IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 8, 2019, accepted March 3, 2019, date of publication March 14, 2019, date of current version May 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2905102

FSE-RBFNNs-Based Robust Adaptive DSC
Design for a Larger Class of Nonlinear

Strict-Feedback Systems

NING WANG', YING WANG', XIAOLIN WANG!', AND ZONGCHENG LIU"“2

!Equipment Management and UAV Engineering College, Air Force Engineering University, Xi’an 710051, China

2 Aeronautics Engineering College, Air Force Engineering University, Xi’an 710038, China
Corresponding author: Zongcheng Liu (1iu434853780@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 71601183 and Grant 61603411.

ABSTRACT A novel set-invariance adaptive neural dynamic surface (DSC) control scheme is presented for
an extended class of the periodically disturbed nonlinear MIMO strict-feedback systems whose control gain
functions are possibly unbounded. The most advanced is that the restrictive bounds assumption is removed
after introducing appropriate compact sets, which are constructed in such a way that all the closed-loop
trajectories stay in those sets all the time. To tackle the tracking control problem in the presence of more
general periodic disturbances, a novel function approximator is well constructed by combining the radial
basis function neural networks (RBFNNs) with the Fourier series expansion (FSE). In addition, the DSC
technique is employed to overcome the problem of “‘explosion of complexity”’. Furthermore, the Lyapunov
theory and invariant set theorem are utilized to prove the closed-loop systems semi-globally uniformly
ultimately bounded (SGUUB) stability, and the tracking errors can converge to an arbitrarily small residual
set after appropriately choosing design parameters. Finally, the simulation results verify the effectiveness of
the proposed method.

INDEX TERMS Nonlinear MIMO systems, adaptive neural control, DSC, periodic disturbances, invariant

set theorem.

I. INTRODUCTION

In practical control engineering, approximation-based adap-
tive control methodologies have attracted much attention,
emerging as promising approaches for controlling highly
uncertain and nonlinear dynamical systems [1]-[4]. Based on
the universal approximation theorem, the fuzzy logic systems
(FLSs) and neural networks (NNs) have been successfully
employed to approximate the unknown nonlinear functions
with little knowledge of system plant [5]-[10]. When com-
bined with the backstepping approach, approximation-based
adaptive control has been extensively shown to achieve global
stability for many classes of nonlinear systems [11]-[15].
However, an obvious drawback with the backstepping tech-
nique is the problem of “‘explosion of complexity”, which
is caused by repeated differentiations of certain nonlinear
functions, such as virtual controls. Thus, the dynamic surface
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control (DSC) technique has been creatively proposed to
avoid this problem effectively by introducing a first-order
low-pass filter at each step in the conventional backstepping
design procedure. Approximation-based adaptive controllers
stemming from this technique have been successfully con-
structed for many nonlinear SISO and MIMO strict-feedback
systems, see [3], [16]-[22] and references therein. To just
name a few, an adaptive neural DSC scheme is proposed for
a class of uncertain nonlinear strict-feedback systems subject
to input constraint in [16]. In [20], an adaptive neural state-
feedback control scheme is presented for a class of stochas-
tic nonlinear switched systems. Recently, in [22], a neural
adaptive hierarchical sliding-mode control scheme has been
proposed for a class of MIMO strict-feedback nonlinear time-
vary systems with dead zone. Furthermore, an adaptive finite-
time tracking control scheme is developed for a class of
MIMO strict-feedback nonlinear continuous-time systems in
the presence of full state constraints and dead-zone in [3].
Nevertheless, it should be pointed out that, for the DSC
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technique to work, there is a common assumption that
bounded control gain functions is required, which is very
restrictive because the bounds of control gain functions may
be difficult to acquire in practical applications, or even
nonexistent [23]. This problem is first investigated in [24]
by assuming continuous (possibly unbounded) control gain
functions, which are bounded on compact set. However,
the aforementioned research is only limited to non-strict-
feedback systems but not for more complex periodically
disturbed strict-feedback systems.

Actually, periodically time-varying disturbances fre-
quently exist in a wide range of practical applications, such
as industrial robots [25], numerical control machines [26]
and van der Pol oscillator [27]. Therefore, the adaptive
tracking control scheme of disturbed systems has the appli-
cable important and received increasing attention. As for
periodically disturbed nonlinear uncertain systems, one of
the main difficulties is that the unmeasured disturbances
appear nonlinearly in unknown functions, and it would be
extremely difficult to find an appropriate feasible scheme
to solve the tracking problem of strict-feedback systems
with more general time-varying nonlinearly parameterized
disturbances [27]. In order to overcome this problem, some
efforts have been made: most notably, in [28], an adaptive
backstepping control scheme is presented for a class of non-
linear systems with periodic disturbances utilizing Fourier
series expansion (FSE) and fuzzy logic systems (FLSs).
Recently, two robust adaptive tracking control methods are
proposed for a class of strict-feedback nonlinear systems
by combining FSE with radial basis function neural net-
works (RBFNNs) and multilayer neural networks (MNNs)
in [30], [31], respectively. However, it should be pointed out
that, for all above existing researches [25]-[31], upper and
lower bounds of the control gain functions always assumed to
exist, which is a restrictive assumption. Moreover, the afore-
mentioned researches are only limited to SISO periodically
disturbed strict-feedback systems. To our best knowledge,
to date, no results on a control design considering periodically
time-varying disturbances have been reported for MIMO
strict-feedback systems with possibly unbounded control
gain functions [31].

Motivated by the aforementioned observations, in this
paper, a novel set-invariance adaptive neural DSC scheme
is proposed for a larger class of MIMO strict-feedback with
periodic disturbances. The main contributions of this paper
are highlighted as follows.

1. It seems that this is supposed to be the first work that
concerns the problem of stabilization for MIMO nonlinear
systems with periodic disturbance.

2. In this paper, we consider a huger class of MIMO strict-
feedback systems with periodic disturbances. In this paper,
RBFNNs and FSE are combined to approximate the unknown
continuous system functions and DSC technique is construc-
tively employed in the adaptive neural control design.

3. Semi-globally uniformly ultimately boundedness
(SGUUB) of all signals in the closed loop systems is
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analytically proved using Lyapunov theory in combination
with invariant set theorem, and the system output tracking
errors are eventually proved to be within an arbitrarily small
residual set by appropriately adjusting design parameters.

The rest of this paper is structured as follows. Section 2
presents the problem formulation and preliminaries. The
adaptive neural controller design and stability analysis are
given in Section 3 and Section 4. In Section 5, simulation
results are presented to show the effectiveness of the proposed
scheme. Finally, Section 6 concludes the work.

Il. PROBLEM STATEMENT AND PRELIMINARIES

A. PROBLEM FORMULATION

Consider a class of uncertain MIMO strict-feedback nonlin-
ear systems with periodic disturbances which is described by

i =i (it () &1 + A 6,0
+ @i i T 0) . 1= <p— 1

&0 = Sioy Gy Tipy (D) 1+ Ajpy €, 1) (1
+ @y (&pyr Ty ()
)’j=§j‘1’ j=1,...,m

where & ;; € R is the state of the j th subsystem, § = [élT o1

T
ET £T Dokt Pk
ey 51’[)1_, cee m,pm] € R is the state vector of the
: T . .
whole system, here &, = [£.1..... &.,,] € R and pj is

; £ T i
the order of the jth subsystem. é‘j,ij = [Ej,l» R Ej’,-j] € RY,
uj and y; € R are the input and output of the j th subsys-
tem respectively. ¢ ;; (-, -) are unknown continuous functions

with ¢;;; (0, w) = 0, Vo, ¢;; (-, -) are unknown continu-
ous control gain functions, and A;; (§, 1) are the unknown
external disturbances with i; = 1,..., 05,7 = 1,...,m,

7 (1) 1 [0, 400) — RV (1 <ij < pj.j=1,...,m) are
unknown and continuously time-varying disturbances with
known periods 7j,;,, namely, tj,;, (¢ + T,i;) = 7j,i; (¢). In what
follows, denote 7j ; = 7j;; (¢) for brevity.

In this paper, the control aim is that a novel adaptive neural
tracking controller u; is constructed for system (1), such that
the system output y; converges to a small neighborhood of
the reference signal y; 4, as accurately as possible, and all
trajectories of system (1) are SGUUB. The reference signal
¥j,a satisfies the following standard assumption.

Assumption 1: It is assumed that y; 4 is a sufficient smooth
function, and there exist constants Bjy > 0 such that

. . T . .
ITjo = [(yj,d,yj,d,yj,d) Iy%d +yj%d +yj2,d < szo} .

To design appropriate controller for the system (1), the fol-
lowing related assumptions and lemmas are imposed.
Assumption 2: The unknown control gain functions satisfy

¢j,ij(§j,ijv ‘L'j’,'j) >0 for ij = 1, 2, ey pj, j= 1, celo,m.

Remark 1: Note that the stability analysis in [25]-[31] rely
on the fact that the control gain functions are bounded for any
state (independently of stability), such a reasoning does not
apply to our case, and a new stability analysis must be sought.
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Assumption 3: For Vt > 0, there exist constants A*i >0
such that |A;;, (6.0)| < AT, (=1..... 007 =1,....m).
Lemma 1 [10]: Suppose the dynamic system as follows

hi(t) = —ah(t) + pu (1) 2

with a > 0 and p > 0 being constants and v (t) > 0 being a

function. For () > 0, we obtain A () > 0, Vi > 0.
Lemma 2 [15]: The function tanh (-) is uninterrupted and

differentiable, and it accomplish that for V£ € R and Voo > 0

0<t|—¢tanh (¢/o) < ko, «=02785  (3)

Lemma 3 [24]: (Young’s inequality) For V(£,y) € RZ,
we can obtain the following inequality

2
% 1
Ey< —EP+—5 b )
L S
wheret > 1,¢> 1, u>0,c—1)(¢c—1)=1.

B. FSE-RBFNNs-BASED APPROXIMATOR
Consider the unknown function h/, ( Juijs T, ,]) let Xji; €
I1;,i; x T1jo being a measured signal with IT; ;; x I[Tjo a compact

T .
set, .and 'L’j’l'j. = [rj,,-ﬂ, Tji2s -+ - s rj,ijm] . 1S an gnknown
continuous disturbance vector of known period 7 deflned ona
compactset Iz ={(t1,1, ..., Tmpn) | i Zj_l 7, ,}TJ i =
Dfr} with Dj,, > 0 being a constant. The vector T, i; can also
be expressed by a linearly parameterized FSE as follows

Tij = ] lj@j i + Stj, (5

where V)i = [ﬂj,,‘jl, e, z?j’,'jm] € R?*™ is a constant matrix
with 9 ;; € R? being a vector consisting of the first g
coefficients of the FSE of 7;;; (¢ is an odd integer), 8z, is
the truncation error and g; ;; (t) = [©j,i1 (1) . - .. ©j.iq (t)]T
with @1 (1) = 1, gjix (1) = V2sin 2kt /T) and
Pkt () = V2cos 2mkt [T), (k= 1,....(q—1)/2),
whose derivatives up to n-order are smooth and bounded.

The RBFNNs will be employed to approximate the
unknown continuous function as

hiy (i 5) = 6 V’/g(ﬂp’} 6%>+8/zj (%7.i,)
(6)

where 6;;; is a vector of adjustable parameters; v ;; (Xj,l:,.,
T, ij) is a known smooth vector-valued function; ¢; j; (K i, ,}) is

(¢, > 0)-

the approximation error with |£J,,j (7{/, ,j)| < i\

For (6), the estimation errors can be given by
Jl]th/( joij> Jljéojt]) Jl]th/( joij> Jljéojt])

3 T
=07, (1 = 0590 01 ) + 070180 00 + i

)
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where i, = ¥ ( Joip U, 501,1,) I/sz, = [Wj,ijl» V' i
T

€ RI*M with Wj,zjfk = (3% ijk ( i T, zj))/
and the residual terms d; ;; are bounded by

/..
144
ow
J’J'r, 19“50,,

+ ’0111}"

‘dl } =d Jz, = |‘ﬁfsij”F pr ij MI/”J!J

+ 1035 Hwa DT

®)

For the sake of clarity, let ||-|| denotes the Euclidean norm
of a vector, ||-||f denotes the Frobenius norm of a matrix,
Amax (T) and Apin (T) denote the largest and smallest eigen-
values of a square matrix 7', respectively.

lIl. ADAPTIVE NEURAL CONTROLLER DESIGN

This section will propose an adaptive backstepping-based
neural controller for the MIMO strict-feedback nonlinear sys-
tems (1) with DSC technique. Firstly, consider the following
change of coordinates:

zj,1 = &j,1 — Yjd

. ©)
gi; = Ej,ij — Vi, 4= 2,..., 0j
where vj ;; are the outputs of the following first-order filters

W) i+ 1V i+1 + Viig+1 = S G=1,...,00—1 (10)
where W) i1 > 0, Vjij+1 0) = Sj,ij (0) and 8j,i; are the virtual
control laws to be designed later.

The virtual control laws and the actual control law will be

designed as follows

—Cigi — J ij 1/’1 ij ( Joij J,I,BOJ'”}') Yjij

Sj,ij =
4,i;9;, ljllfj,t, ( jiij> V5, ,j@j,z,>
Qjj; = tanh (11)
' Yj,ij
Ujp = —Cjp%j.p; — Y pj‘p/ j ( . 055 ’9/ 08, p]) j.0j
Zj»)ojej,pj Yj.pj (Kj,pj’ ﬁj,pjﬁojﬁpj)
o ,. = tanh (12)
] Pj U;
)j. o)

Further, the corresponding adaptive laws are provided as
follows:

ﬁj,ij = Fl?j.ij I:Zj,ijéoj ij IIJWJ,I/ O-j’ijl?jv’}:l (13)
X _ o o / T . D .
Oi; = Fé)j,,-j I:Zjalj (1#],1, - wj,ijﬂi»i/@“!) - 0,,,1-91,1,] (14
where [y, =7 > 0and [y, =} > 0 are adaptive
Jobj i Tl -k

gain matrices, and 'cj,,-j > 0, aj,,-j' > 0, Vi > 0 are design
parameters.
It should be noticed that
& i+1 = Zjij+1 + i + Bii+1 (15)
where B;i+1
filters (10).

Vii+1 — 8j; are the output errors of
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Invoking (10) and (11), we obtain vy ;.1 = — (Bj.i;+1/wj.i;+1)
and

Bjij+1 _ =
+ Bjii+ 1 (Zi+ 15 Bi.ij+ 15 Ujijs By

Biit1 = —
! Wji+ 1

Vid> Vid> Yj,d) (16)

_ T 5
where Zj ;11 (7.1, -,Zj,i,-+1] s Bji+1 [Bi2. .-,
T -

x T
T A A A A A A
Biis1] > Dy = [191',1,-.-,23‘]',1;] O = [Qj,l,u-,@j,,}-]
and
Bj it (?y,i/drl, Bj.ist15 Vjijs Ojiiss Vjds Vids yj,d)
_ as] i . 95 . dsj, 95j.i; ,3 8sj,,-j - asj’ijé ds;, i 951 5
‘e ;A Vi i/ i
GZ] ij / 3,3 J 329]‘,1'] / 85], / 39]",/ /
(17)

where Bj ;11 (-) are the continuous functions. l?ased on
Lemma 1, for any given bounded initial condition ¥; ;; (0) >
0 and 6; ; (0) > 0, we have ¥; ; (t) > 0 and 6; ; (t) > O for
Vt > 0, respectively.

IV. STABILITY ANALYSIS

In this section, the main stability result for the whole system
is summarized in the following Theorem 1. Choose the fol-
lowing Lyapunov function candidate as follows

m m

Pj
V=2 Vi=2.2 Vi as)
j=1

j=1ij=1
where V; is the Lyapunov function for the j th subsystem

Vi
3T 11 5. . pT =14, .
Qz SN £ ROV TN
] lj
z,=1 2 2
+3 Zﬂ, (19)
z/_l
Vi
3T 11 5. . pT =14, .
_ 1 > Qj,l}ﬁj,ijrﬁj,ijﬁ]’lj Qj,ijej,ijrgj_,:iejﬁlj
29t 2 2
Py
+§,3.,i/+1 (=1,2....p—1) (20)
Vi
o 5T 1-14
— 12 4y 5.0 %0 0 %00 | 250550 0, %0
AR 2 2
2
\theI'e ﬁj,,} = 19J ljx — éj,ij and éj,ij = Gj,ij —
0. (ij=1...., pj) are the estimation errors of ¥j,i; and 6 ;;,
respectively.

Theorem 1: Consider Assumptions 1-3. The virtual control
laws are chosen as (11), the actual control law is given
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by (12), and the adaptive laws are provided by (13) and (14).
For bounded initial conditions, there exist design parameters
Cj,ij» Tjij> Vji; and wj i; such that.

i) The compact set IT;, o X [Tjo x Ilj; is an invariant set,
namely, V; (1) < x for V¢ > 0, and hence all of the signals in
the closed-loop systems are SGUUB;

ii) The system output tracking error z; = [z1,1, .. ., zm,l]T
satisfies lim;_, o ||z1 (2)|| < Z; with Z; being a positive
constant that relies on the design parameters.

Proof: The proof for Theorem 1 contains p; steps,
At each recursive step j, i (1 <ij<p—-1lj=1,..., m),
the time derivative of Vj,,-j will be studied. Finally,
the two properties in Theorem 1 will be proven in Step
LeiG=1...,m).

Step j, 1: To begin with, considering the first equation in
(1) as follows

E1=o1 1 ta) + i (&, Ti0) Eo + Aja (6, D)
(22)

Let zj1 = &1 — ¥j,4, and the time derivative of zj% 1 / 21s

Ziazia = z.1 (91 (.1, 11) + 051 (51, 7i1) &2)
+z18j1 &, 1) —zj.1Y.a  (23)

Define the compact set IT;; := {zjl ‘ <2y }, with
x > 0 being any design constant. For IT;; x l'I]o x Ilj; and
®;,1j,1, 7j,1), the following Lemma holds.

Lemma 4: The unknown continuous control-gain function
®;,1(&,1, 7j,1) has maximum and minimum over compact set
I1; 1 x Ijp x IIj;, namely, there exist constants ¢ > 0

and d_’jl > O such that ¢, , = min _ ¢; 1(511,1’] 1) and
’ -1 I | xjo x Tz

¢j1=_ max ¢ (&1, Ti1)-

1= max g (&1 71)

Proof: Observing zj1 = &1 — yjq and &1 = zj1 + yj.a,
the function ¢; 1(&;,1, 7j,1) can be given by

911, 11) =

where ®; 1(zj,1, j.4, Tj,1) is a continuous function of z; 1, ;.4
and 7; 1, and I1;; x ITjp x IT;; is a compact set since I1; 1,
Ijo and I1;; are compact sets respectively. Furthermore, it is
derive from (24) that all the variables of ®; 1(z;,1, ¥j.4, Tj,1) lie
ip I1;,1 x Ijp x ITj;. Thus, ®; 1(zj,1, ¥j.a» 7j,1) has maximum
¢j,1 and minimum Qj,l over IT; 1 x ITjp x I1j;. Consequently,
we have

D 1(zj,1, Yj.ds Tj1) 24

0< ¢_5j‘1 <111 <P,
(éj,l, ‘L’j,l) € Hj,l X l_[j() X ij (25)

Considering (25), we can rewrite (23) as

Zj,le,l Z],l¢ ( ( 1> Tj,1 ) + Sj,2 + ¢j,l,0€j,2)
+zi14j1 6, 1) (26)

where hj 1 (%1, tj,l) = ¢_5 (fﬂj, (Sj,la 7,1 )_yj’d) with

1= [Ej,l,yj,d] > 95,1,0 Q 11 (@1 (&1, 751)) = 1> 0.
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In accordance with (8), (15) and Assumptions 3, (26) can
be written as

gz < zadin (1 1) (G2 + Bi2) + [za] AF
g <9j,T1 Vi (x,-,l Xy KJjJ))
+zj1j,185,1 + }Zj,l\fj (il
+2,19;,195,1,08;.1 (27)
Substituting (11) into (27) yields
G151 = ¢, (ZJ, [ (1,17 (19 ))—ijlfj,lff,l
+gagia (&, 1) @2+ Bi2) +[za] A
-9 (ZJ 10151 (; 1’19?1601,1)%‘,1)
+9; (’11,19-1%‘,1(ﬁj,l»ﬁrﬂf?/,l)‘)
¢ (Zﬂ@ 1W/1<11,19 1@/,1))
+ |Z] 1| ¢ 15, M +Zj,19j’1¢j,1,osj‘,1 (28)
Invoking Lemma 2, it can be obtained that
Gazia = gady, (67w (ki 9fiwin)) + | A%

_Zj,lf“( 15 (]1’ l1911 ))

+z1¢70 (&1, 7 )(ij+/3j2)

+z,1¢> 19 OSJ1+}z,1| 1”1
+0‘27859j,lvj’1 —Cj,1¢j,1 i1 (29)

Considering (11), (25) and (26), the following inequality
satisfies

zj, 1¢ 191,081
=¢. 1¢110( Cj,1Z2 z,19 o (]1719'T1K3j,1>aj,1)<0
(30
Noting that (7) and (30), one reaches
%131 = 519, ( (WJ ‘ﬁj{,léfléf’j,l)) +[za] A7
P50 (§1.70) (2 + Bio) + Z1g; 4
AT 51 3 2
+319;, (91,T1 Use 69111) — G130
+0.2785¢, vi1 + [z.1| 8, €51 (31
with d; 1 being bounded by
dia] = a7y = 93] 01187097,
+ |61 Hl'lfj 119 1851 ” +0al, G2
Substituting (32) into (31), we can further have
g% = 5a¢; (@ﬁ‘ﬂ.ﬁlf’ﬂ@ﬁl) +0.2785¢, v
+st1£j,1 (éjTl (1/}131 - l»/A/j/,11?,/‘,T15/')J31))
+z¢1 (51, 7) (2 + B2)
+ |Zj,1|¢_5-,1)’,-*1 - Cj,1¢j,11,2,1 (33)

Whereyj,l_d* —l—e 1+¢ IA*

VOLUME 7, 2019

It follows from é{l I/A/j’,lf?[lpj,l =t [5{15{)]-, 163/?1%{1}»
(13), (14), (16), (20) and (33) that the time derivative of V; 1
is

Vi1 < 7191 (1. 71) (2 + Bi2) — ¢ 1</5/ 1 ] 1
+ [211] 8, ,vj71 +027859, v — B [y

~

+oj 1tr {?j,léj?léj»l } + ‘Tj,lfj’léj,Tle,l
+ |Bj.2Bj2 ()] (34)

Step j,ij(2 <ij<pj—1,j=1,...,m): A similar proce-
dure is recursively employed for each step j, ij. Let zj; =

&.i; — Vj.ij» the time derivative of % / 2is
Gigii; = 3. (@i (G 1.5)) + 24 Ay (€. 1)
+ 2,805 (&> Toiy) &1 — 2V (35)

Considering éj,ij = i + Vi ij and ,Bj,ij = Vi
we can obtain

- sj,ly—l»

&.i; = zj.i; + Bji; + 8j.0—1 (36)

In view of (11), we know that the virtual control s;;,— is

a continuous function with respect to z;, ii—1s Ujij—1s B;, ii—1
and 6 jij—1- Therefore, &; i is a continuous function of zj, ijs

Bj.ijs j,j_l and 9],_1 From &1 = zj1 + yj« and (36),
the functions ¢; ;;(Ej,;;, 7j,;) can be rewritten as

¢j 11(5] ij» j, l/)—q)] z](Z] ij> ﬂj ij» le—l 9] ij—1 Yj,d> Tj, l/)

(37

with ®; ;. () being a continuous function.
Then, define the following sets I"[j,,-j (ij =2,...,0— 1)
as

Hj,ij

_ i
)l ar At 2
[ | |2 AN
k=2
ij—1

+ 2 (849
=1

Tr-15 SHR W
‘,kre/,kej’k +ir [fj,kﬁﬂkr’?ﬁkﬁj’k}) = 2x
(38)

where x > 0 is an arbitrary constant. For Il;; and
#;.i;(&j.i;» Tj.i;), in a similar fashion as Lemma 4 was derived,
we have that the functions ¢; ;;(§;,;;, 7j,;) have maximum and
minimum in I; ;; X [Tjo x ITjr , namely, there exist constants
#j,i; > 0and ¢; ;; > O satisfying
0< ?j,i,- < ¢5,i(&jij» Tii) < Bjijs

(é}-j,ip Tj,ij) € Hj,ij X Hj() X er (39)

By using (35) and (39), we have
( j.ij Tj, z/) +3j, 1]¢-,l-jg>:j,ij+l

+ Z],zjfj’ij@,ij,oéj,iﬁl +zj,i;8ji; (6, 1) (40)

Zj,ii%ji; = %, ,,¢
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where @0 = ¢jl (d’M (szj tNJ)) -1 > 0
By (i T) = 97 (615 (B 15) — 35) with 25 =

= . qT
(& 0] -
From (8), (11), (15), (40) and Assumptions 3, we obtain

%% = Ql (ZJ iiYj, z,l/fj,tj ( Jiij> ﬁ pj,,J)> + |ZJ, | A

_¢j,' (Z/ lje i Vi, ij ( Joijs 19 8/‘)/ ’J) %, l/)

+2.5¢7 (5.0 T.i) (Zj’i/*l +Biin1)

_cjl;¢ /t,+}ZJ’/| Il/

+ Zj,%f‘l_sj,;,‘lsj,ii»osj,ij “D

By using Lemma 2, (41) can be rewritten as
%.ijZji; < Zj,tyéj’ij(ﬁj,ij,osj,lj cj, l/¢ Z, + |z t,|

+595 (& 7)) (Zj»iﬂr] + Bji+1)
+Zj>ij?j,ij ( % ij ( Joijs -pj,ij>>
_stijfj,ij ( J,l,I/IJ ij ( Jjo 0] 8. lf))
+0.2785¢, vy + [54] 8, €7 (42)

Considering (7), (11), (39) and (40), we can rewrite (42) as
follows

Gy = Gibis G 1) G + [341 9, 075
3549, (@-,T,-j (1/?,-,1-,- - @},,;éﬁjpjﬂy»
+0.2785¢, i — 6%,
+49;, (wa @j@)
+ 7, ijqu i (&> i) Bipri (43)
wherey]l —d* +¢>71

]
Combining (13) (14) (16) (20) and (43), the time deriva-
tive of Vj ;; can be given by

VJ,J_UJ,Jtr{¢ R S
+29). (%uip %) @it + i)
+0.2785¢, vy + |27, @ ¢, ._yj*,-/.

+ [Bj.i+1Bji1 (O] — ¢ zj i
- ﬂ,%,;,g /wj,ij+1 (44)

Step j, pj(j =1, ..., m): In this step, the two properties in
Theorem 1 will be proven. Similar to Step j, i, noting zj, p, =

&.p; — Vj.p;» the time derivative of 2 zj / 21is
Gooidinr = ZGuri%ie; Epps Tioop) T Gy Djipy (€. 1)
+ijﬂj¢j,Pj (Sj,pjv Tj,pj) Uj = Zj,piVj.pj (45)

Similar to the former steps, the function ¢, pj(éj, pi+ Tiupj)
can be expressed in the following form

¢/p,(‘§/p,vfjﬂ,)— /p,(sz,vlgjp,’ Jopi— 15 '9/0,—1 yjd’T/p)
(46)

where ®; ;. (-) is a continuous function.
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Define the following set

_ Pj
- =T ol QT 2
Mgy := 1 [ By 916 p/,]] | Z TR
k=2
pj—1
AT ~—1, 3T +—1 73
+) (gj’ GG +tr{ 9, 0T ﬂj,k}) <2x
k=1
47)

with x > 0 being an arbitrary constant.
It should be noted that all the variables of ®; , (-) are
included in the compact set I, x o x M, that is,

the function ®; 5, (-) has maximum ¢; ,, = max
- ! I, x Mo x Iz
J
®i 5. (& oy Tip,) and minimum ¢, = min D o
1, 0j\S],0j> %], Pj . 0j Hj,ijHjOXsz > P

(éj,pj, 7j,p;) such that
0< (I_ﬁj’pj < 9.0, o Topp) < Dl (48)
Considering (45) and (48), it can be obtained that
= Zj’Pij’pjhjspj (stpj’ fjspj) + Zjapj?j,pj”j
+ 3,0 A/lﬂj .0+ Zj,pjﬂj’qusj,pj,ouj (49)

Zj, 0%, pj

where g, (31> Ti.5) = &) (9. (&0 Tio03) — D) with

—1 p

%, =[&.0 V). pj] s g0 = Qj,pj (®1.s (§.0y Tiy)) — 1> 0.
In a similar way, utilizing (8), (12) and Lemma 2, we have

Zi piZin < Zj i o i o (%i s 9L i

J0i%0pi = %0 @ 5\ Yoo Ve \ i ', 0;8%.0j

AT
_Z]‘;ijj 0 ( 'j, pij Pj ( J, 0> ﬂ',p,'pjspj))

+0. 2785¢

p Vet |05 @ p_/-s;:ﬂj

- Cj*ﬂf?j’pjzjspj + ’Zj’pf| AJ?/’J
+ Zj»pjfj,pj(pj*ﬂjﬁouj (50)

In accordance with (7), (12), (48) and (49), we rewrite (50)

as follows
AT
ﬂi’/%fpﬁﬂf))
2
= G0 Pi.0i%
+Zj’pj£j,pj (9/ pj 0 J.pi 8% P)
+ |z]-,,,j|q_sj,pjyj,,,j (51)

L. . T T
G = %0n®; <9j,p/ (‘”m‘ Vi

+0.27859, i,

where yj o= d]*pj qb_l
Recalling (13), (14) (21) and usmg the similar design

procedure, the time derivative of V;, 0 is

Vie = i@, , 00010, + it {qs 37,0, pj}

2
+ 0.2785¢,-,p,-u/,p,- + 509,00 — G0 5
(52)
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In the following part, the stabilization of whole system will
be investigated. Considering the Lyapunov function (18) and
invoking (34), (44) and (52), it can be known that the time
derivative of V; is

Lj
vy (0.27859]_,51),-,,; + |z

i=1

-
+ Z(o, it {9, 0T 05 ) + 018, 0701

ij=1

*

pi—1

+ Z % Bi; i 1) @it + Biie1)
=1
pi—1

+ Z <|,3] ii+1Bji41 (¢ )|

ij=1

/lj-‘rl/wj z,+1) (53)

Using the following inequalities

. 2

el 6l
ejﬁjej”:/ = 121] o 2
NP b i
tr {ﬁ[jjﬂj,ij] < 2/ F_ 2

we have

Pj
<y (0.2785%&1);,5, + |24

ij=1

*
Qj,i,-yj,ij — G, l/¢ J l;)

pj—1

+ 2 g G T) @i + Bri)
i=1

+ Z <|,3] 1,+1B] ij+1 (: )| ] lj+1/wj 1,+1)
i=1

+ 3 (oo (1 + 1 12)

ij=1
2
)) 54
F

Pj 1 . )
-5 (b
ij=1
2 2
BB O ki

pi—1

+ |3

By completion of squares, we can have

|Bj.i+1Bri+1 O] <

2%k 2
2 X *2
|z- ' |¢ . ?,z Jrij k./&?,’,ij
JsL _j,ijy],l_j — 2k],3 2
ah2 (£ .. 2 2
b G ) s < 20 G5 Bt | G
zii®ii (&iis Tii) Biie1 < ' '
S5 YT 4 \S)sLs B)hL ./Jﬁ‘ 2 ijyz

2 2 (&, 7..)2
- G i (slvlj’ TJ”j) Zi+1
i (5 T) Gt < 5+ 3
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where k; 1 > 0, k2 > 0and k; 3 > 0 are unknown constants.
Thus, (54) can be rewritten as
pi—1 2 2 ah2 (B .. 2
. — (BB O K2y, (& 7)) B
=2
2kj 1 2

=1

Lj ¢2Z2 pi—1 /32
LA i1
+ ¢) —
X_: s i 2 <wj,i,-+1)
1 2 2 2
+ij: Zj,l‘j +Zj_,+¢]lj (E]ljvrjl]) jl+1
ij’z 2 2
)) +C (55)

Pj 1
- Z <2¢J i 0 (Hej b
) 7, 1/2 + Z (%?j,ijajvij <||0j~ij ”2 +
ij=1

197, Hi) + 027859, v, + k37,7 /2)

Then, let us brieﬂ}]/ investigate the characteristics of
the continuous functions Bjii+1 ) (ij =1,....0 — 1). Itis
apparent from (16) that all the variables of Bj ;1 (-) are
included in the compact set IT; ;; x ITjo x I1jz, consequently,
Bj i1 (-) has a maximums Dj ;41 over I1;; x Iljo x Iljr,
respectively. That is, based on IT;;; x ITjo x Ij;, we have
|Bj.i+1 ()| < Djiy1.

Noting that (25), (39) and (48),
(1/2—|—1/2ka+¢ /2]‘]3"'9) i = o7, (s
1/2+1/2k,2+¢>2 2492, [2s) @< < p,—l),
Gy = 0 x (qs/zp /2+¢ ,/2ia+ ) and
1w > kj,2¢l.2’l}/2+gj+D m/zkj,l, (1<ij<pi—1).

Therefore, we can obtain
pji—1

n Hﬁ,

where C; = (pj —

choose cj 1 =

2

52
. 1 1 (pj,i,'fl Qj,ij 2
D I e Rty oo K17
ij=2 7 s
; T 13
n N ¢, 90, B

0ji; i
—1) 2
]

z:/=1 )\max (Fﬂj.ﬁ

. AT 1, .
A j.i; fj,ijgj,i,'rej.iiel»lj
ij= )\max (ng,ij)
i—1 2 2
p’Z 1 Dj,i,+1 kjld’j,ij 2
i1 \@hij+1 2kj.1 2 s
ji=
2
1 1 éj 1 2
— a1, —5 -5z
( (RN 2 2kj’2 2]{1 3] 1
2 2
_ ¢j~Pj—1 q—sj,pj 2 56
J p]¢j P 2 ij ;3 °J, 0 ( )
where ¢; = min {aj l,/)\max (ngl,j), oj ,j/kmax (I‘g:})}
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From (56), one obtains
Vi< —gVi+ G (57)

It can be seen from g; that C; / gj can be made arbi-
trarily small by increasing c¢; ;;, and meanwhile decreasing
Amax <[‘9;1) Amax (1“1;]1 ) 0ji;» Uji; and ;.. It is always

4 i
possible to make C; / ¢j < x by choosing the design parame-
ters appropriately. Then, in view of (57), we have that V <0
holds for V; = x: consequently, the compact set IT; 5, x H [jo X
[1;; is an invariant set and all signals of closed-loop system
are SGUUB. Therefore, property (i) of Theorem 1 is proved.

Multiplying (57) by %" and integrating over [0, ¢] yields

Vi) <[Vi(0)— Ale™9" + A (58)
with A = C; / g; being a positive constant. Thus we have

lim |z,1| < 11m 2Vi (1) < V2A =7 (59)

—>00

Now let us consider the Lyapunov function candidate for the
whole systems as V = Z]m=1 V;. From (58), it can be derived
that

m m
=Z Z —gVi+ Gl <-AV+E  (60)

where A = min {¢y, ...
further have

,6m}and T = 377, C;. Then, we

V) <[VO) —Ale ™+ A 61)

where A = % is a positive constant.
Similarly, we have lim;_,», V () < A, which leads to

Am flzy (Ol = lim 2V (1) = V2A =2y (62)
This completes the proof.

V. SIMULATION RESULTS

In this section, two simulation examples are given to illustrate

the effectiveness of the proposed method in this paper.
Example 1. Consider the nonlinear MIMO strict-feedback

uncertain systems with periodic disturbances as follows:

“312,1522,1712,14‘51,152,171,1
512,1522,1712,1 +1
+ A1

E11= + (().5 + e512,1512,2T12,1> £1o

€12 = sin (&1,161262,271.2) 6(_512"5'2'2&'2r12’2) + A2, 1)
+ (1 + 6512,1513,2522.1T12.2) u
é - 51152—11'21 §1262172,1
2,1—512’1522’1122!1+0.5 +e E22+ A21 (6, 1)
brp= (51,252,152,2@,2)3 €<7€12’2$22"€22’2T22’2> + A2 (&, 1)
+ (1'5 + 651,|§2,1$2.212,2) uy

yi=%&1, y2=%&.1

(63)
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where Ay | = 0.5cos (512,152,152,2) sin (0.21), Aj 5 = 0.5 x
cos (512,2 +€1,2§2,1>, Ay = 2sin (51,152,1512,2» Ayp =

(sin (#))> x sin (522’2+g22’ 1)> and 15 (f) = |cos (0.25¢)],
71,1 (1) = |cos(0.50)], 122 (t) = |[cos(?)| and 121 (1) =
|sin (0.57)| are the unknown time-varying disturbances with
a known common period 71,1 = 2n, T2 = 4n, T2 = 27
and 7o, = m. We assume the reference signal y; 4 =
0.5 (sin (#) + sin (0.5¢)) and y, 4 = sin (¢). Note that the con-

(O.S —|—e§12,1’12,1>, P = ez,

dr2=(1+ a2 ) and $22 = (1.5 + e2182272) can-
not be bounded a priori, but they apparently satisfy Assump-
tion 2. Thus, where existing methods cannot be applied, our
scheme can be used to the nonlinear system (63).

According to Theorem 1, the virtual control laws and actual
control laws are constructed as

AT o7
si1=—cri1z1,1 — 01 Y11 (Kl,la 191’1051,1)

trol gain functions ¢,1 =

AT aT
z1,10] 1 Y11 (7&1,1, 191,1¢1,1)

X tanh

U1,
=— —or %21, O
$2,1 =—c2,122,1 — 05 (V2,1 (A2,1, U5 1$2,1

zz,lé£1¢2,1 (?iz,l, 5‘{@2,1))

X tanh

(R
Uy =— —or x T
1=—c1,2212 — 01 2 ¥1,2 (1,2, Oy 2012

AT QT
21,201 ,¥12 (7&1,2, 191,2¢1,2)

v1,2

X tanh

AT o7
up=—022222—0;,¥2.2 (Kz,z, 192,2052,2)

AT QT
22,205 ,¥2.2 (7&2,2, 192,2¢2,2)

v2,2

X tanh

wherez11 =611 —Y1.d,212=812—V12,221 =&2,1 —Y2.4d

and z22 = &2 — vz, and the adaption laws are given
by (13) and (14) with design parameters 01,1 = o012 =
0.2, 091 = o022 = 0.02, Uy, = Ty, = diag {1},
Uy, = Iy, = diag {0.1}, Lo, = o, = diag {0.7},

F02,| = 1_‘92'2 = diag {0.3}, vl,1] = V1,2 = 0.25, vl =
nma = 075 w2 = 10, wap = 100 and ¢ = 7,
c12 = 6,c1 = 8, c22 = 9. Let the initial condi-
tions be [£1,1 (0),612.(0), £21 0). &2 0] =105,03,
L5, 2.01" 01,1 (0) = l‘/‘l 2(0) = 192 1 (0) = 925 (0) = Oand
9] 1(0) = 9] 20) = 92 1(0) = 92 2 (0) = 0. The simulation
results of Example 1 are shown in Figs. 1-5.

It can be observed from Fig. 1 that the outputs y; and y;
track the desired trajectories y; 4 and y» 4 with bounded error.
Fig. 2 implies that the proposed scheme has a bounded control
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Y2, Y2.d

L L L L

0 10 20 30 40 50
t(s)

FIGURE 1. Outputs and desired trajectories.

51
(=)

-5 . s \ .

Uz
S

5 : w w :
0 10 20 30 40 50

FIGURE 2. System inputs.

02 /

0.1

22 =02
21,2 21,1

FIGURE 3. Phase portrait of z; 1, z; andz; ;.

input and Fig. 3 is given to explain phase portrait of zj 1,
z1,2 and 72 1. From this figure, it can be determined that the
bounds for zj 1, 71,2 and z2,1 are not overstepped. Addition-
ally, the response curves of adaptive parameters 191,1, 51,1,
19],2, él,z, 192‘1 s éz,l, l§2,2 and éz,z are depicted in Fig. 4, and
Fig. 5 is presented to explain the boundedness of states &7 1,
§12,8,1 and & 5.
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o
53
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£y
5 0
) 0 10 20 30 40 50
t(s)
FIGURE 4. Curves of adaptation parameters.
0 L 4
N
G| |
-4 : w : s s
-1 -0.5 0 0.5 1
SHI
2 L ! T T T T 4
o~ 0r ]
<
2t ,
-4 s . . w :
-1.5 -1 -0.5 0 0.5 1 1.5
21

FIGURE 5. Phase portrait of states.

Example 2: Consider the following periodically disturbed
nonlinear MIMO strict-feedback systems:

E11=(1.1 —0.1cos (&1,171,1)) E1.2 + Ar,1 (€, 1)
1 — e 511711
b12=(09 - 0172, sin® (E11612) ) u + A12 6. 1)
512,1512,1 +512,2712,2
EL &0 ,T1,+09
£2,1=0.2co0s (£2,172,1) E2.2 + A2 1 (£, 1)
1 — e~ 1-821m21
Ero= (0.7 + 0.3 sin? <§2,1§2,2T22,2)) up + Az 2 (5, 1)
§2.15212
522,1“322,2722,2 +0.3
yi=E&11
y2=821

(64)

2cos (51,1 +&12+ 512,2522,1), Ay =
2 cos (0.1¢) xsin <E1,1§12,2§2,1>, As1 =0.5sin (5%1512’252’1),

where A1y, =
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0 10 20 30 40 50
t(s)

FIGURE 6. Outputs and desired trajectories.

Agg = sin® (1) x sin (&, +& | +&7,), and 11,1 (1) =
Isin (0.5¢)], t12 (¥) = |[sin(0.25¢)|, 12,1 (¢) = |cos (0.5¢)]
and 12 (f) = |cos(t)| are the unknown time-varying
disturbances with a known common period 77,7 = 2,
Tio = 4n, Tp,1 = 2m and T2 = m. Define the desired
tracking trajectories are y; 4 = 0.5 (sin (¢) 4+ sin (0.5¢)) and
Y2.d = sin (7).

According to Theorem 1, the virtual control laws and actual
control laws are constructed as

AT o7
si,1 = —ciz1,1 — 0¥ (Xl,l,ﬁl,lqﬁl,l)

21,19{1%,1 (7{1,1, 19{@1,1)
X tanh

U1,
=— —or %21, O
$2,1 = —c2122,1 — 05 12,1 (A2,1, U5 1 92,1

(Zz,lé{1¢2,1 (7{2,1, 192?1¢2,1))

X tanh
U2,

AT o7
up = —c1,221,2 — 01 ,¥1.2 (ﬁl,z, 191,2¢1,2>

hT QT
(Zl,zel‘zﬁﬁl,z (7&1,2, 191,2¢1,2)

X tanh
v1,2
_ AT AT
Uy = —22222 — 03,922 (ﬁz,z, 192,2452,2)
2203 Y22 (7&2,2, 5§2¢2,2)
X tanh
V2,2
wherezi1 =&11 =y, 212 =8612—Vv12, 221 =&,1 —Y2.4
and zp»> = &2 — v, and the adaption laws are given
by (13) and (14) with design parameter 01,1 = 012 =
03,001 = o202 = 005, 'y, = Ty, = diag{2},
[y,, = Iy,, = diag{0.2}, Ty, = Ty, = diag{0.8},
F92,1 = Ty, = diag {0.5}, vii = wvip = 05,
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0 10 20 30 40 50

0 10 20 30 40 50

t(s)

FIGURE 8. Curves of adaptation parameters.

v = vy = 035 w2 = 10, w22 = 100 and
c11 = 10, c12 = 8,21 = 6,22 = 5. Let the
initial conditions be [£1,1 (0), £1,2 (0), &2,1 (0), &2 (0)]T =
[025.0.5.12,2.11", #1000 = $12(0)0 = 0,
U2,1(0) = 922(0) = 0and 6;,;(0) = 6120) = 0,
62,1 (0) = 622(0) = 0. The simulation results of Exam-
ple 1 are shown in Figs. 6-8.

In these results, Fig. 6 shows that system outputs y; and
y2 track the desired trajectories yj 4 and y2 4 with small
tracking error. From Fig. 7, we can see that the controller
works very well and the signals of control inputs are bounded,
and Fig. 8 illustrates the boundedness of adaptive parameters,
respectively. From the above simulation results, the proposed
scheme is able to guarantee the stability of the control systems
and obtain fairly good control performance.

VI. CONCLUSION

An adaptive neural control design scheme has been pre-
sented for a class of nonlinear MIMO strict-feedback systems
with periodic disturbances and possibly unbounded con-
trol gain control. In comparison with the existing research
results, the restrictive assumption that the upper and lower
bounds of control gain functions must be positive constants
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or coefficients has been removed by introducing appropriate
compact sets where the maximums and minimums values of
continuous control gain functions are well defined and used in
the control design. Moreover, the novel FSE-RBFNNs-based
approximation is used to model each suitable periodically
disturbed function in systems, and the DSC technique is
constructively employed to solve the problem of “‘explosion
of complexity”’. Finally, the stability of the closed-loop sys-
tem has been rigorously proved by Lyapunov analysis and
invariant set theory, while the tracking error has been shown
to converge to a residual set that can be made as small as
desired by adjusting design parameters appropriately. The
performance of the proposed approach has been verified
through two simulation examples.
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