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ABSTRACT Software crowdsourcing is an emerging and promising software development model. It is
based on the characteristics of Internet community intelligence, which makes it have certain advantages
in development cost and product quality. Companies are increasingly using crowdsourcing to accomplish
specific software development tasks. However, this development model still faces many challenges. One of
the key issues is the collaboration between crowdsourced workers. Developer collaboration is important to
software development, but workers in crowdsourcing come from an undefined network community, so it’s
hard to guarantee that they can work together. This paper focuses on task assignment and uses the active
time of workers as the basis of grouping to provide a solution for multi-task to multi-worker allocation.
Based on the on-demand distribution model, this paper considers three factors: worker’s ability, task module
complexity, and worker’s active time. First, the workers are divided into multiple collaborative candidate
groups based on active time. Then, the Hungarian algorithm is used to select the optimal workers for
each module from the collaborative candidate groups of each task, and the coordination candidate group
replacement strategy is used to solve the assignment failure problem. Finally completing the assignment
of all tasks within an assignment cycle. The experiments have shown that the proposed method increases
the total utility by 25% and the success rate of distribution by 30% than the sequential assignment method.
The proposed method can give a reasonable solution for software crowdsourcing task allocation based on
collaborative development.

INDEX TERMS Crowdsourcing, software development, collaborative candidate group, Hungarian algo-
rithm, active time.

I. INTRODUCTION
Crowdsourcing software development aims to make software
development no longer limited to a small number of iso-
lated developers, but work in collaboration with developers
from various organizations and communities [1]. This pat-
tern enables software development tasks to be accomplished
through collaboration of developer groups, on the premise
of overcoming time, regional, and organization constraints,
thus reducing development costs and efficiency [2]. Dif-
ferent from the traditional software development and out-
sourcing mode, workers in the crowdsourced mode mainly
come from the groups on the network. The randomness of
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the network developers makes the development ability of
workers uneven. At the same time, the quality of tasks cannot
be ensured, because of the unfixed cooperative relationship
between works and the lack of collaborative development
environment [3]–[4].

Many literatures have pointed out that there is inevitable
dependency between tasks. Failure to ensure the collaborative
work among workers may lead to inefficient and poor soft-
ware development [5]–[11]. Given the collaborative nature
of software development, Bandinclli et al. suggested that
the success of development depends on ‘‘the quality and
effectiveness of communication between members of the
development team’’ [12]. Although crowdsourcing devel-
opment has fundamentally changed the original organiza-
tional status, project management methods and information
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communication channels have not been improved accord-
ingly. Previous studies have also shown that the risk of
crowdsourcing software development is mainly related to the
risk of teamwork. Therefore, how to ensure the coordination
between workers has always been one of the urgent problems
to be solved in the crowdsourcing software development.

The task assignment methods of existing commercial
crowdsourcing platforms are mainly divided into two cate-
gories. The first one is based on online competition, organized
by the contest, and selects the winner (and runner-up) based
on the community peer-review of the task submission [1].
Such as TopCoder [13], Bountify. This method can guarantee
the quality of the tasks, but the competitive tasks with a
long development cycle will cause great loss to the losing
candidates. Therefore, this method is only suitable for micro,
short-term development tasks, and it is also difficult and
time-consuming to select winners from a large number of
submitted tasks [14]. The other is based on the bidding mode,
such as GetACoder [15], zbj.com, codemart, jointForce, etc.
The method realizes the two-way choice between crowd-
sourcing platform and workers, which is helpful to achieve
stable employment relationship. It is suitable for development
tasks of various scales. However, the task publishers need to
browse a large amount of bidding information and perform
manual comparison. The time and labor cost of this method
is relatively high [16].

In academia, many scholars have actively carried out
research in this field. For example, Shi et al. [17] pro-
posed a task assignment mechanism based on user reliabil-
ity. This mechanism takes into account the differences in
worker reliability, but ignores the differences in task diffi-
culty. Mao et al. [18] proposed using historical data to train
classification model, and assigned new tasks based on the
similarity between the tasks to be assigned and the historical
tasks. This method relies on the validity of historical data,
and it ignores the collaboration of worker. Shao et al. [19]
attempted to recommend developer by combining neural
networks and content-based filtering approach. It relies on
intrinsic properties, but not taking into account developers’
dynamic development capabilities Zhu et al. [20] proposed
a ranking method based on topic features to rank workers’
ability, and then recommended workers. But it also ignores
the collaboration of worker. Wang et al. [21] achieved the
recommendation of crowdsourcing software developers with
the capability improvement model. It is also limited to the
situation where a single worker completes a single task.
Machado et al. [22] formalize task allocation in crowdsourc-
ing scenarios as an artificial intelligence planning prob-
lem. But it does not apply to collaborative environments.
Lee et al. [23] propose a task distribution method try to min-
imize the difference between the level of skill of workers and
the difficulty of the tasks. But the allocation is defined as one-
to-one. Roy et al. [24] integrate multiple human factors, such
as worker expertise, minimum wage requirements and accep-
tance ratio, into the assignment process. But it assumed a
wiki-like collaboration model e in which workers collaborate

on the task itself, but not directly interacting with one another.
Boutsis and Kalogeraki [25] develop a crowdsourcing system
called CRITICAl and solve a task assignment problem, that
efficiently determines the most appropriate group of workers
to assign for each incoming task. But its constraint is based
on application real-time demands. Rahman et al. [26] adapt
various individual and group based human factors critical to
complex collaborative tasks, and propose a set of optimiza-
tion objectives. It realized the problem of worker collabora-
tion, but judge it by affinity among workers.

Above mentioned work is based on the premise that
the crowdsourcing software development task is completely
independent, emphasizing the pairing between individuals
and tasks. They mainly focused on the decomposition and
independence of the tasks [2], [27]. However, none of them
provided an effective method to address the collaboration
between the workers. There are two forms of cooperation,
policy-driven and informal cooperation. Policy-driven coop-
eration is done by exchange and correct handling of well-
structured documents and concurrency control regarding the
access to artifacts. Informal cooperation is characterized by
the unrestricted exchange of structured or unstructured infor-
mation [28]. In comparison, the latter has lower requirements
for task publishers and workers. Because of the free inter-
action between workers, they understand each other better
and collaborate together better [17]. Thus, it is more suitable
for crowdsourced mode. At the spatial level, Internet-based
crowdsourcing owns the advantaged environment to collab-
oration, and it is no need for workers to be concentrated
in designated locations [29]–[30] At the time level, due to
the uncertainty of the crowdsourcing groups, it is difficult
to ensure a consistent working time. At the same time, most
workers participated in crowdsourcing are amateur and can
only be active online for crowdsourcing in certain periods.
Therefore, the key to achieve collaboration in crowdsourcing
software development is to select workers with the same
active time as close as possible.

To ensure the communication between workers, and to
improve the efficiency and quality of crowdsourcing software
development, in this paper, based on the bidding model,
we design a task assignment method for multi-modules soft-
ware collaborative development from the perspectives of
worker’s ability, task module complexity and active time.
Firstly, according to the total number of active time periods
required by the task, we group the workers, and then optimize
the global total utility using Hungarian algorithm, under the
condition that the workers worked on the same task belong
to the same collaborative candidate group. After that, using
the replacement strategy of collaborative candidate group to
solve the problem of assignment failure. Finally, all tasks in
an assignment cycle are allocated.

This work makes the following contributions:
1) We propose the idea of assigning collaborative

working groups through the coincidence of active time.
Based on that, the task assignment problem of total
utility optimization under the cooperative constraint is
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proposed, and the formal definition of the problem is
given.

2)We propose a series of algorithms to solve our problems.
Our problem is transformed into a weighted bipartite graph
optimal matching problem with special constraints. We pro-
pose an algorithm based on active time partitioning to make
the working group satisfy the cooperative constraint. On the
basis of the Hungarian algorithm, we propose a collaborative
workgroup replacement strategy to optimize assignment.

3) Based on the real worker dataset, we provide experi-
mental results of the proposed algorithm’s performance on
total utility and allocation success rate, which proves the
effectiveness of our proposed solution.

II. CROWDSOURCING SOFTWARE TASK ASSIGNMENT
This section gives a definition of crowdsourcing software
development mode and the problem faced.

A. CROWDSOURCING SOFTWARE DEVELOPMENT
In this paper, we mainly focus on studying a crowdsourcing
software development system based on bidding mode. First,
the publishers need to provide and publish task-related infor-
mation to the crowdsourcing platform, from which devel-
opers then acquire the information of those available tasks.
They select the competent and interested tasks to enroll. After
that, the tasks whose registration ends and the number of
applicants meets the requirements will be selected. For each
selected task, workers who meet the requirements of collab-
orative work are divided into a group. Finally, selecting the
most suitable worker for each module from the group. While
completing the development tasks, each worker in the group
submits the module code to the platform, and the platform
will integrate all the codes to form a complete solution. Some
relevant concepts in the context are defined as follows:
• Crowdsourcing software development task: the crowd-
sourcing software development task in this paper refers
to the code programming task, divided into several
smaller modules described by UML diagram[33]. It is
described as a four tuple: t = (Mt , ct , gt ,Rt), whereMt
is a set of task modules; ct is the type of tasks; gt is the
time threshold that how long the workers are required to
work together per day for task t; Rt is a group of workers
who successfully registered for task t .

• Task module: the task module refers to the develop-
ment module obtained by task decomposition. It is
described as a two tuple:m = (Dm, cm), where Dm is
the description of module m, including module require-
ments, rewards and other information. cm is the expected
complexity of module m.

• Worker: a worker is viewed as a participant in a crowd-
sourcing software development task, described as a two
tuple: d = (Ad , Sd ), where Ad = ad,1, ad,2, . . . ,ad,n is
the set of the ability of worker d for different types of
tasks, so ad,i indicates the ability of worker d to com-
plete the ith task; Sd is the active time set that workers
are more inclined to carry out development work during

these periods, Sd ⊆ {s | 1 ≤ s ≤ 24}, s represents the s
hour of the 24 hours a day.

• Assignment utility: the assignment utility is an index to
measure the quality of task assignment. It is generally
believed that assigning harder modules to more capa-
ble workers as much as possible will generate higher
value. The calculation of assignment utility of module
m assigned to worker d is: u (m, d) = cmad,ct .

B. DESCRIPTION OF THE PROBLEM
The problem of this paper is how to design a task assignment
method to maximize the matching utility between workers
and task modules in a multitasking context.

Assume that when the platform performing task assign-
ment, the set of tasks satisfies the condition T = t1, t2, . . . tn,
the final assignment result of task t (t ∈ T ) is ARt =
{(mi, di) | i = 1, . . . , |Mt |},where tuple (mi, di) indicates that
module mi was assigned to worker di. First of all, in order
to meet the collaborative development requirements between
task modules, the number of active sessions shared by work-
ers is not less than gt . Suppose DARt = {di | (mi, di) ∈ ARt },
the shared active time is expressed as TS =

⋂
d∈DARt

Sd it must

satisfy:

|TS| =

∣∣∣∣∣ ⋂
di∈DARt

Sdi

∣∣∣∣∣ ≥ gt (1)

The total assignment utility of a single task t is described
as:

uARt =
|Mt |∑
i=1

u (mi, di) (2)

The goal of this paper is to maximize the sum of the
total utility of all tasks in an assignment cycle, which can be
formalized as the following optimization problem:

max
∑
t∈T

uARt

s.t. d ∈ RDt ; ∀d∈DARt ,∀t ∈ T∣∣∣∣∣∣
⋂

di∈DARt

Sdi

∣∣∣∣∣∣ ≥ gt ; ∀t ∈ T

DARi ∩ DARj= ∅; ∀i ∈ T,∀j ∈ T, i 6= j (3)

The first constraint is to ensure that the final selected devel-
oper has already signed up for the task. The second constraint
is to ensure that the number of active sessions shared by
workers is not less than gt , namely to ensure that workers
can collaborate in the same workgroup. It is referred to as
collaborative constraints. The third constraint is to guarantee
that any worker can only be selected by one task in the
process.

III. TASK ASSIGNMENT PROCESS
The specific framework of the crowdsourcing software task
assignment method proposed in this paper is given in this
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FIGURE 1. The framework of crowdsourcing software development.

section. The input of the assignment process is a set of
assignable tasks, contain all the tasks required to meet the
number of enrollees in the current assignment cycle. The
output of the assignment process is the final assignment
result, a set of module-worker pairs. The detailed assignment
process is shown in Figure 1.

The assignment process can be divided into two steps:
(1) Constructing a collaborative candidate group sequence:

In this step, for each input task, built a collaborative candidate
group. Meanwhile, the registered workers for each task will
be divided into multiple subsets in terms of the cooperative
requirement. Then, the obtained subsets will be constructed
as a specific priority sequence for subsequent matching.

(2) Optimizing matching results based on the Hungarian
algorithm: In this part, a bipartite graph model will be con-
structed between task modules and workers. After initializing
the links of the bipartite graph, the Hungarian algorithm is
continuously used to solve the optimal matching scheme.
When the matching fails, a replacement strategy of collab-
orative candidate group will be performed, and then rematch
until it is successful or failure, due to the replacement strategy
can no longer be executed.

IV. COLLABORATIVE CANDIDATE GROUP SEQUENCE
CONSTRUCTION
In order to ensure that a group of workers assigned to the same
taskmeet the specified simultaneous online requirements, it is
necessary to let the crowd-workers have the same set of active
time slots as far as possible. Therefore, we hold the threshold

FIGURE 2. An example of task and workers.

of parameter g, and keep the total active time period owned
by required workers is greater than or equal to g. As shown
in Figure 2, a task consists of two modules (requires two
workers to develop) with a time threshold g = 2, which
requires the assigned worker to have a total active time of
at least two hours. Then, in the context: worker A and worker
B have a total of 4 hours from 08:00 to 12:00, and they both
meet the requirements; A and C have a total of 2 hours from
14:00 to 16:00, meet the requirements; A and D have a total
of 2 hours from 09:00 to 12:00 and 2 hours from 14:00 to
16:00, and one or two hours from these two time intervals
can also meet the requirements; B and C have no common
time period and do not meet the requirements. According
to the requirements, B and D have a total of 2 hours from
10:00 to 12:00, andC andD have 2 hours from 14:00 to 16:00.
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Therefore, 5 groups of workers meet the demand, {A, B},
{A, C}, {A, D}, {B, D}, {C, D}.

When the number of workers is large, we can’t exhaust
all the combinations that satisfy the conditions. Therefore,
we divide the workers into multiple collaborative workgroups
by grouping algorithm, according to whether the active time
contains a specific gt time period. The number of divisions
is fixed, regardless of the number of workers. First, sort the
workers in descending order according to their ability. Then,
24 sets of workers representing different time periods are
generated. Each set contains all workers whose active time
includes the time period they represent. Then, all the possible
combinations of the gt time periods are selected in the 24 time
periods. At each iteration, calculate the intersection of the
worker sets in each time period combination. If the number
of workers in the intersection is greater than or equal to
the number of the task modules |Mt |, the intersection is a
qualified collaborative workgroup.

The specific algorithm for calculating the collaborative
workgroup is shown in Table 1:

TABLE 1. Active time based grouping algorithm.

Anyone of the collaborative workgroups G in CGt meets
the assignment requirements. As shown in FIG. 3, theworkers
in FIG. 2 are grouped to obtain four cooperative workgroups.

Obviously, the assignment of task t must be one of the
above-mentioned collaborative working groups or a subset,
but with the number of workers becomes larger, the number
of the subsets is also very large. In fact, any set of workers
containing the optimal solution is equivalent to the assign-
ment algorithm. Because the assignment algorithm will do
its best to check the workers in the group, to avoid conflicts
and ensure maximum assignment utility. For example, if the
optimal assignment of the task t assignment algorithm is
{A, D}, then the result of assigning {A, B, D} or {A, D}

or {A, C, D} to the task t is identical. However, we can-
not predict the assignment results of the best utility or the
collaborative workgroup in which it is located. But the total
utility of the assignment is limited by the workers’ ability in
the group. We can set the lower utility (the worst assignment
effect that the group can assign to the task t) of the assigned
workers, thereby limiting the total utility ‘s lower bound of
the assignment. For a group of workers G, this lower bound
is recorded as worst (G). In the assignment, the lower bound
is gradually reduced until the assignment solution can be
obtained, thereby ensuring that the total assignment utility
is superior. The lower bound of the assignment utility is
determined by the |M | workers with the lowest ability in the
group, and the greater the number of workers in the group
when the lower bound is determined, the stronger the ability
to resolve conflicts. Therefore, we can start from the most
capable |M | workers in the group, gradually join the workers
with the second highest ability, and further refine the col-
laborative workgroup into a collaborative candidate group
with a smaller gap between the groups. All the collaborative
candidate groups are then generated as a candidate group
sequence order by worst (G). When there are more workers,
the number of collaborative candidate groups may be more,
and the candidate group workers with lower ranking may
have a lower ability, and the assignment process is likely to
end when using the earlier candidate group. Therefore, this
paper sets the threshold number k of the collaborative candi-
date group, which can speed up the construction efficiency of
the collaborative candidate group sequence.

For example, according to the collaborative workgroup
in Table 2, four candidate collaborative groups can be got
(see Table 3). Suppose that the rank of worker’s ability is
A>B>C>D, the available collaborative candidate groups
are: ({A,B},{A,C},{A,D},{A,B,D},{A,C,D}).

TABLE 2. Collaborative workgroup example.

TABLE 3. The available collaborative candidate groups.

Therefore, to generate a collaborative candidate sequence
from a set of collaborative workgroups, a construction algo-
rithm is proposed. First, initializing a min-heap minHeap
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of size k . Then obtaining the collaborative candidate
groups

{
F1,F2, . . . ,F|G|−|M |

}
by intercepting a subset of

sequence numbers [1, |M |] , [1, |M | + 1] . . . [1, |G|] for each
group G in CG, and then for each candidate group
F , calculate the worst assignment effect worst (F) =∑|Mt |

i=1 u(mi, d|F |−|Mt |+i). The detailed steps are as follows:
1) The candidate group has been examined, skipped

directly;
2) If the number of elements in the minHeap is less than k ,

then push F into minHeap;
3)When the number of elements in theminHeap is enough,

if worst (F) is greater than the worst assignment utility of the
top candidate group, then the top group will be popped and
the F will be pushed into the minHeap.

The construction algorithm is descripted as follows:

Algorithm 1 Collaborative Candidate Group Sequence Con-
struction Algorithm

Input: Collaborative workgroup collection CGt , Sequence
size threshold k
Output: Collaborative candidate sequence FGt =

{F1,F2, . . . ,Fn}
1. Initialize the min-heap minHeap with a capacity of k;
2. for each G ∈ CGt do
3. for i← |Mt | to |G| do
4. Group workers with subscripts from 1 to i in G

form collaborative candidate group F ;
5. if F has not been investigated then
6. if the size of minHeap is less than k then
7. push F into minHeap;
8. Continue;
9. temp← top group of minHeap;
10. if worst (F) < worst (temp) then
11. push F into minHeap;
12. else
13. Break;
14. end for
15. end for
16. while minHeap is not empty
17. add the top group of minHeap to the collaborative

candidate sequence FGt ;
18. return FGt ;

V. TASK ASSIGNMENT BASED ON HUNGARIAN
ALGORITHM
The problem of crowdsourcing software task assignment
is essentially equivalent to the matching between modules
and crowdsourcing workers. Simply considering the goal of
optimizing the total utility, the problem can be modeled as
a maximum weight matching problem of bipartite graph.
Hungarian algorithm [32], [31] is commonly used to handle
this problem. Thus, in this paper, we attempt to design a novel
assignment algorithm based on Hungarian algorithm. Hun-
garian algorithm is used to solve the optimal matching when

the bipartite graph structure is determined. And the opti-
mal matching with the cooperative constraint is obtained by
dynamically changing the bipartite graph structure through
the collaborative candidate group replacement strategy.

The algorithm can be roughly divided into two main parts:

a) Construct and initialize a bipartite graph model, then
try to optimize the bipartite graph matching using the
Hungarian algorithm.

b) Perform a cooperative candidate group replace-
ment strategy, when the midway matching fails.
Re-matching until the assignment is successful. The
assignment fails after all the candidate candidates have
been exhausted.

A. CONSTRUCT A BIPARTITE GRAPH FOR
OPTIMAL MATCHING
After the registered workers of all tasks in one assignment
period is grouped based on active time, set the left vertex set
MV to the union of the module sets Mt of all tasks, and the
right vertex set DV to the union of the optimal collaborative
candidate groups. The weight of edges is viewed as the assign
utility u (m, d). Join all edges with weight and complete the
construction of a bipartite graph. Then try to solve the bipar-
tite graph optimal matching using the Hungarian algorithm.
The process is outlined below:

a) Set the left vertex set U to the union of the module
collections Mt for all tasks.

b) Set the right vertex set V as the union of the optimal
collaborative candidate groups for all tasks.

c) Set the left and right set vertex edge weight to assign
utilityu (m, d), connect the edges whose weight is not
zero.

d) Try to use Hungarian algorithm to solve the bipar-
tite graph optimal matching. If successful, output the
matching result. If it fails, replace the coordinating
candidate group of a task by the replacement strategy,
and re-match until the matching success or there is no
longer coordinating candidate group for replacing.

The specific steps of the matching algorithm are as follows:

B. REPLACEMENT STRATEGY FOR COLLABORATIVE
CANDIDATE GROUP
The reason why the Hungarian algorithm failed is that the
search for the augmenting path of a module vertex fails and
the equal subgraph cannot be expanded. The mechanism of
our research work is to build a sequence of collaborative can-
didate groups for each task before allocating. The algorithm
allows changing the structure of the bipartite graph by replac-
ing the collaborative candidate group based on the sequence.
So, we can retry the conflict that the original bipartite graph
could not handle. All collaborative candidate groups met the
collaborative time constraint, and the replacement strategy
used greedy thinking[34] to find the replacement will min-
imize the loss of the total assignment utility. The process is
outlined below:
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Algorithm 2 Task Assignment Algorithm Based on Hungar-
ian Algorithm
input: task set T , Collaborative candidate sequence set
FGt = {F1,F2, . . . ,Fn}
output: assignment result
1. initialize U ,V ,E;
2. for each t ∈ T do
3. F ← the top group inFGt ;
4. for each m ∈ Mt do
5. U ← U ∪ {vertex of m} ;
6. for each d ∈ F do
7. V ← V ∪ {vertex of d} ;
8. connect the edges corresponding to m and d,

and set the weight tou (m, d);
9. E ← E ∪ (m, d) ;

10. end for
11. end for
12. end for
13. using Hungarian algorithm to solve the optimal

match of bipartite graph of G = (U ,V ,E);
14. if Match failed then
15. Performing a collaborative candidate group

replacement strategy;
16. If Successful replacement then
17. go back to step 16 to re-allocate;
18. else
19. assignment failed, end algorithm;
20. return assignment result;

a) Calculate the worst-based utility difference between
the current collaborative candidate group and the
sub-optimal collaborative candidate group for each task
involved, and select the task tr with the smallest differ-
ence. Then set its current collaborative candidate group
as the sub-optimal candidate group Ftr .

b) Clear all edges of modules in tasktr have been con-
nected.

c) Connect each module in task tr with workers in Ftr
one by one. Then re- execute the Hungarian algorithm
initialization work of this partial bipartite graph.

The detailed algorithm is as follows:

VI. EXPERIMENT AND RESULT ANALYSIS
To verify the effectiveness of the proposed approach in this
paper, we crawled the information of 28,834workers from the
programmer’s inn. The worker’s information includes work
time and skill -level scores. In the experiment, the task data
is generated by computer simulation. The number of mod-
ules per task is subject to the N (10, 1) distribution (Ignore
negative values, the same below), and the complexity of the
module is subject to the N (0.5, 1) distribution. Note that,
we normalize the rating level as the development capability
of the worker.

Algorithm 3 Collaborative Candidate Group Replacement
Algorithm
input: Involved task set T , Collaborative candidate
sequence set {FGt1,FGt2, . . . ,FGtn},current bipartite
graph G
output: Replacement result
1. minGap← inf
2. tr ← ∅
3. for each t ∈ T do
1. F ← top element of FGt
2. if F 6= ∅ and worst (Ft)−worst (F) < minGap
then
3. tr ← t
4. end for
5. if tr 6= ∅ then
6. Ftr ← FGtr pop the top element
7. for each m ∈ Mtr do
8. delete all existing m related edges in G
9. for each d ∈ Ftr do
10. connect the edges corresponding to m and d ,

set the weight to u (m, d)

11. end for
12. end for
13. else
14. replacement failed

The sequential assignment method is selected as the bench-
mark, which assigns each task randomly, selects the worker
who meets the time constraint and assigns the best utility to
match the task module. Workers who have been assigned will
be excluded from the subsequent task assignments, to avoid
multiple assignments.

A. COMPARISON OF TOTAL UTILITY
Compare with the single task priority assignment method
(sequential assignment method) in terms of the total utility
of the assignment.

In Table 5-7, the first four columns represent the four
experimental parameters of the number of tasks, the number
of modules, the threshold number of shared active periods
g, and the number of workers, respectively. The number of
modules is related to the number of tasks, and is only for
reference. The fifth and sixth columns are the total utility of
the proposed method and the single task priority assignment
method. The last column reflects the improvement ratio of the
relative order assignment method of the algorithm in the total
utility.

Three tables show the impact of the number of workers,
the number of tasks, and the threshold g on the total utility
of the assignment. In order to make the experimental results
more general, each experiment was repeated 10 times (only
the assignment was successful), and the workers were ran-
domly selected from the data set each time. The average of
the total utility assigned is shown in the tables.
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TABLE 4. Change the number of workers.

TABLE 5. Change the number of tasks.

TABLE 6. Change active time threshold.

According to the results of Table 5-7, in the case of various
parameters, the proposed algorithm always outperforms the
sequential assignment method in optimizing the total utility
of assignment. As the parameters change, there are the fol-
lowing conclusions:

1) When other conditions remain unchanged, the smaller
the number of workers participating in the assignment is,
the higher the improvement ratio of the proposed algorithm is
relatively. In Table 5, the improvement is up to 25%. It indi-
cates that when the number of workers is small, the ‘‘waste’’
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TABLE 7. Change the number of workers.

phenomenon that may occur in the sequential assignment
(the more powerful workers are assigned to the modules with
lower complexity due to the order of assignment) will have
a greater impact on the total utility. As the number of work-
ers increases, the number of redundant workers with higher
level increases, and even if there is a waste, there are fewer
redundant workers to choose. Thus, the impact on the total
utility is small. Using a Hungarian algorithm that accurately
solves the optimal assignment of a particular bipartite graph,
the proposed method in this paper is relatively stable and
maintains a high total utility.

2) In general, when other conditions remain unchanged,
the more tasks are assigned, the higher the improvement
ratio of the proposed algorithm. It is because the task assign-
ment result that is first assigned in the sequential assignment
method will affect the subsequent task assignment, and as
the number of tasks increases, this effect will gradually over-
lap. At the same time, since the sequential assignment only
focuses on the optimization of the single task, the impact
on the subsequent assignment is generally negative, so the
negative impact on the total utility is greater after multiple
times of superposition.

3) When other conditions remain unchanged, the higher
the active time threshold g, the higher the improvement ratio
of the proposed algorithm. Table 7 shows that when the
threshold g is increased, the total utility of both methods is
reduced. Because the collaborative conditions become harsh,
it is more difficult to ensure the selected workgroup’s ability
at a higher level. For the sequential assignment, the effect
of ‘‘waste’’ is more serious when fewer workers satisfy the
synergistic constraint, and resulting in a lower overall utility
of the final assignment.

B. ASSIGNMENT SUCCESS RATE COMPARISON
This experiment compares the assignment success rate
between the proposed method and the single task

priority assignment method (sequential assignment method).
Table 8-10 shows the results of the three sets of experiments
and the parameter settings.

In Table 8-10, the meaning of the first four columns of
parameters is the same as in section 5.1. The fifth and sixth
columns are the assignment success rates of the proposed
algorithm and the sequential assignment method.

These three tables show the impact of changes in the
number of workers, the number of tasks, and the threshold
g on the success rate of assignment. Each experiment is
performed 100 times and the table shows the number of times
the assignment was successful. It is important to note that in
order to ensure the existence of a feasible solution for each
experiment assignment, the worker data for the three sets of
experiments in this section is generated in two parts:

1) Generate as many workers as the number of modules
for each task: first, select a continuous period of length of the
task common active time threshold g as the active time of all
workers, and then add randomly consecutive periods (0-8) to
each worker’s active time. Generated workers’ ability value
obeys N (0.5, 1). This part of workers guarantees that there
must be a solution to the task assignment.

2)Workers randomly selected from the real worker dataset:
randomly select a specific number of workers from the real
data set according to the experimental needs. This part of
the workers makes the workers involved in the assignment
redundant.

From the results of Table 8-10, the advantages of the pro-
posed algorithm are very obvious in the assignment success
rate. At the same time, as the parameters change, the follow-
ing conclusions can be drawn:

1) As the number of workers increases, the success rate
of assignment of both methods increases. It can be seen
from Table 8 that when the number of workers is low (only
a little more than the number of modules), the assignment
success rate of the two groups is very low, the success rate
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TABLE 8. Change the number of tasks.

TABLE 9. Change the active time threshold.

of the sequential assignment method is almost zero, and the
proposed algorithm is only 16 %, which means that neither
method can find the optimal solution. However, when the
number of workers is gradually increased, the method can
achieve a success rate of 98% when the number of redundant
workers reaches 15 or so. When the number of redundant
workers is higher than 25, the success rate reaches 100%. But
the sequential assignment requires more redundant workers
to achieve a higher assignment success rate because it fails to
consider the impact of individual assignments on other task
assignments.

2) When the number of tasks increases, the success rate
of the proposed algorithm will gradually increase. This is
because if the total number of modules is unchanged and the
number of tasks increases, the equivalent of disguised reduces
the number of modules in a single task, which leads to the
coordination requirements of individual tasks lower, so that
more combinations can be utilized, and thus the assignment
success rate increases. However, the sequential assignment
algorithm does not have obvious rules for assigning success
rate changes when the number of tasks increases. In fact,
it behaves more like too relevant to random data, so it is also
very random in the assignment success rate.

3) When the threshold g is increased, the assignment suc-
cess rate of both will decrease. For the proposed algorithm,
the decrease is slower and can maintain a higher success
rate when the threshold is lower. The sequential assignment
method will decrease the success rate with the increase of
the threshold, and the overall success rate is lower. This is
because the main reason for the assignment failure is that
the cooperative constraint defined by the threshold g can-
not be satisfied, and the increase of the threshold g makes
the constraint condition more difficult to satisfy, and thus
the assignment success rate decreases. Since the method
can save by modifying the allocated scheme when the sin-
gle task assignment fails, and the sequential assignment
method has no corresponding measures, so the sequential
assignment method is more affected when the threshold g is
increased.

VII. CONCLUSION
This paper models the collaborative software task assignment
problem in the crowdsourced environment as the assignment
optimization problem, and integrates the three factors of
worker capacity, task module complexity and worker active
time to establish optimization goals. Based on the Hungarian
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algorithm, the optimization problem is solved by introducing
a collaborative workgroup replacement strategy. The test
results show that the proposed method can increase the total
utility by about 25% and the average success rate by about
30% compared with the sequential assignment method.

However, the research in this paper still has limitations.
In this paper, the definition of collaboration in software
crowdsourcing is relatively simple. In the actual development
process, the required level of collaboration between work-
ers will be differentiated by inter-module dependencies. So,
the definition of collaboration constraints will be more com-
plicated. In addition, the allocation utility calculation method
set in this paper only considers the development ability of the
workers and the complexity of themodule. But there aremany
other factors that might have the impact on task assignment.
such as the character of the worker, the attitude, the commu-
nication ability, etc. Although the proposed algorithm can be
applied to more complicated utility calculation methods. But
it is necessary to consider how to set a reasonable calculation
formula.

In fact, it is difficult to determine the pros and cons of
the task assignment [35], [36]. The utility of the proposed
method is based on the accuracy of the worker-task matching
measurement. it means that it is important to have an accurate
judgment on the ability of the worker and the complexity
of the module. Therefore, the future research will be carried
out on the measurement of the ability of the worker and the
module complexity.
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