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ABSTRACT As the human vision is a definitive assessor of video quality, the expanded interest for
no-reference subjective quality assessment (SQA) is focusing on a definitive goal of coordinating with
human observation. However, the widely used subjective estimator-mean opinion score (MOS) is often
biased by the testing environment, viewers mode, expertise, domain knowledge, and other factors which may
influence on actual assessment. In this paper, a no-reference SQA metric is devised by simply exploiting
the nature of human eye browsing on videos and analyzing the associated quality correlation features.
The high efficiency video coding (HEVC) reference test model is first employed to produce different
forms of coded video quality which then displayed to a number of partakers. Their eye-tracker recorded
spatiotemporal gaze-data indicate more concentrated eye-traversing approach for relatively better quality.
Thus, we calculate the quality assessment related to assorted features such as length pursuit, angle deflection,
pupil deviation, and gaze interlude from recorded gaze trajectory. The content and resolution invariant
operations are carried out prior to synthesizing them using an adaptive weighted function to develop a
new quality metric-eye maneuver (EMAN). Tested results reveal that the quality evaluation carried out
by the EMAN is comparatively better than MOS and structural similarity (SSIM) in terms of assessing
different aspects of coded video quality for a wide range of single view video contents. For the free viewpoint
video (FVV), where the reference frame is not available, the EMAN could also better distinguish different
qualities compared to the MOS and SSIM.

INDEX TERMS EMAN, eye-maneuver, gaze trajectory, HEVC, quality evaluation.

I. INTRODUCTION
Video quality estimation is a conspicuous research zone
because of its wide scope of utilizations in yielding different
improved video compression techniques [1]. Among two
basic approaches of quality evaluation, the objective one is
simpler and more widely used because of its simplicity and
ready-to-use implementations [2]–[4]. The subjective esti-
mator, on the other hand, engages human in the process.
The assessment process is further regarded as full-reference
[5], [6] (uses the original signal), reduced-reference [7], [8]
(uses partial signal) and no-reference [9], [10] schemes.
The no-reference method is also called the blind approach
which requires no information from the reference signal and
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more challenging to analyze [11]. Moreover, the existing
full-reference (FR) approaches such as mean squared error
(MSE), peak signal-to-noise ratio (PSNR) or the structural
similarity index (SSIM) are applicablemerely to the reference
oriented situations. This is also partially applicable for the
reduced reference-based metrics. These drawbacks mandates
the implementation of no-reference based metrics for quality
estimation [12], [13].

Using the natural scene statistics, Fang et al. [14] pro-
pose a blind metric for faded image quality by examining
its irregularity attributes and defending the level of devia-
tion from the statistical models. Their experimental results
suggest that the natural scene statics models are promising
in handling contrast-distorted images except the limitation
of capturing some of its specific aspects. The video quality
forecast model by utilizing discrete cosine transform (DCT)
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is reported by Zhu et al. [15] to discuss about the con-
densed video recordings. However, this metric is distortion
specific and data driven, thus, may incur with lower per-
formance on unknown data and limits its performance on
compressed videos. To overcome the evaluation limitation
of existing deblocking algorithms for deblocking images,
the authors in [16] present a no-reference quality metric for
deblocked JPEG images. They first build a deblocked image
database with subjective MOS as a ground truth reference
and then simultaneously evaluate the blocking and blurring
artifacts in smooth and textured regions respectively. This
metric could be applied to automatic parameter selection
in image deblocking algorithms. By exploiting the human
visual model, Li et al. [17] introduce a blind image quality
estimation metric by exploiting the luminance and structural
information. Gu et al. [18] incorporate the local and global
features of an image for quality estimation using blind met-
ric. This algorithm could amend the performance of general
purpose blind quality estimation metrics to a sizable margin.
These statistical metrics could signify the image structure
analysis but may not be reasonable for some high-quality
extent. This because quality observation here is mostly cor-
related to the visual aspect instead of statistical measurement
of the picture [19]. Yet, several features of visual perception
are mostly skipped in the literature.

Liu et al. [20] carry out the human insight based qual-
ity evaluation framework by utilizing eye-tracking technol-
ogy and develop increasingly sensible ground truth visual
saliency model to improve their implementation. The eye-
tracker has turned into a non-intrusive, moderate and sim-
ple to-utilize device in human attitude analysis as it exactly
screens where, when, andwhat individuals gaze at. The visual
perception can also be estimated by employing the software
based gaze estimation tool [21].

Unlike objective estimation, the subjective studies could
yield valuable data to evaluate the performance of objective
methods towards aiming the ultimate goal of matching human
perception [22]. To this end, researches in [23] aim at a
no-reference objective evaluation metric by utilizing eye-
tracker based contrast distortion information. The authors
in [24] introduce a model to judge the video quality based
on psychological merits such as electroencephalogram sig-
naling, and pupil dilation. Their process was applicable for
selectively degraded portion of a video frame which deprived
it for further use. Research methodology in [25] use the eye-
information based elective process to create a no-reference
quality assessment outline. They experimentally prove that
for inferior quality contents, partakers consume more time
for quality evaluation which is opposite to the approach
introduced by Tsai et al. [26]. We also observe similar trend
in [25] mostly for the still images which however, becomes
impractical for videos as the frames move continually. This
causes the continuous changes of object positions not to see
the same scene even a few frames later. The widely used
subjective metric MOS [27], [28] in contrast, is often biased

FIGURE 1. Compact eye-browsing is seen for Excellent quality (for
example, images in (c) and (e)). The inverse is seen in (d) and (f) for
Very-poor quality content that impacted on automatic Pupil deviation
increment and Gaze interlude decrement in (g) and (h) respectively.

by many factors and does not show a point-to-point relation
between quality and human perception.

To overcome the limitations of MOS, we introduce
a no-reference subjective testing method using eye-
maneuver. Now, let us have a look at FIGURE 1 (a) ∼ (d)
where the heat map is reproduced for good and poor quality.
It is obvious that the heat map is more condensed for better
quality as depicted in FIGURE 1 (c) which is also observed
for all frames. For better outline, this time, the viewer’s
eye movement pattern i.e. compact or scattered as shown
in FIGURE 1 (e ∼ f) is explored. It is then inferred that
for good quality, participants investigate video data with
smooth eye perusing. Focusing on the viewers’ gaze-point
distribution, thus, we calculate the spatial features of quality
correlation such as Pupil deviation (P), and the temporal
features of quality correlation such as Length pursuit (L),
Angle deflection (A), and Gaze interlude (T) for each poten-
tial gaze point (PGP) as reported in FIGURE 1. (e ∼ f)
and (g ∼ h). The PGP is a gaze-point that belongs to the
fixation (i.e. visual concentration on a fixed position) and
saccade (i.e. abrupt eye movement among various segments
of fixation). An operation for making the features (i.e. L, A,
P, and T ) content and resolution invariant is carried out so
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that the metric becomes applicable in different displayable
devices with low motion to high motion video contents.
Finally, these features are synthesized in the spatiotemporal
domain by using a weighted function to construct a new
evaluator- the eye maneuver (EMAN).
The experimental analysis reveal a good correlation of

EMAN with the most existing reference required PSNR,
SSIM and the subjective metric MOS in quality test anal-
ysis. The result of these metrics are then assessed using
two evaluators- Pearson Linear Correlation Coefficient
(PLCC) and Spearman Rank-Order Correlation Coefficient
(SRCC) [14]. Tested results show that the proposed EMAN
could better distinguish different qualities compared to the
MOS and SSIM for a wide range of single view video
(where viewpoint is fixed for users) and free view video
contents.

The remainder of the paper is organized as follows:
Section-II illustrates the correlation analysis on features;
Section-III presents the key steps of the proposed EMAN
development technique; Section-IV broadly represents the
tested results to justify the performance of EMAN both on
the single view video (SVV) and the FVV, while Section-V
concludes the paper.

II. MOTIVATIONAL ANALYSIS
The proposed EMAN metric uses four different features
extracted from eye tracker data in order to assess the recon-
structed videos encoded with video coding techniques in
different qualities. Among four features used in this exper-
iment, the Length pursuit (L-unit in pixel) of ith gaze plot
is calculated with respect to the (i + 1)th plot by means of
Euclidean distance, while the Angle deflection(A in degree)
of the ith gaze plot is determined by using the reference of
its (i − 1)th and (i + 1)th plots (here i = {1, 2, . . . , n}. The
Pupil deviation (P-unit in millimeter) is calculated for each
ith plot from the average diameter of two pupils. Finally,
the Gaze interlude (T -in millisecond) is the eye engagement
information for each ith plot which are determined by using
MATLAB R2012a.

By employing the High Efficiency Video Coding (HEVC)
[29]–[31] reference Test Model (HM) [32], we reproduce
five dissimilar quality segments of a video such as-Excellent
(using quantization parameter (QP) = 5)), Good (using
QP = 15), Fair (using QP = 25), Poor (using QP = 40)
and Very-poor (using QP = 50) and identify the response
of each feature against coding quality variation as presented
in FIGURE 2. In summary, the calculated outcomes demon-
strate that L, A, P features have a relative, while T has
a converse corresponding relationship with video quality
deterioration.

Now, using the normalized data (the data normalization
process for the features will be discussed in Section III) of the
sequences, we determine quality versus features correlation
by applying the Q-score (initially justified score of EMAN).
The features L, A, P, and T are determined by Q1, Q2, Q3,
and Q4 in equation (1) - (4) respectively and the outcome of

FIGURE 2. Relationship between the features (i.e. Length pursuit, Angle
deflection, Pupil deviation, and Gaze interlude) and coded video quality.

which is illustrated in FIGURE 3.

Q1 = L∂L (1)

Q2 = AϕA (2)

Q3 = (P/2)=P (3)

Q4 =
√
2T

(ℵ/
√
2T )

(4)

The symbols ∂ , ϕ, =, and ℵ are the weighs of L, A, P, and T
respectively. The equations are established based on power-
law [33]. As the minor value change is noticed due to the
change of quality, the features may be best applied by its
power notation for an obvious score separation. Unlike power
multiplication for the features L, A, and P, the feature T is
inversely correlated with Q-score where the power division is
applied and shown in FIGURE 3 (d). The reason for applying
Q-score is to pre-determine L, A, P, and T features’ response
to EMANwith respect to quality variation within 0 to 1 range.

The parameter L captures the perceptive distance
(i.e. how far), A calculates angular deflection (i.e. howmuch),
P measures pupil-size variation (i.e. how big/small), and T
asserts the fixation duration (i.e. how long) between two gaze
points. To capture viewers’ fixation/saccadic eye movements,
these four features played a vital role in perceptive quality
analysis. Since L, A, and Pworks in the spatial domain, these
will be merged with T in temporal domain. Thus, we combine
them by developing an adaptive weighted function equated

as: Q = L∂L × AϕA
×(P/2)=P ×

√
2T

(ℵ/
√
2T )

. FIGURE 4(a)
is the output of this synthesized function which can clearly
segregate different qualities. Now, the weight for ∂ , ϕ, =,
and ℵ in the above equation (1)-(4) is fixed with 0.5. This
illustrated in FIGURE 4(b) by calculating slopes at each
segment and averaging them using various weights. Since
the calculated slope using weight 0.5 is sharper than oth-
ers, it is fixed for the entire experiment. Different weight
combination among features may work better; yet produced
results reveal a good correlation of EMANwith other existing
metrics.
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FIGURE 3. The effect of Length pursuit, Angle deflection, Pupil deviation,
and Gaze interlude features in isolating diverse quality portions.
(a) Q-score for Length pursuit (L) by means of equation (1). (b) Q-score
for Angle deflection (A) by means of equation (2). (c) Q-score for Pupil
deviation (P) by means of equation (3). (d) Q-score for Gaze interlude (T)
by means of equation (4).

III. PROPOSED TECHNIQUE
The varied video qualities were generated by HM15.0 and
displayed on the screen to capture partakers’ eye-tracking
raw data. These data were processed mainly by excluding
all unclassified parts (that incur with frequent eye blinking
of the partakers and found 3% on average for each video)
and nullifying the corresponding gaze plots. The content and
resolution invariant operation along with data normalization
were carried out on four features. The spatiotemporal features
were then combined to introduce a new metric EMAN. The
whole procedure is exhibited as an outline in FIGURE 5
and the key stages are explained in the following associated
sections.

FIGURE 4. Quality segment distinction and relative weight selection by
exploiting Q-score. (a) Features L, A, P , and T have been combined using
a weighted function to distinct different coded quality segments.
(b) Weight 0.5 outperforms all other weight combinations and reproduce
the graph in (a).

FIGURE 5. Process diagram of the proposed technique.

A. DATA CAPTURE AND PRE-PROCESSING
Each partaker joined from the Charles Sturt University
(CSU), Australia by an open welcome which was dispersed
through messages and notice board notices. The invita-
tion incorporated an itemized ’Member-detail Sheet’ about
the participation in the project [ethical endorsement no.
2015/124]. The partakers who attended the data captur-
ing session did not suffer from any sort of physical dis-
functionalities that could undesirably impact on assessment.
A group consisting of fifteen people (including men and
women) who were appointed belong to 19-46 age range
and were undergraduate, postgraduate students, Ph.D stu-
dents, and academics of CSU. Experiments were conducted
using the joint collaborative team on video coding (JCT-VC)
recommended eight class sequences including the Class-A,
Class-B, Class-C Class-D, and Class-E. The used videos had
the versatility of contents, motions and resolutions. The brief
detail about videos and test conditions are summarized in
TABLE 1 (more specific description about the videos could
be found in [34], [35]).
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TABLE 1. Sequences for single view video quality evaluation.

FIGURE 6. Unprocessed Length pursuit (in (a) and (b)) is made content
and resolution invariant along with data normalization when processed
in (c).

To keep the experiment out of biasness with color, contrast
or brightness, merely their gray-scale modules were used.
There were five sub-divisions of quality as stated earlier
and each of them was displayed a minute with a pause
of 3 seconds in between. The necessary calibration using
sixteen-point trial run was done for the partakers comfort in
the process. The lighting impact was constant for the whole
period of time. Upon their agreement, the Tobii eye tracker
[36], [37]which was attached to the video display computer
came into eye traversal recording operation of the partak-
ers. To finish the whole recording, around 60 minutes were
required for each participant. Since eye tracker was operated
at 60HZ frequency and the videos were run at 30fps, each
frame captured two gaze plots. Hence, a video could capture
18000 gaze plots having 3600 for each segment.

B. INVARIANT OPERATION ON LENGTH PURSUIT
Prior to carrying out the invariant operation on the fea-
ture Length pursuit-L, let us see its unprocessed values in
FIGURE 6(a) and (b). The calculated content based variation
using their highest and lowest values go to 61.96% as depicted
in (a), while the resolution based variation is 52.57%. Thus,
the invariant operation is undertaken on both content and
resolution. The first one is comprised of the following phases:
(i), we compute the L from PGPs as discussed in Section II;

(ii), figure out the average of potential coordinate PGP (x, y)
which is the pre-determined center C(x, y); (iii), with respect
to C(x, y), theEuclidean distance of all PGPs is calculated to
sort values of L in chronological order. This ordering scheme
could prioritize foveal fixation and unlike parafoveal, or per-
ifoveal formation, the foveal eye fixation is more object
centric [38]. (iv), number of organized values are taken for
calculating radius of motion led region. The selection of is
justified in the experimental results analysis section; (v), now,
the calculated radius is used as a divisor of length pursuit for
each potential plot.

As instance, next to the content invariant operation,
the obtained average values of L for the (2560 × 1600),
(1280 × 720), and (416 × 240) resolution videos were
0.37, 0.23, and 0.14-pixels respectively where the variation
between (2560 × 1600), and (416 × 240) resolutions is
62.16%. Both the video content and display size are responsi-
ble for such stunning variation. Once we apply the multipliers
reported in TABLE 2 for (2560 × 1600), (1280 × 720), and
(416 × 240) resolution based sequences, the post-processed
values we obtain are 0.24, 0.23, and 0.21 respectively. The
calculated variation between (2560× 1600) and (416 × 240)
resolutions now downs to 12.5%. As the recorded eye-
tracking data illustrates a consistent correlation between
video resolution and quality, the employed multipliers fitted
well in invariant operation. The normalized value now also
ranges within 0 to 1. The third and fourth column of TABLE
2 show the earlier and current variation respectively. The
current variation notably downs to 10.67% and its implication
is revealed in FIGURE 6 (c) which is eventually taken for
EMAN scoring.

TABLE 2. A major percentage of variation could be reduced on Length
pursuit by performing content plus resolution invariant operation.

C. INVARIANT OPERATION ON ANGLE DEFLECTION
FIGURE 7 (a) and (b) show the content and resolution based
unprocessed maximum Angle deflection-A values which are
37.49% and 6.25% respectively.

Since the feature A does not have a promising impact on
the variation of resolution, we merely implement the content
invariant operation on it (similar to the L) by the following
steps: (i) we determine the Angle deflection of the poten-
tial gaze points as stated earlier in Section II; (ii) sort the
estimated values of A from the lowest to the highest order;
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FIGURE 7. The unprocessed Angle deflection presented in (a) is made
content invariant since they are already resolution invariant as presented
in (b). The outcome in (c) is obtained after performing content plus
resolution invariant normalization (ranges from 0 to 1) operation.

(iii), select the standard average values from the range of
ordered values; (iv) the calculated average is finally used as a
divisor of the potential gaze plots determined in the step (i).
The normalized value also ranges within 0 to 1. The whole
invariant impact on A is revealed in FIGURE 7 (c) with a
minor variation of 6.31%.

FIGURE 8. The content and resolution based unprocessed Pupil-sizes are
shown in (a) and (b) respectively. The outcome in (c) is obtained by only
performing the normalization operation (ranges from 0 to 1).

D. NORMALIZATION OF PUPIL DEVIATION
Compared to the features L or A, we detect relatively steady
characteristics of the Pupil deviation P both on content and
resolution as presented in FIGURE 8 (a) and (b) with a tiny
variation of 1.37% and 1.68% (less that 10% variation is
avoided) respectively. Hence, we skip invariant operations
on Pupil deviation. However, to normalize the feature P, all
pupil deviationvalues are divided by the maximum Pupil-size
of human (which is taken 6.1 mm from [39]). The invariant

FIGURE 9. Only the resolution based unprocessed Gaze interlude in (b) is
made resolution invariant since they are already content invariant as
presented in (a). The outcome in (c) is obtained after performing content
plus resolution invariant normalization (ranges from 0 to 1) operation.

and normalized P values are displayed in FIGURE 8 (c) that
belong to the range 0 to 1 as well.

E. INVARIANT OPERATION ON GAZE INTERLUDE
The calculated Gaze interlude presented in FIGURE 9 (a) is
already content invariant as the maximum variation is 9.31%
among them. However, since the variation among resolutions
goes up to 46.78% (in (b)), we make them resolution invari-
ant by exploiting some multipliers which is similar to the
Length pursuit feature operation which is presented in first
and second columns of TABLE 3. The third and fourth col-
umn show the earlier and current variation respectively. The
variation now downs to 10.23% by operating the multipliers
for different resolution types and its implication is shown
in FIGURE 9(c).

TABLE 3. A major percentage of variation could be reduced on Gaze
interlude by performing the resolution invariant operation.

F. THE IMPLEMENTATION OF EMAN
In the proposed algorithm, the EMAN score is calculated
for every potential gaze point as the feature values of L,
A, P, and T exist for all these points. Thus, for a single
quality segment (i.e. for a QP), more than 3450 EMANvalues
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are obtained due to having the same number of potential
gaze plots (i.e. 3600 plots minus 3% unclassified data). The
average EMAN score is then counted for parallel comparison
to othermetrics. Note that the PSNRor SSIM similarly counts
their corresponding value for all frames at a QP (said earlier)
and produce their average as a result. From previous statistical
analysis, it can be inferred that an automated higher EMAN
score is gained if the features L, A, and P are much lower
than T . The equation for EMAN is finally derived as:

EMAN = L∂L × AϕA
× (P/2)δ̄P ×

√
2T

(ℵ/
√
2T )
. (5)

where the associated weighted values of L, A, P and T
denoted by ∂ ,ϕ, δ̄ , and ℵ respectively and the weight is set at
0.5 for the whole experiment (described earlier). An excep-
tional case is also taken in consideration. If L = A = 0 ∈ 30
continuous frames (as 30 is the frame rate), then the value
of L = 0.1 and A = 0.1 are forced to set out as a penalizing
operation. The features L andA are onlymanipulated asP and
T are still 6= 0. Note that during the whole experiment, we did
not experience such unusual situation. If the EMANevaluated
quality score is close to 1, the video content quality is rated
best, while, the opposite happens for the score close to 0.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
To verify the proposed metho’s effectiveness, experiments
are conducted on the JCT-VC recommended eight class
sequences and the FVV sequences. The quality variation
of the sequences is carried out by employing the HM15.0.
As presented earlier the reproduced Excellent, Good,Fair,
Poor andVery-poor quality segment has been constructed
using QP = 5, 15, 25, 40, and 50 respectively. The perfor-
mance of the EMAN is then compared with the popularly
used objective metrics PSNR, SSIM and subjective estimator
MOS. The goal is to exploit the EMAN as an alternative to
the MOS by actively incorporating the human cognition.

FIGURE 10. Illustration of EMAN scoring by employing the average of
sorted values of L and A features. Since using first 75% could yield the
highest EMAN score for all sequences, this percentage is used for the
whole experiment.

A. EMAN EVALUATED QUALITY SCORE
As discussed in Section-III, we use the average of ordered
values for determining the fobial radius of moving region
which is justified in FIGURE 10. When first 60% values
are sorted, a good number of feature values still remain
unemployed to boost up EMAN score. In contrast, if much

FIGURE 11. The video-wise highest (Max) to the lowest (Min) EMAN score
is calculated for all segments using eight videos. The highest score is
obtained for the Excellent quality segment and vice-versa. There is also a
clear score difference from one segment to another.

TABLE 4. The distinction of Different Segments of Quality Using EMAN
Evaluated Quality Score.

higher percentage is imposed (e.g. 85%), plenty of superflu-
ous values incurwith the scoring process that further results in
poorer rating of the metric. Since using first 75% could yield
the highest EMAN score by further rectifying the visual sen-
sitive plots almost for all sequences, we apply it to calculate
the final EMAN score.

The highest and lowest EMAN score for all the segments
and all the test videos are presented in FIGURE 11. The
score for theExcellent fragment is themost noteworthywhich
gradually decreases with respect to quality degradation and
reaches at the least for Very-poor portion. Using Max and
Min the calculated average of each segment is reported in
TABLE 4. In either case, there is a clear decline in scores
due to content quality degradation occurring at higher QPs.
In the rightmost column, the final average is calculated and
the variation between the best and worst quality is recognized
by 61.53%.

FIGURE 12. The introduced metric EMAN has an inverse proportional
correlation with quality degradation.

The resultant score indicates the EMAN’s quality segre-
gation proficiency which is further discussed according to
participant and video-wise average score in FIGURE 12.
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For coded Excellent segment, the obtained participant and
video-wise EMAN scores are 0.81 and 0.78 respectively
which are the highest scores in both cases according to
FIGURE 12. In fact, for its best quality, the partakers could
better detect and capture information with smooth eye brows-
ing. Conversely, for its Very-poor quality segment with low-
est scores (i.e. 0.21 and 0.26), partakers get the video by
means of hit and miss browsing. The hit and miss means are
due to the successful and unsuccessful attempts for pleasant
and unpleasant quality respectively. For Very-poor contents,
the number of hit-and-miss browsing notably rises with time.
This leads relatively to the scattered means of browsing.
Hence, for the worst quality content, it is highly unlikely to
yield upper score by EMAN.

FIGURE 13. For various segments of coded video quality, the Basketball is
the highest EMAN scorer, while the Tennis is the lowest one.

FIGURE 13 illustrates the EMAN estimated quality score
for the videos which scores the highest and lowest at various
segments. The Figure reveals that for the Excellent segment
of quality, the Basketball sequence performs the best and
obtains the score 0.83. The Tennis on the other hand, performs
the worst for the Very-poor quality and scores 0.17. Exactly
the inverse happens for the Excellent quality with a score
of 0.77. The quality corruption therefore, not only influences
the partakers’ perception but also automatically resists them
from better scoring.

Now two cases are observed for the proposed assessment
process: (i) forBasketball, whether the partakers injected eyes
to the vicinity of a specific position to bias the Length pursuit
and Angle deflection feature and obtained the highest score
in FIGURE 13; (ii) the reason for which Tennis scores the
lowest according to the same figure. To justify the answer
these questions, let us concentrate on the Bee-swarm visual-
ization (i.e. the gaze fixation of all partakers in the form of
simultaneous plots that attract attention in a frame) for the
10th frame of both sequences presented in FIGURE 14.

The group-fixations for the 10th image of Basketball video
at Excellent quality is shown in FIGURE 14 (a) where partak-
ers’ eye fixation data looksmore consistent with object move-
ment. Conversely, the group fixations for the 10th image of
Tennis at Very-poor quality is shown in FIGURE 14 (b) where
partakers also located eyes all over the image. However,
the entire recorded gaze data pattern appears more scattered
(due to hit-and-miss eye movement) and could not satisfy

FIGURE 14. Eye tracker recorded group visualization data could better
inform about the partakers gaze point in an image (taken a single frame
from video). (a) Group fixations for 10th image of Basketball video at
Excellent quality. (b) Group fixations for 10th image of Tennis at Very-poor
quality.

FIGURE 15. Calculated four metric values for the Excellent and Very-poor
quality. (a) Calculated PSNR for all videos. (b) Calculated SSIM for all
videos. (c) Calculated EMAN for all videos. (d) Calculated MOS for all
videos.

high scoring criteria and eventually obtained relatively poorer
quality score.

B. COMPARISON OF QUALITY EVALUATION
FIGURE 15 illustrates the calculated four metric values for
Excellent and Very-poor quality segment. It is obvious that
for the Excellent quality, the PSNR and SSIM selected best
quality video set is mostly correlated to the EMAN picked
video set such as [Basketball, Flowervase, Tennis]. These
three metrics reveal the similar characteristics for the Very-
poor quality as well. However, theMOS does not demonstrate
the equivalent video selection pattern in either case. Except
Traffic video which is evaluated as one the lowest scorers in
all metrics, the performance of EMAN is very much similar
to PSNR and SSIM, rather than MOS over all videos.

FIGURE 16 (a∼d) illustrate four metrics assessed average
score for the Excellent and Very-poor quality by exploit-
ing all the videos. The calculated percentage of variation
between the best and worst quality obtained by PSNR, SSIM,
EMAN, and MOS are 55.08, 32.98, 57.95, and 49.53 respec-
tively. This data have been pictorially demonstrated fur-
ther in FIGURE 16(e) where the EMAN performs better
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FIGURE 16. The Excellent and Very-poor quality segment separation
capability of four metrics where the EMAN performs better than others
according to (e). The MOS in contrast could detect the highest variation
by experiencing a very wide range of scores (sometimes inconsistent
compared to other metrics) from the partakers as shown in (f).

than others. The calculated highest variation for four met-
rics are also reported in FIGURE 16(f). The MOS tends to
produce higher score in FIGURE 16(f) which is mostly due
to providing an arbitrary scoring opportunity to the partakers
during assessing quality.

FIGURE 17. Four metric estimated level of variation detection using all
class videos.

Now we reproduce the video-wise performance for four
metrics with respect to maximum quality distinction capacity
and display it in FIGURE 17. For Tennis video, the most
noticeable difference is captured by the EMAN due to per-
ceiving the best quality of object movement with smooth
Length pursuit, Angle deflection, minimum Pupil deviation
and maximum Gaze interlude to get better EMAN score.
Surprisingly, the worst quality of the same video attributed
inversely proportional to the characteristics of four features

to get inferior EMAN score, thereby creating such stunning
difference. The similar statistics is also obtained for Traffic,
Fourpeople, and Blowingbubbles video. It is also obvious that
unlike SSIM, the PSNR, EMAN, and MOS similarly work
over all videos reported in FIGURE 17.

FIGURE 18. Four metrics obtained quality score for each segment where
lower percentage of variation indicate better metric performance.

Now, two noticeable points: (i) if distinctive video sub-
stance are coded utilizing the equivalent QP (for example 5
for Excellent), the created score ought not to have much
variations. In any case, the PSNR could not pursue this pattern
and goes at the apex as uncovered in FIGURE 18. Although
the EMAN performs better than the PSNR, and MOS almost
in all cases, the SSIM appears most stable in this regard.
Observation (ii): even though the same video is coded with
versatile quality, the employed metric should produce vari-
ous scores accordingly. The EMAN reveals similar result to
PSNR, however, it performs much better than the SSIM and
MOS almost in all cases according to FIGURE 19.

FIGURE 19. Four metrics obtained quality score for each segment where
higher percentage of variation indicate better metric performance.

The PLCC and SRCC are two widely used time utilized
execution estimators which have been employed for fur-
ther performance justification of EMAN, PSNR, SSIM, and
MOS. The efficiency of a metric is justified by depending on
its obtained higher values of PLCC and SRCC [14]. Hence,
for all videos, the PLCC of each metric is first calculated
and their average value reported in TABLE 5 indicate that
the EMAN outperforms all the metrics except PSNR. This
mostly due to the use of different coded video qualities since
the sensitivity of PSNR from Excellent to Very-poor quality is
very high. This is also applied in quality restoration of lossy
compression.
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TABLE 5. The PLCC evaluated performance of four metrics over eight
class sequences.

TABLE 6. Position of four metrics in terms of PLCC and SRCC’s
assessment principle.

Similar to the PLCC, the SRCC of eachmetric is calculated
and their average value is summarized in TABLE 6. From
the data of the table it can be inferred that in both cases,
the EMAN is relatively a better estimator compared to SSIM
and MOS although the PSNR after all, is the highest scorer.
The average of the PLCC and SRCC for each metric is also
reported in TABLE 6 which also infer the similar result.
However, it should be noted that unlike PSNR, no reference
is available once the EMAN based assessment is carried out.
Since the scoring example of these measurements are closely
comparable regarding recognizing distinctive quality sub-
stance as outlined in FIGURE 17, FIGURE 18, FIGURE 19,
TABLE 5 and TABLE 6, the newly introduced EMAN could
be spoken as another individual from of metric in this family.
Therefore, it can be utilized effectively as a decent option in
contrast to the emotional estimator- MOS.

C. FREE VIEWPOINT VIDEO (FVV) QUALITY
ASSESSMENT USING EMAN
The FVV generation is comprised of image warping and
then hole filling procedure such as inverse mapping or post
filtering [40]. The synthesized view is generated at a simu-
lated position between left and right views where there is no
reference outline for quality estimation of such video [41].
The depth image based rendering (DIBR) is a practical way
to reduce storage and transmission bandwidth for synthe-
sized videos from texture and its corresponding depth map.
However, in the DIBR technique, portions of regions are
not visible in the virtual position due to the front objects
termed as occlusion, which create some holes in the view
synthesis. Therefore, unlike single view video (SVV), such
crack like artifacts in the coded FVVs are more visible to the
users and become more obvious at lower bit-rates (such as

FIGURE 20. The Excellent and Very-poor quality segment separation
capability of four metrics in a FFV where EMAN performs better than
others according to (e). The MOS in contrast detects the highest variation
by experiencing a very wide range of scores (sometimes inconsistent
compared to other metrics) from the partakers as shown in (f).

using QP = 50) by reproducing the worst quality. Due to this
correlation with quality variation, it is anticipated that EMAN
should provide higher PLCC and SRCC values than MOS
for FVV.

The FVV does not have any available reference frame,
and the EMAN also does not require any reference frame
for quality evaluation. Thus, the EMAN could also be helpful
eventually to compare different scoring patterns of reference-
based metrics such as PSNR or SSIM. Hence, we further
employ the EMAN on FVV coding performance analysis.
The goal is to evaluate the view synthesis algorithms using
EMAN. To assess the performance of four metrics on FVV,
the Excellent and Very-poor segments are considered in
FIGURE 20(a ∼ d) as we have done earlier in FIGURE 16.
The score difference between these two segments obtained by
EMAN is 78.51 which is much higher than rest of the metrics
taken as reported in FIGURE 20(e). The MOS in contrast
could detect the highest variation by experiencing a very
wide range of scores (which appears inconsistent compared
to other metrics) from the partakers as shown in (f). For
some synthesized video such as Newspaper, the partakers
rank them very low as in the depth image based rendering,
numerous holes made the quality too poor. As a result, some
of them started scoring from 0.05 (out of 1.0) which lead to
such notable variations.

The calculated result for FVV in FIGURE 20 has been
compared with the result presented in FIGURE 16 for SVV
and further demonstrated in FIGURE 21 for better judgment.
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FIGURE 21. The Excellent and Very-poor quality distinguishing capability
of the PSNR, SSIM, EMAN, and MOS both on SVV and FVV. Higher
percentage of variation indicates better quality differentiating capability
of a metric.

FIGURE 22. The Excellent and Very-poor quality distinguishing capability
of the PSNR, SSIM, EMAN, and MOS both on SVV and FVV. The higher
percentage of variation indicates better quality differentiating capability
of a metric.

In the case of FVV, the quality distinguishing capability of
all the metrics has been relatively improved compared to the
SVV. The objective estimators PSNR-FVV and SSIM-FVV
could not stabilize any ground truth reference upon which
they depend. The subjective estimators such as MOS-FVV
or EMAN-FVV for the same reason, could do better as it
does not need any reference frame for scoring. Similar to the
FIGURE 18, the score of four metrics for each segment is cal-
culated using the FVV and also comparedwith SVV results in
FIGURE22. The performance of themetrics in FIGURE22 is
assessed based on the proposition that the score variations
should not be prominent if different videos are coded with
the same quality. Both for the Excellent and Fair segment,
the variation calculated by the PSNR-FVV and EMAN-FVV
is relatively higher than those of the PSNR-SVV and EMAN-
SVV respectively and perform almost in a similar fashion.
Unlike the Excellent quality segment, theMOS-FVV remains
more stable compared to the MOS-SVV for Fair quality
segment but the SSIM-FVV remains most stable in this
aspect. In contrast, for Very-poor quality segment, the per-
formance improvement of three metrics is more obvious
in FVV in terms of lowering the variations except for the
MOS. However, according to the overall calculated result
of FIGURE 22, the EMAN-FVV performs relatively better
compared to PSNR-FVV as well as MOS-FVV in most cases
although the SSIM-FVV outperforms all other metrics by
limiting its variations.

FIGURE 23. The Excellent and Very-poor quality distinguishing capability
of the PSNR, SSIM, EMAN, and MOS both on SVV and FVV. The higher
percentage of variation indicates better quality differentiating capability
of a metric.

To verify proposition-2, i.e. if the same video is coded with
various qualities, for each of the variations, the quality score
should be different. This has been justified using (i) Excel-
lent∼ Fair and (ii) Fair∼ Very-poor and reported in Fig. 23.
For case-(i), all themetrics perform better than SVV approach
where EMAN-FVV and PSNR-FVV are much better than
others. The SSIM-FVV is the least responsive metric in this
regard. For the second range of segment, the FVV based
performance of four metrics appear much better than the SVV
based outcomes, however, this time the EMAN-FVV and the
MOS-FVV perform their best in quality separation. Over all
segments of quality, the performance of the subjectivemetrics
is superior to the objective ones.

TABLE 7. Average performance of four metrics according to the
assessment requirement of PLCC and SRCC.

For additional analysis, the calculated results for SVV
and FVV are reported in TABLE 7 by implementing both
the PLCC and SRCC’s assessment requirement. Although
PSNR-SVV is the best metric according to TABLE 7,
the score obtained from the FVV indicate a very closer
correlation among the PSNR, EMAN, and the MOS while,
the EMANperforms relatively better than theMOS and SSIM
according to both performance estimators- PLCC and SRCC.
Therefore, in addition to the objective metrics, the outcomes
of the free view synthesized videos could also be assessed by
organizing the subjective estimators and incorporating their
scores for more realistic evaluation.

V. CONCLUSION
The widely used subjective estimator- mean opinion score
(MOS) is often biased by the testing environment, viewers
mode, expertise, domain knowledge, and many other factors
which may influence on actual assessment. In this work,
we, therefore, introduce a no-reference subjective metric by
statistically analyzing four quality correlation features form
Human vision and synthesize them using an adaptive cost
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function to develop a new metric- eye maneuver (EMAN).
Tested results reveal that the quality evaluation carried out by
the EMANperforms relatively better than theMOS and struc-
tural similarity index (SSIM) in terms of assessing different
aspects of coded video quality for a wide range of single
view video contents. For the free viewpoint video (FVV)
where the reference frame is not available, the EMAN could
also better distinguish different qualities compared to the
MOS and SSIM. Since the human visual stimuli could also
be captured by directly employing the software based eye
tracking simulators (where device itself is no longer needed),
the utility of EMAN could be more flexible over an extended
areas of applications.
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