesky
decomposition method is adopted to recursively update the

output weight of the network, so that EIR-MELM can have
a more compact network structure while ensuring numerical
stability.

(4) Future directions should include in the scope of the
study the design of an adaptive strategy to prune the redun-
dant neuron nodes in the hidden layers. For time-varying or
non-stationary systems, using EIR-MELM to develop accu-
rate prediction approaches less influenced by model parame-
ters is also worth studying in the future.
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