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ABSTRACT The soft set theory is a completely new mathematical tool for modeling vagueness and
uncertainty, which can be applied to decision making. However, in the process of making decision, there are
some unnecessary and superfluous information which should be reduced. Normal parameter reduction is a
good way to reduce superfluous information, which keeps the entire decision ability. However, the algorithm
has a low redundant degree, which involves a great amount of computation. It is not certain that normal
parameter reduction has the solution, that is, it has a low success rate of finding reduction. Parameterization
value reduction is another reduction method, which improves redundant degree, amount of computation,
and success rate of finding reduction. However, this method only considers the best choice, but it does
not concern the suboptimal choice, the sequence of choice, and added parameter, that is, it loses some
part of decision ability. In order to settle these problems, in this paper, we introduce the parameter value
reduction which keeps the entire decision ability while having a very high redundant degree and success rate
of finding reduction and low amount of computation. Maximal parameter value reduction is defined as the
special cases of parameter value reduction and the related heuristic algorithms are presented, which reaches
an extreme degree to reduce the redundant information. The comparison result among maximal parameter
value reduction, parameterization value reduction, and normal parameter reduction on 30 datasets shows that
the proposed algorithm outperforms parameterization value reduction and normal parameter reduction.

INDEX TERMS Soft sets; Reduction; Parameter reduction; Parameter value reduction; maximal parameter
value reduction.

I. INTRODUCTION
Soft set theory as a mathematical tool for dealing with uncer-
tainties becomes more and more popular, when we have to
face difficulties which involve uncertain and fuzzy informa-
tion in the real and complicated application circumstances.
In resent twenty years, Soft set theory [1] initiated by a
Russian mathematician D. Molodtsov has gained all-round
and rapid development.

Presently, theoretical research on the soft set theory is one
of main research branches. Some related definitions and oper-
ations on soft sets were added in the documents of [2] and [3].
Many researchers discussed the relationships and differences
between soft set theory and other mathematical tools and
then extended soft set into the new theory such as fuzzy
soft set [4], [34], [38], intuitionistic fuzzy soft sets [5], [6],
intuitionistic fuzzy parameterized soft set [7], interval-valued
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fuzzy soft set [8], [35], [36], interval-valued intuitionistic
fuzzy soft set theory [9], bijective soft set [11], [12], trape-
zoidal interval type-2 fuzzy soft sets [13], [14], soft rough
set [15], hesitant N-soft set [10], Z-soft fuzzy rough set [16],
[17], confidence soft sets [19], Belief interval-valued soft
set [20] and rough soft sets [18] so on. Except for the devel-
opment of theoretical research, soft set also fully express in
the real life applications such as the smoothness of functions,
game theory, operations research, Riemann integration, Per-
ron integration, probability theory, and measurement theory
[1], data analysis, screening alternative problem [21] and
data mining [22], [23] so on. It is remarkable that we apply
soft set into the field of decision making [24]–[26], [37].
However, in the process of making decision, there are
some unnecessary and superfluous information which should
be reduced. Hence, parameter reduction is the important
research branch when we apply soft set theory into the field
of decision making. Excellent research results have been
published about the issues of reduction of soft sets [31], [40].
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Firstly, Maji et al. [24] made use of the reduction solution of
rough set to solve the reduction of soft set. Chen et al. [27]
indicated that above method does not apply to reduction of
soft set, and then give a new idea of parameterization reduc-
tion when we use soft set theory to solve the decision making,
which only involves the optimal choice. The idea of normal
parameter reduction was introduced in [28], which involves
suboptimal choice and added parameter set of soft sets. This
algorithm was greatly improved in [28], [29], [30], [32], and
[33] from the computational complexity. However, the nor-
mal parameter reduction has a low redundant degree, involves
a great amount of computation and it is not certain that normal
parameter reduction has the solution. Parameterization value
reduction [39] improves redundant degree, amount of compu-
tation and success rate of finding reduction. But this method
only considers the best choice while does not concern the
suboptimal choice, sequence of choice and added parameter,
that is, it loses some part of decision ability. In order to solve
these above problems, in this paper, we propose the parameter
value reduction of soft sets. In detail, parameter value reduc-
tion (PVR) which keeps the classification ability and rank
of choice objects invariant for decision making is discussed.
That is, PVR keeps the entire decision ability. More specifi-
cally, maximal parameter value reduction (MPVR) of soft sets
is defined as the special cases of PVR and the related heuristic
algorithms are presented. In order to clarify that themethod of
NPR does not reduce all of redundant information, we intro-
duce the algorithm of maximal parameter value reduction
based on normal parameter reduction (MPVR-NPR), which is
another way to obtain themaximal parameter value reduction.
Furthermore, we make comparison among maximal parame-
ter value reduction, maximal parameter value reduction based
on normal parameter reduction parameterization value reduc-
tion and normal parameter reduction from the four aspects of
redundant degree, computation complexity, decision ability
and success rate of finding reduction. The experiment results
show that MPVR outperform NPR, MPVR-NPR and param-
eterization value reduction.

The remainder of this paper is organized as follows.
Section II reviews the basic notions of soft set theory and
the related reduction algorithms. Section III depicts the def-
inition of parameter value reduction (PVR) and maximal
parameter value reduction (MPVR) maximal parameter value
reduction based on normal parameter reduction, respectively.
Furthermore, the related heuristic algorithms are presented.
Section IV makes comparison among maximal parameter
value reduction, maximal parameter value reduction based on
normal parameter reduction parameterization value reduction
and normal parameter reduction. Finally Section V presents
the conclusion from our study.

II. BASIC CONCEPTS AND RELATED WORK
In this section, we review the basic concept with regard to soft
sets and the related normal parameter reduction.

A pair (F,A) is defined as a soft set over non-empty
initial universe of objects U, where F is a mapping given

by F : A→ P(U ), P (U) is the power set of U, and A is the
subset of E (E is termed as a set of parameters in relation to
objects in U). Example 1 tells us what is the soft set.
Example 1: Mary wants a truly memorable and fantastic

wedding. The wedding market is big business nowadays.
There are six companies providing six candidate wedding
design schemes. Mary needs to determine one scheme which
is the most satisfactory. We make use of the mathematical
tool of soft set (F,E) to describe the six candidate wedding
design schemes. Suppose that U = {h1, h2, h3, h4, h5, h6}
and E = {e1, e2, e3, e4, e5},where there are six wedding
design schemes in the universe U and E is a set of parameters,
ei(i = 1, 2, 3, 4, 5) standing for the parameters ‘‘romantic’’,
‘‘affordable value’’, ‘‘exquisite’’, ‘‘grand’’, and ‘‘modern’’
respectively. In detail, Table 1 depicts six candidate wedding
designs from five respects by the style of soft set. From such
case, we may see the structure of a soft set can classify the
objects into two classes (yes/1 or no/0). ‘‘1’’ and ‘‘0’’ stand
for ‘‘yes’’ and ‘‘no’’, respectively. For example, from Table 1,
we can find that Many think the first wedding design scheme
h1has affordable value, is grand andmodern, but not romantic
and exquisite. Mary is planning to choose the best one from
candidates. According to the decision approach, find k , for
which ck = max ci, where ci =

∑
j
hij. Hence, h1 and h3 are

the best wedding design schemes.
The notion of a reduct plays an essential role in analyzing

an information table. In the process of making decision, there
are some unnecessary and superfluous information which
should be reduced. A reduct is a minimum subset of attributes
that provides the same descriptive ability as the entire set of
attributes.

Maji and Roy [24] made use of the reduction solution of
rough set to solve the reduction of soft set. However, in rough
set theory the attributes reduction is designed to keep the
classification ability of conditional attributes relative to the
decision attributes. There is not straightforward connection
between the conditional attributes and the decision attributes.
But for the soft set, the connection between the decision
values and the conditional parameters are straightforward,
i.e., the decision values are computed by the conditional
parameters, and the reduction of parameters is designed to
offer minimal subset of the conditional parameters set to keep
the optimal choice objects. The problems tackled by attributes
reduction in rough set theory and parameters reduction in
soft set theory are different and their methods should be also
different. Thus the reduction of parameter sets in soft set
theory and the reduction of attributes in rough set theory are
different tools for different purposes. We can not apply the
reduction method of rough set for dealing with the reduction
of soft set.

Therefore, the parameterization reduction of soft sets [27]
was introduced to deal with the decision problems based on
soft sets as below.

Suppose that U = {h1, h2, . . . , hn}, E = {e1, e2, . . . , em},
(F,E) is a soft set with tabular representation.
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TABLE 1. Tabular representation of a soft set in example 1.

Define fE (hi) =
∑

j hij where hij are the entries in the table
of (F,E).
Definition 2: Denote MEas the collection of objects in U

which takes the max value of fE . For every A⊂E, if ME−A =

ME , then A is called a dispensable set in E, otherwise A is
called an indispensable set in E. Roughly speaking, A⊂E
is dispensable means that the difference among all objects
according to the parameters in A does not influence the final
decision. The parameter set E is called independent if every
A⊂E is indispensable in E, otherwise E is dependent. B⊆E
is called a reduction of E if B is independent and MB = ME ,
i.e., B is the minimal subset of E that keeps the optimal choice
objects invariant.

Clearly, after the reduction of the parameter set E , less
parameters can be obtained and the optimal choice objects
have not been changed. However this idea does not involve
suboptimal choice and added parameter set of soft sets.
In order to deal with these above problems, Kong et al. [28]
presented the algorithm of normal parameter reduction as
follows:

This algorithm was improved in [28]–[30], [32], and [33]
from the computational complexity. The main idea of these
normal parameter reduction algorithms is to delete the entire
redundant parameters, which leads to three weaknesses. The
algorithm has a low redundant degree, involves a great
amount of computation and it is not certain that normal
parameter reduction has the solution. Ma et al. [39] proposed
the definition of parameterization value reduction of soft set
theory. However, this idea only considers the best choice
while does not concern the suboptimal choice, sequence of
choice and added parameter. In order to solve these above
problems, in this paper, we propose the parameter value
reduction of soft sets.

FIGURE 1. The algorithm of normal parameter reduction of [28].

III. PARAMETER VALUE REDUCTION OF
SOFT SETS AND ITS ALGORITHM
In this section, we introduce the definition of parameter
value reduction (PVR), maximal parameter value reduction
(MPVR) which is defined as the special cases of parameter
value reduction, respectively. Furthermore, the related heuris-
tic algorithms are presented.

A. PARAMETER VALUE REDUCTION OF SOFT SETS (PVR)
Suppose U = {h1, h2, · · · , hn}, E = {e1, e2, · · · , em},
(F,E) is a soft set with tabular representation. Define

fE (hi) =
m∑
j=1

hij as decision value, wherehijare the entries in

the table of (F,E).
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TABLE 2. A soft set
(
F , E

)
.

Definition 3: For soft sets (F,E), the decision partition
based on decision value is referred to as

CE

=

{
{h1, h2, . . . , hi}f1 ,

{
hi+1, . . . , hj

}
f2

, . . . , {hk , . . . , hn}fs
}
,

where for subclass {hv, hv+1, . . . , hv+w}fi , fE (hv) = fE (hv+1)
= · · · = fE (hv+w) = fi, and f1 ≥ f2 ≥ · · · ≥ fs, s is
the number of subclasses,fs is the minimum decision choice
value. In other words, objects in U are classified and ranked
according to the decision value of fE (.).
Definition 4: The parameter value hijis defined as the

dispensable parameter value, if we reduce these dispensable
parameter values, the decision partition is

C ′E =
{
{h1, h2, . . . , hi}f1−t ,

{
hi+1, . . . , hj

}
f2−t

, . . . , {hk ,

. . . , hn}fs−t
}
(t ≤ fs).

From the definition of parameter value reduction, we know
parameter value reduction of soft sets keeps the classification
ability and rank invariant for decision making, that is, it keeps
the entire decision ability.

Based on above definitions, we describe the heuristic algo-
rithm of parameter value reduction of soft sets.
Algorithm 5: parameter value reduction of soft sets.
Example 6: Let (F,E) be a soft set with the tabular

representation displayed in Table 2. Suppose that U =

{h1, h2, h3, h4, h5, h6}, and E = {e1, e2, e3, e4, e5, e6, e7, e8}
From table 2, the decision partition is CE =

{{h3}6 , {h2, h4, h6}4 , {h1, h5}3}.Clearly fE (h3) = 6 is the
maximum choice value, thus h3 is the optimal choice object.
h2, h4, h6 are the suboptimal choice object.

Given t = 1(namely, fA1 (h1) = fA2 (h2) = · · · =
fAn (hn) = t = 1), it is evident that

A1 = {e1, e2, e3, e4, e5, e8} ,A2 = {e1, e2, e3, e7, e8} ,
A3 = {e1, e2, e3} ,A4 = {e1, e3, e5, e6, e7} ,
A5 = {e1, e2, e3, e4, e6, e7} ,A6 = {e1, e2, e3, e6, e7}

FIGURE 2. The algorithm of parameter value reduction.

in this example. The parameter value reduction of (F,E) is
clearly shown in Table 3. And then we get that the decision
partition is CE = {{h3}5 , {h2, h4, h6}3 , {h1, h5}2}.h3 is still
the optimal choice object. h2, h4, h6 are still the suboptimal
choice object, and so on. The parameter value reduction
keeps the classification ability and rank invariant for decision
making.

B. MAXIMAL PARAMETER VALUE REDUCTION
OF SOFT SETS (MPVR)
If t < fs, we can not reduce all of redundant information.
In order to reduce all of redundant information, we introduce
the algorithm of MVPR, which is a special case of PVR
when t = fs, herefs is the minimum decision choice value.
Definition 7: The parameter value hij is defined as the

dispensable parameter value, if we reduce these dispensable
parameter values, the decision partition is

C ′E =
{
{h1, h2, . . . , hi}f1−t ,

{
hi+1, . . . , hj

}
f2−t

,

. . . , {hk , . . . , hn}fs−t
}
(t = fs).

(fsis the minimum decision choice value)
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TABLE 3. A parameter value reduction table of original table (Table 2).

From the above definition it follows that MPVR does not
differ essentially from PVR. Obviously, MPVR is a special
case of PVR when t = fs, herefs is the minimum decision
choice value.. Intuitively speaking, MPVR leads to the final
decision partition

C ′E =
{
{h1, h2, . . . , hi}f1−t ,

{
hi+1, . . . , hj

}
f2−t

, . . . , {hk ,

. . . , hn}fs−t=0
}
.

Algorithm 8: maximal parameter value reduction of soft
sets.

Here below, we provide an algorithm to illustrate how to
achieve the maximal parameter value reduction of soft sets.

FIGURE 3. The algorithm of maximal parameter value reduction.

Example 9: Suppose we have a soft set (F,E) with the
tabular representation displayed in Table 2. The maximal
parameter value reduction is generated and shown in Table 4.

Clearly fs = 3 is the minimum decision choice
value in original table (Table 2). Consequently, let

fA1 (h1) = fA2 (h2) = · · · = fAn (hn) = fs = t = 3. And then
we can obtain

A1 = {e1, e2, e3, e4, e5, e6, e7, e8} ,

A2 = {e1, e2, e3, e4, e5, e7, e8} ,

A3 = {e1, e2, e3, e4, e5} ,A4 = {e1, e2, e3, e4, e5, e6, e7} ,

A5 = {e1, e2, e3, e4, e5, e6, e7, e8} ,

A6 = {e1, e2, e3, e4, e5, e6, e7} .

The final decision partition is CE = {{h3}3, {h2, h4, h6}1,
{h1, h5}0}. The results from Table 3 and Table 4 indicate that
MPVR can delete more parameter values in comparison with
PVR, in the case of keeping the classification ability and rank
invariant for decision making. Thus MPVR can be generally
interpreted as the maximal degree of PVR.

C. MAXIMAL PARAMETER VALUE REDUCTION OF SOFT
SETS BASED ON NORMAL PARAMETER
REDUCTION (MPVR-NPR)
In order to illustrate the relation between MPVR and NPR,
we give the algorithm of MPVR-NPR. This is another way
to get the maximal parameter value reduction. We will find
that NPR can not reduce all of redundant information. That
is, NPR only reduces part of redundant information. After
carrying out NPR, we can go on reducing all of redundant
information by the idea of Algorithm 8 until the result satis-
fies the definition 7,
Algorithm 10: maximal parameter value reduction of soft

sets based on normal parameter reduction (MPVR-NPR)
Firstly constructing a feasible normal parameter reduction
and then excluding redundant parameter values, the algorithm
of MPVR-NPR can be proposed as follows:
Example 11: Let U = {h1, h2, h3, h4, h5, h6} be the set of

objects and E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} be the
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TABLE 4. A maximal parameter value reduction table of Table 2.

TABLE 5. A soft set
(
G, E

)
.

parameter set. Suppose (G,E) be a soft set with the tabular
representation displayed in Table 5.

It can be derived from the above example that
{e1, e2, e3, e4, e5, e6, e7} is the normal parameter reductions
with respect to the soft set (G,E), which is shown in Table 6.
It is worthwhile to notice that the minimum decision choice
value after normal parameter reduction f ′s = 2 6= 0 in Table 6.
Hence, the method of normal parameter reduction does not
reduce all of redundant information. In other words, there still
exists redundant information. In order to reduce remainder
redundant information, motivated by the desire to construct
themaximal parameter value reduction, we execute algorithm
10 to achieve it which is represented in Table 7.

This method is another way to get the maximal param-
eter value reduction. Obviously, MPVR-NPR is more

complicated and time consuming than MPVR. MPVR-NPR
is not a good way to get the maximal parameter value reduc-
tion. Here, we introduce MPVR-NPR in order to verify NPR
can not reduce all of redundant information and NPR is only
the sub-process of MPVR.

IV. COMPARISON RESULT
In order to explain and clarify them, we elaborate the com-
parison result between normal parameter reduction (NPR),
parameterization value reduction(PZVR), maximal parame-
ter value reduction (MPVR), maximal parameter value reduc-
tion based on normal parameter reduction (MPVR-NPR) of
soft sets through the thirty synthetic generated Boolean data
sets. We discussMPVR, MPVR-NPR, PZVR and NPR from
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TABLE 6. A normal parameter reduction table of Table 5.

TABLE 7. A maximal parameter value reduction based on normal parameter reduction table of Table 5.

four perspectives: redundant degree, computation complexity
decision ability and success rate of finding reduction.

A. REDUNDANT DEGREE
Definition 12: For soft set (F,E) with object setU =

{h1, h2, · · · , hn} and parameter setE = {e1, e2, · · · , em}, the
redundant degree of (F,E)is defined by

g =
d

|U | × |E|
=

d
n× m

where |.| denotes the cardinality of set and d expresses the
number of reduced parameter values. Redundant degree g
represents the ratio of the number of reduced parameter val-
ues to all of parameter values. Notice that the higher value of
g means the higher efficiency of reduction and vice versa.

Property 13: For soft set (F,E)U = {h1, h2, · · · , hn},
E = {e1, e2, · · · , em}, 0 < g ≤ 1.

Proof:

g =
d

|U | × |E|
=

d
n× m

≤
n× m
n× m

= 1.

Note that there is certainly some parameter values labeled by
0 which can be reduced, unless all of parameter values are
equal to 1 which lead to g = 1. Therefore, g 6= 0.

It is easy to obtain 0 < g. Therefore we have
0 ≤ g ≤ 1.
Property 14: g = 1 if and only if fE (h1) = fE (h2) = · · · =

fE (hn).
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TABLE 8. A maximal parameter value reduction table of Table 5.

FIGURE 4. The algorithm of maximal parameter value reduction based on
normal parameter reduction.

Proof: Let fE (h1) = fE (h2) = · · · = fE (hn), it means
that the parameter values HE (hi) (i = 1, . . . , n) are dispens-
able, namely, which can be deleted, according to definition 7.
So we have d = |U | × |E|. Thus g = 1.
Theorem 15: For soft set (F,E)U = {h1, h2, · · · , hn},

E = {e1, e2, · · · , em}, DenotegMPVRas redundant degree
of maximal parameter value reduction andgMPVR−NPR as
redundant degree of maximal parameter value reduction
based on normal parameter reduction, respectively. gMPVR =
gMPVR−NPR.

Proof: Let HBi (hi) (i = 1, . . . , n) the maximal param-
eter value reduction satisfying fE−B1 (h1) = fE−B2 (h2) =
· · · = fE−Bn (hn) = t = fs, namely, fA1 (h1) = fA2 (h2) =
· · · = fAn (hn) = t = fs. It implies that nfs parameter
values labeled 1 can be reduced. Hence gMPVR = d

n×m =
nfs+l
n×m , where l is defined as the number of parameter values
labeled 0.

E − A is the normal parameter reduction of E , so we get
fA (h1) = fA (h2) = · · · = fA (hn) = t1(0 ≤ t1 ≤ fs) from
which we can conclude that the number of reduced parameter
values labeled 1 dNPR = nt1. From definition 12 we have
fA′1 (h1) = fA′2 (h2) = · · · = fA′n (hn) = t ′ = f ′s , where f

′
s is

the minimum decision choice value after normal parameter
reduction. Hence we also observe that nt ′ parameter values
labeled 1 can be deleted in succession. To sum up,

gMPVR−NPR =
d

|U | × |E|
=

d
n× m

=
nt1 + nt ′ + l

n× m

=
n(t1 + t ′)+ l

n× m
.

Obviously, t1 + t ′ = t = fs and then gMPVR−NPR =
nfs+l
n×m . Therefore gMPVR = gMPVR−NPR. This completes the
proof.

In order to elaborate this theorem, consider the following
example.
Example 16: Let (F,E) be a soft set with the tabular repre-

sentation displayed in Table 5. We have obtained a maximal
parameter value reduction based on normal parameter reduc-
tion shown in Table 7. Further we can also find a maximal
parameter value reduction given in Table 8.

It is evident that gMPVR = gMPVR−NPR = 49
60 , in view

of the above example. We also observe that two approaches
keep the classification ability and rank invariant for deci-
sion making. They have the same final decision parti-
tion C ′E = {{h3}4 , {h2, h4, h6}2 , {h1, h5}0}.
Theorem 17: For soft set (F,E)U = {h1, h2, · · · , hn},

E = {e1, e2, · · · , em}, DenotegMPVRas redundant degree
of maximal parameter value reduction and gMPVR−NPRas
redundant degree of maximal parameter value reduction
based on normal parameter reduction andgNPRas redun-
dant degree of normal parameter reduction, respectively.
gMPVR = gMPVR−NPR ≥ gNPR.
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Proof: Let C ′E(MPVR−NPR) as the final decision partitions
after carrying out maximal parameter value reduction and
C ′E(NPR) as the final decision partitions after carrying out
normal parameter reduction respectively.

If C ′E(MPVR−NPR) = C ′E(NPR),the maximal parameter value
reduction only keep values denoted by 1, however, normal
parameter reduction keep parameter columns consisting of
values denoted by 0 and 1. In this case, obviously, gMPVR =
gMPVR−NPR ≥ gNPR.

If C ′E(MPVR−NPR) 6= C ′E(NPR), it means that f ′s 6= 0
(f ′s is the minimum decision choice value after normal param-
eter reduction).It is necessary to carry out maximal parameter
value reduction based on normal parameter reduction algo-
rithm to achieve it. It is certain that gMPVR = gMPVR−NPR ≥
gNPR.
To sum up, gMPVR = gMPVR−NPR ≥ gNPR.
Example 18: From Table 6, Table 7 and Table 8, we can

observe that gMPVR = gMPVR−NPR = 49
60and gNPR =

18
60 . It is

easily obtained gMPVR = gMPVR−NPR ≥ gNPR.
Generally, PZVR has the a bit higher redundant degree

than MPVR and MPVR-NPR. However, they have the
different decision ability. PZVR only considers the best
choice and then keeps some part of decision ability.
MPVR and MPVR-NPR concern the suboptimal choice,
sequence of choice and added parameter, which keep the
entire decision ability. Hence, we can not compare PZVR
with MPVR and MPVR-NPR in regard to redundant degree.

We perform the three algorithms on the thirty synthetic
generated Boolean data sets, respectively. And then we com-
pute the averages of redundant degree regarding the three
algorithms. The average of redundant degree by MPVR and
MPVR-NPR is up to 71.3% on thirty datasets; the mean of
redundant degree by NPR is equal to 4.8%, which are shown
in Figure 5.

FIGURE 5. Average redundant degree of three algorithms.

B. COMPUTATION COMPLEXITY
In this section, computation complexity of NPR, PZVR,
MPVR and MPVR-NPR will be discussed and compared.

We estimate the computational complexity of the algorithm
by counting the number of basic operation. Due to the basic
operation perhaps vary with different implementation of the
algorithm, we consider element access here as the basic
operation.

a) Computation complexity of NPR [28]
For NPR, we need get the parameter importance degree.

Firstly, compute fE (hi) =
∑

j hij, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Every entry will be accessed one time, so the number of ele-
ment access ism ·n. Secondly, Get CE =

{
Ef1 ,Ef2 , · · · ,Efs

}
,

that is, classify objects according to fE (hi).The column of
fE (hi) will be accessed one time, so the number of element
access is n. Thirdly, Obtain decision partition deleted ej. The
numbers of element access are n · (m − 1) + n. Finally,
Calculate parameter importance degree rej . The number of
element access is 2n. From above steps, we can get the total
number of element access for computing all of parameter
importance degrees ism2n+2mn+mn+n = m2n+3mn+n.
Taking big O notation, the complexity of computing all of
parameter importance degree is O(m2n). Suppose m = n,
the complexity will be O(n3). In order to find reduction
results, the number of parameter importance degree access is
(C1

m+C
2
m+ · · ·+C

bm/2c
m ) ·m. Hence, from above two points

of view, NPR has a high computation complexity.
b) Computation complexity of MPVR
Compute decision value fE (hi) =

∑
j hij, 1 ≤ i ≤ n,

1 ≤ j ≤ m. Every entry will be accessed once, so the number
of element access is m · n. Finding the minimum decision
value, every decision value will be accessed once, so the
number of element access isn. When we delete the parameter
values in terms of the minimum decision value, every entry
will be accessed once, so the number of element access ism·n.
Hence, the total number of element access is 2mn+ n. Taking
big O notation, the computation complexity of this proposed
algorithm is O(mn).

c) Computation complexity ofMPVR-NPR
For MPVR-NPR, we should firstly perform NPR and

then carry out MPVR. Hence, the computational complexity
seems the sum of MPVR and NPR.

It is clear that the proposed algorithm of maximal parame-
ter value reduction involves relativelymuch less computation.

d) Computation complexity ofPZVR
Compute decision value fE (hi) =

∑
j hij, 1 ≤ i ≤ n, 1 ≤

j ≤ m. Every entry will be accessed once, so the number of
element access ism ·n. Finding the maximum decision value,
every decision value will be accessed once, so the number
of element access isn. When we delete the parameter values
except one parameter value corresponding to the maximum
decision value, every entry will be accessed once, so the
number of element access is m · n. Hence, the total number
of element access is 2mn+ n. Taking big O notation, the
computation complexity of this proposed algorithm is O(mn).

C. SUCCESS RATE OF FINDING REDUCTION
Theorem 19: For soft set (F,E)U = {h1, h2, · · · , hn}, E =
{e1, e2, · · · , em}, if fs 6= 0 it is certain that we can get
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PZVR, MPVR and MPVR-NPR but it is not sure that we can
obtain NPR.

Proof: If fs 6= 0, we have that nfs parameter values
are dispensable according to definition 3.3 and definition 12.
Hence it is certain that we can get MPVR and MPVR-NPR.
In a similar way, we surely find PZVR.

For NPR, there must exist a subset A = {e′1, e
′

2, · · · , e
′
p} ⊂

E satisfying fA (h1) = fA (h2) = · · · = fA (hn)according
to the related algorithm. However it is not sure that there
certainly exists the subset. Thus it is not sure that we can
obtain NPR.
Example 20: Assume that

(
F ′,E

)
is a soft set with the

tabular representation displayed in Table 9. Let U = {h1, h2,
h3, h4, h5, h6} be a universal set and E = {e1, e2, e3, e4} be
the set of all parameters.

TABLE 9. A soft set
(
F ′, E

)
.

TABLE 10. A maximal parameter value reduction table of Table 9.

In the view of the above example, the soft set in Table 9 has
a maximal parameter value reduction illustrated in Table 10
and parameterization value reduction shown in Table 11,
whereas we can not find the normal parameter reduction of
this soft set.

Success rate of finding reduction refers to the radio of the
number of whether finding reduction results on datasets to

TABLE 11. A parameterization value reduction table of Table 9.

FIGURE 6. Success rate of finding reduction by four algorithms.

all of datasets. We perform the four algorithms on the thirty
synthetic generated Boolean data sets, respectively. We find
that we can find the reduction results on thirty datasets by
PZVR, MPVR and MPVR-NPR, but we only obtain reduc-
tion on three datasets by NPR. The success rate of finding
reduction by PZVR, MPVR and MPVR-NPR is up to 100%
on thirty datasets; success rate of finding reduction by NPR
is equal to 10%, which are shown in Figure 6.

D. DECISION ABILITY
MPVR,MPVR-NPR andNPR have the same decision ability.
They concern the suboptimal choice, sequence of choice and
added parameter, which keep the entire decision ability. The
three algorithms benefit the extension and combination of
datasets. However, PZVR only considers the best choice and
then keeps some part of decision ability. PZVR never think
over the newly added parameters and parameter values, which
goes against the extension of datasets.
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TABLE 12. The comparison result.

Table 12 illustrates the overall comparison results among
MPVR, MNVP-NPR, PZVR and NPR. We find that PZVR
only considers the best choice and then keeps some part of

decision ability, which is based on the loss of some part
decision ability. Compared with MPVR, MPVR-NPR and
NPR, PZVR has the fatal weakness of loss of some part
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decision ability. Hence, MPVR, MPVR-NPR and NPR out-
perform PZVR. NPR has a very low success rate of finding
reduction. In many real-life applications, it is not certain that
normal parameter reduction has the solution, which is the
fatal weakness for NPR.MPVR andMPVR-NPR outperform
NPR. MPVR and MPVR-NPR are two different methods of
obtaining the maximal parameter value reduction. They have
the same redundant degree and success rate of finding reduc-
tion. MPVR-NPR is more complicated and time consuming
thanMPVR. That is, MPVR has the much lower computation
complexity compared with MPVR-NPR. Therefore, MPVR
is the best way among these algorithms.

V. CONCLUSION
Several algorithms exist to address the issues concerning
reduction of soft sets, such as Normal Parameter Reduc-
tion (NPR) and Parameterization Value Reduction (PZVR).
However, they have their respective fatal weaknesses. NPR
has a very low success rate of finding reduction. In many real-
life applications, normal parameter reduction has no solution.
PVR can not keep the entire decision ability. In order to settle
these problems, in this paper we introduce the parameter
value reduction which not only keeps the entire decision
ability, but also has very high success rate of finding reduc-
tion. Maximal parameter value reduction is (MPVR) defined
as the special cases of parameter value reduction and the
related heuristic algorithm is presented, which reaches an
extreme degree to reduce the redundant information. In order
to clarify that the method of NPR does not reduce all of
redundant information, we introduce the algorithm of max-
imal parameter value reduction based on normal parameter
reduction (MPVR-NPR), which is another way to obtain the
maximal parameter value reduction. Furthermore, we make
comparison among MPVR, MNVP-NPR, PZVR and NPR
from the aspects of redundant degree, computation complex-
ity, decision ability and success rate of finding reduction.
The comparison result through the thirty Boolean data sets
illustrates that MPVR, MPVR-NPR and NPR keep the entire
decision ability while PZVR only keeps part of decision abil-
ity. By MPVR and MPVR-NPR, redundant degree and suc-
cess rate of finding reduction are greatly improved to 93.3%
and 90% as compared with NPR when these approaches
have the same decision ability. MPVR has the much lower
computation complexity compared withMPVR-NPR. There-
fore, MPVR is the optimal reduction algorithm among these
algorithms, which not only keeps the entire decision ability
and but also greatly improves redundant degree, success rate
and computation complexity.
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