
SPECIAL SECTION ON NEW TRENDS IN BRAIN
SIGNAL PROCESSING AND ANALYSIS

Received February 26, 2019, accepted March 8, 2019, date of publication March 14, 2019, date of current version April 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2905133

Assessment of Code Smell for Predicting Class
Change Proneness Using Machine Learning
NAKUL PRITAM1, MANJU KHARI 2, LE HOANG SON 3,4, RAGHVENDRA KUMAR5,
SUDAN JHA6, ISHAANI PRIYADARSHINI7, MOHAMED ABDEL-BASSET 8,
AND HOANG VIET LONG 9,10
1Leading Pseudo Code Labs, Delhi 110012, India
2Department of Computer Science and Engineering, AIACTR, New Delhi 110031, India
3VNU Information Technology Institute, Vietnam National University, Hanoi 010000, Vietnam
4College of Electronics and Information Engineering, Sejong University, Seoul 100083, South Korea
5Department of Computer Science and Engineering, LNCT College, Jabalpur 482053, India
6School of Computer Engineering, KIIT University, Bhubaneswar 751024, India
7Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
8Department of Operations Research and Decision Support, Faculty of Computers and Informatics, Zagazig University, Zagazig 44159, Egypt
9Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
10Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam

Corresponding author: Hoang Viet Long (hoangvietlong@tdtu.edu.vn)

ABSTRACT Assessment of code smell for predicting software change proneness is essential to ensure
its significance in the area of software quality. While multiple studies have been conducted in this regard,
the number of systems studied and the methods used in this paper are quite different, thus, causing confusion
for understanding the best methodology. The objective of this paper is to approve the effect of code smell
on the change inclination of a specific class in a product framework. This is the novelty and surplus of this
work against the others. Furthermore, this paper aims to validate code smell for predicting class change
proneness to find an error in the prediction of change proneness using code smell. Six typical machine
learning algorithms (Naive Bayes Classifier, Multilayer Perceptron, LogitBoost, Bagging, Random Forest,
and Decision Tree) have been used to predict change proneness using code smell from a set of 8200 Java
classes spanning 14 software systems. The experimental results suggest that code smell is indeed a powerful
predictor of class change proneness with multilayer perceptron being the most effective technique. The
sensitivity and specificity values for all the models are well over 70% with a few exceptions.

INDEX TERMS Code smell, change proneness, software maintenance, machine learning, multilayer
perceptron.

I. INTRODUCTION
Change in software is one of the most unpredictable situa-
tions whichmay come across in the lifespan of the system [3].
It is much tied to software design and theories suggesting
best practices rather than specifying exactly how a design
must be made [2]. Many researches have been conducted
in the past to quantify attributes of a software system using
patterns and metrics in order to evaluate good and bad aspects
of the software and to predict possible changes [5], [14].
Recent studies have indicated that code smell can pre-
dict the change proneness more accurately than the
static code metrics [6]. Code smellis a bad implementation
choice in the design phase and it becomes obvious in the
implementation phase [16]. Good implementation choices

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

are called design patterns while bad ones are called
anti-patterns [15].

Fowler [1] defined 22 code smells and suggested areas
where refactoring may be applied. It is impossible to exam-
ine a class for all code smell without using a threshold.
For example, the smell Child Class cannot be determined
without using a threshold such as NOM, LOC and Number
of Variables [10]. Kaur and Jain [7] reviewed six machine
learning algorithms with twomodes (random-under sampling
before feature selection, and feature selection before random-
under sampling)for suspecting changes incline utilizing the
code smell. Results indicated that random under sampling
before feature selection is the most effective strategy with
Gene Expression Programming while cascade correlation
network and Tree-Boost are among the top algorithms in
predicting change proneness [7].

37414
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-5395-5335
https://orcid.org/0000-0001-6356-0046
https://orcid.org/0000-0002-2794-3936
https://orcid.org/0000-0001-6657-0653


N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

Vidal et al. [16] developed a tool for ranking of code
smell based on past segment alterations, vital modifiability
situations for the framework, and significance of the sort
of smell. They are complementary to assess the smell from
different perspectives. Saboury et al. [15] detected 12 types
of code smell in 537 releases of five popular JavaScript
applications with the aim to understand how they impact the
fault-proneness of applications. Hecht et al. [4] conducted an
exact examination concentrating on the individual and joined
execution effects of three Android performance code smell
(namely, Internal Getter/Setter, Member Ignoring Method,
and HashMap Usage) on two open source Android apps.
Ma et al. [9] researched the likelihood of enhancing the exe-
cution of fault detection by utilizing code smell detection and
Cohen’s Kappa statistics. Hadj-Kacem and Bouassida [17]
proposed a hybrid approach to detect code smell using
deep learning Auto-encoder and Artificial Neural Network
algorithms. The evaluation was performed using parame-
ters precision, recall and F-measure. However, there were
several issues regarding validation of the experiment, such
as Internal validity, conclusion validity and external valid-
ity. Fontana et al. [18] used a machine learning approach
for code smell detection. The research paper focused on
six classifiers evaluated on basis of accuracy, ROC curves
and F-measure. Azadi et al. [19], suggested machine learn-
ing based code smell detection through tool WekaNose.
Although the research paper offered a novel approach to
select algorithms for classification of an instance using an
experimental approach, the article lacked several technical-
ities and experimental analysis. Nucci et al. [20] performed
yet another research on detecting code smell using machine
learning techniques. The performances have been evaluated
on basis of accuracy, F-measure and AUC-ROC. However,
the research suffers from several threats to construct validity,
external validity and conclusion validity. Other researches on
code smell can be retrieved in [11], [12], [13], [21], and [22].

In this paper, we aim to validate Code Smell for Pre-
dicting Class Change Proneness to find error in prediction
of change proneness using code smell. For understanding
the overall idea, in the first step two versions of 14 soft-
ware’s have been compared to find out the classes that are
change prone. For making the datasets of these 14 open-
source projects, initially, it was considered to divide the soft-
ware data into proper class relations and considerable amount
of metrics of the software. The dataset contains different
softwares that were used in previous researches where other
algorithms were used to predict changes. We also check if
different versions of software are present. Later, ten-cross
validation has been used to divide the dataset into ten subsets
among which nine for training machine learning model. Six
typical machine learning algorithms (Naive Bayes Classifier,
Multilayer Perceptron, LogitBoost, Bagging, Random For-
est, and Decision Tree) have been used to predict change
proneness using code smell. The predicted values are then
compared and analyzed against the actual Change Prone
classes using ROC analysis to get the false positives and

true positives.We observe that most of the research conducted
in the past does not rely on huge datasets. While some articles
lack experimental analysis, others apprise that change in
parameters would alter the results. Further, the evaluation
metrics are limited for many of the code smell researches
conducted in the past. This paper evaluates the code smell
not only on basis of ROC curves but also provide values for
sensitivity, specificity, cut-off point and Area under Curve for
better evaluation.

The difference and novelty of this research against the
previous studies are shown below. The previous works such
as the studies by Khomh et al. [8], Gatrell and Counsell [3]
have shown significant relations between smells and code
change. However, their empirical studies did not target for
large datasets and because of that some issues like impact
of code smells i.e. detected vs. manually validated; limited
sizes; lack of empirical analysis on observed specific smell
type; the optimal value for the effects on defected code smell
etc. have not been solved completely. In order to handle this,
going through huge datasets is much needed because until and
unless different kinds of datasets are used, applying machine
learning may be futile. Besides, there was no empirical eval-
uation between code smells and code fault proneness in the
previous works. Also, most of the works have been explored
based on only one or two software projects. This work is
based on consideration of large support systems like SAP and
ERP because these huge datasets guarantee smell detectors to
be effectively achieved with high accuracy. Unlike the previ-
ous papers, this paper also gives the intrinsic precision affects
in a very high probability. Most importantly, we have relied
on data that may be experimentally conducted on various
open source systems.

The advantages of this research can be broadly listed as
below. Considering the 5 major advantages below, this work
also targets analyzing percentage of code components in a
system and effect on change- and fault-proneness on a large
set of software projects.
1. Empirical relationship between the code smells in huge

scale software.
2. Notable correlation between smells & proneness.
3. Since unlimited size of open source based data sets

are used, the impact of code smells on change- and
fault-proneness is highly significant.

4. More in depth analysis for harmful smells.
5. High maintainability.
The rest of this paper is organized in the following manner.

Section 2 provides the experimental datasets and the machine
learning methods. Section 3 presents the experimental results
and discussion. Section 4 highlights conclusions and future
works.

II. RESEARCH QUESTIONS
There may arise particular quality issues because of code
decay if changes are caused by defect repair. Identifying
where most changes are set aside, in a few minutes the
system may recognize key change-prone classes and key

VOLUME 7, 2019 37415



N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

change-prone interactions. Changes may originate from a
single defect report. Likewise, accumulations of classes that
experience changes together may bemade obvious, since they
are prime focuses for ventured up perception and conceivably
change endeavors. Moreover, this investigation includes a
number of change classes. It is vital to analyze whether
change prone clusters of classes are in relation to design struc-
tures and change-related interactions. While changes in sin-
gular classes can be tallied, this does not uncover critical parts
of code changes. Knowing which classes can be extremely
useful, change-proneness may demonstrate particular hidden
quality issues. The research questions we examined are:

1. Is there an approach to recognize the most change-
inclined accumulations of classes in a framework?

2. Can change-inclination recognize nearby change-
inclinations due to the change in collaborations of classes?

3. Do singular changes made in light of one change ask for
influence of the classes that are connected in the intelligent
outline of a framework? Are there verifiable associations
between framework components that are not some portion of
any plan portrayal?

4. Howwouldwemake the data that came from the change-
inclination noticeable?

III. MATERIALS AND METHODS
A. DATASETS
The entire process can be divided into three parts:

1) Data acquisition and processing;
2) Change and smell estimation;
3) Analysis using Machine Learning Methods.

1) DATA ACQUISITION AND PROCESSING
The datasets for this study were collected as follows. Firstly,
we downloaded two stable releases of each system as listed
in Table 1. Pre-processing of datasets included removing all
Java files in the versions that were not compatible with the
current one. All 14 systems combined had approximately
10000 classes in two versions of each system out of which
more than 8200 were left after pre-processing. This essen-
tially means that we are left with around 4100 unique classes
spanning over 14 software systems.

2) CHANGE AND SMELL ESTIMATION
In this step, the actual change of a class undergoes in two
versions is calculated to obtain the metric values for each
class in each system. They are then used to analyze each
class for code smell. To calculate the exact change of a class
that has gone through in the two stated versions, we used an
open-source tool named CLOC to examine two versions of
the same file and give as outputs below:
a) Number of Lines that are unchanged.
b) Number of Lines added to the prior version.
c) Number of Lines deleted from the prior version.
d) Number of Lines modified over the two versions.
These outputs are then used to calculate the amount of

change as:

TABLE 1. Summary of the Datasets.

Total Change=No. of lines added+No. of lines deleted+
2 ∗ No. of lines modified.
After calculating the exact changes for each class, they are

examined for odors of code smell using a commercial tool
called Understand (http://www.scitools.com). It is mandatory
to estimate metric values for each system and export the
results in a comma-separated-value list. Threshold values
selected for metrics are then applied and marked for the truth
value of each smell in each class. The thresholds used for all
metrics are along with the corresponding smell.

B. MACHINE LEARNING METHODS
1) RANDOM FOREST
It is an ensemble classifying approach which comprises of
various decision trees. In each class, separate tree yields out
various modes of the class as outputs. Random forests are
collections of trees with all slightly varied. It randomizes the
algorithm, not the training data. In this research, for each
of the software systems, a random forest of 10 trees has
been constructed while considering 4 random independent
variables at each node. Precise forecast of blame inclined
modules in programming improvement process empowers
successful disclosure and recognizable proof of the deformi-
ties. Such prediction models are particularly significant for
the vast scale frameworks, where check specialists need to
center their consideration and assets to issue ranges in the
framework being worked on. It is used to introduce a system
for anticipating flaw by enhancing and grouping precision by
growing an outfit of trees and giving them a chance to vote
on the order choice. The datasets used in this paper differ
in estimate, yet all normally contain few deformity tests.
On the off chance that general exactness augmentation is the
objective, at that point gaining from such information more

37416 VOLUME 7, 2019



N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

often than not brings about a one-sided classifier. To acquire
better expectation of blame inclination, several procedures
are examined: appropriate inspecting strategy in building the
tree classifiers, and limit alteration in deciding the triumphant
class. Finally, it is observed with a powerful precision.

When different versions of software are launched the met-
rics of a software changes and a new version of software is
aimed at fault negation. As the metrics are changing, there
might be appearance of new faults. Thus, we also need to
observe the accuracy our trained model reaches when faults
are corrected. After correction of the faults we need to predict
the new faults or changes that may arise. Moreover, to train
our model sufficient amount of data of different modules is
required so that our model can reach the desired prediction
accuracy. Indeed, considering these scenarios it is impor-
tant to train the classifiers on several versions of the same
software.

2) NAÏVE BAYES
This comprises of a normal probabilistic classifier that relies
on the application of Bayes’ theorem having strong indepen-
dence presumptions between features. Naïve Bayes is utilized
to adjust classes with and without deserts and to choose
most essential measurements from all accessible, as some of
them ought to have apparently little effect on the nearness
of genuine programming deserts. Consequences of testing
mixes of above machine learning components for best fore-
cast outcomes are displayed utilizing different datasets –
with and without code terrible stenches. Expectation models
were watched for dataset with code terrible stenches utilized,
when Naïve Bayes calculation is utilized. It likewise gives
ideal subset for preparing and assessment of Random Forest
classifier. Furthermore, such blend was chosen for definite
assessment of use of code smells-based measurements in
deformity forecast process.

3) BAGGING
Bagging stands for bootstrap aggregation algorithm which is
also an ensemble method for machine learning. Bootstrap-
ping is the method for selection of samples from the original
population which are used for estimation of various statistics
or model accuracy. It lessens difference and keeps away from
over-fitting. In spite of the fact that it is normally connected
to tree techniques, it can be utilized with a strategy. Sacking
produces a few diverse preparing sets of similar sizes with
substitution, and after that fabricates a model by voting in
favor of an ostensible target or averaging for a numeric target

4) DECISION TREE
In Decision Tree, a free factor is chosen at every hub of the
tree. The tree is crossed amid characterization till the point
when a leaf hub is received. Each leaf hub correlates with a
choice or grouping. ID3 calculation was utilized to construct
the choice tree in this research. Designers constantly keep
up programming frameworks to adjust to new prerequisites
and to settle bugs. Because of the unpredictability of support

assignments and an opportunity to-advertise, engineers settle
on poor execution decisions, otherwise called code smells.
It is widely known that code smells obstruct fathom abil-
ity, and potentially increment change-and blame inclination.
Hence, they should be distinguished to empower the use of
rectifications.

Wrong meanings of code smells influence engineers to
differ whether a bit of code is a scent or not; thus making trou-
blesome production of an all-inclusive discovery arrangement
ready to perceive smells in various programming ventures.
A few works have been proposed to recognize code smells,
however regardless they reported wrong outcomes. In this
research, we contemplate the adequacy of the Decision Tree
calculation to perceive code smells. For this, it was connected
to a dataset containing several open source ventures and
the outcomes were contrasted and the manual prophet, with
existing recognition approaches and other machine learning
calculations. The outcomes demonstrated that the approach
could viably learn rules for the identification of the code
smells contemplated. The outcomes were better when hered-
itary calculations are utilized to pre-select measurements.

5) LOGITBOOST
LogitBoost is a boosting algorithm which involves utilization
of a generalized model (additive in nature) and then applies
the f (cost) of logistic regression to derive the LogitBoost.
For programming change, openness of benefits is compelled,
in this way requiring profitable & potent usage of advan-
tages. It might be proficient through desire of key characteris-
tics, which impact programming quality, for instance, accuse
slant, change slant, effort, reasonableness, et cetera. Predict-
ing the classes that are slanted to changes may assist in test-
ing. This may decrease the costs related with programming
bolster. The examination exhibits that machine-learning tech-
niques are more capable than backslide strategies. Among
themachine-learning systems, boosting procedure (i.e. Logit-
boost) beat the different models. Along these lines, the model
can be used to anticipate the change slant of classes, inciting
upgraded programming quality.

6) MULTILAYER PERCEPTRON
In reality, software is very random there can be any number
of modules and different types of modules having different
implementations. Our model is only valid for the software
for which we have trained the model, our model will be
able to determine the change and the faults for the software
we have trained the model for and the also the upcoming
versions. It cannot predict for different softwares but for
software having similar metrics and modules. For example,
Google has developed two word-embedding for Word2Vec:
one is for data taken from newspapers and another is for data
taken for Twitter. We have done a study to test the accuracy
of the LSTM neural network on these types of software data
and for that we take 14 different software and results suggest
that it has outperformed other algorithms previously used.

VOLUME 7, 2019 37417



N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

Multilayer Perceptron is a class of feed forward artificial
neural network. For this study, only 1 hidden layer was used
and there was only 1 output node in output layer whose value
is greater than a threshold (cut-off point) to show whether
the class was undergoing a change or not. Programming flaw
in the present time is most basic in the field of program
building. Most of the affiliations used diverse procedures to
foresee abandons in their things already that are passed on.
Deformation desire frameworks help the relationship to use
their advantages enough which achieves bring down cost and
time necessities. There are distinctive systems that are used
for foreseeing surrenders in programming before it must be
passed on. In this paper, Multilayer Perceptron is used. This
procedure completed on different stages and the results are
diverged from find which figuring conveys better results.

IV. RESULTS AND DISCUSSION
The changes predicted using six machine learning algorithms
with the help of code smell are compared and analyzed
against the actual changes that occurred between the two
versions of the 14 software described in Table 1. This section
analyses the effectiveness of code smell in predicting whether
a class will undergo change in the subsequent versions or
not. For performance evaluation, the following measures are
used:

1) Sensitivity: The sensitivity is the percentage of the
correctly predicted classes in the error category.

2) Specificity: The specificity is the level of the accurately
anticipated classes in the no-error classification; it is
the supplement of the error rate, for a whole scope of
Cutoff points.

3) Cutoff Points: Cutoff points are used to get a congruity
between the measure of classes expected as change
slanted.

4) AUC (Area Under Curve): It is defined as the desire
that a consistently drawn irregular positive is positioned
before a consistently drawn arbitrary negative. Vari-
ous examinations have exactly approved the connec-
tion between object oriented metrics and imperative
external attributes, for example, reliability, effort, fault
proneness, change proneness, and so forth. Since this
paper has investigated various issues of change prone-
ness, and knowing the fact that software experiences
number of changes for the duration of its life cycle -
to enhance usefulness, to settle bugs, to include new
highlights and so on. Also, prerequisites of the client
may change with time, prompting further changes in
the software. It might bring about different adapta-
tions of software. It may be conceivable that a solitary
change in a class is proliferated to different classes,
which will prompt change in the classes influenced
by the change. As a result, area under the curve that
signifies the largest percentage is defined to know the
classes which are prone to changes. This will help us
to focus on this change prone classes & make more

flexible software by modifying the classes which are
more prone to changes.

The experimental results for each machine learning method
are described below.

A. RANDOM FOREST
For each of the software systems, a random forest of 10 trees
was constructed and each constructed while considering 4
random independent variables at each node. Table 2 and
Figure 1 indicate the 10-cross validation results of the 14 soft-
ware systems.

FIGURE 1. ROC curves obtained for Random Forest Analysis. (a) AOI.
(b) CheckStyle. (c) FreePlane. (d) jKiwi. (e) Joda. (f) jStock. (g) jText.
(h) LWJGL. (i) Quartz. (j) ModBus. (k) OpenGTS. (l) OpenRocket. (m) Spring
and (n) SubSonic software.

37418 VOLUME 7, 2019



N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

TABLE 2. 10-Cross validation results for Random Forest.

TABLE 3. 10-cross validation results for random forest with 14 software
systems.

B. NAÏVE BAYES
Table 3 and Figure 2 indicate the 10-cross validation results
of Naïve Bayes classifier for each of the 14 software systems
under study.

C. BAGGING
Table 4 and Figure 3 indicate the 10-cross validation result of
bagging obtained for each of the 14 software systems.

TABLE 4. 10-cross validation results for Bagging.

D. DECISION TREE
Table 5 and Figure 4 indicate the 10-cross validation results
obtained for each of 14 systems.

FIGURE 2. ROC curves for Naive Bayes Analysis. (a) AOI. (b) CheckStyle.
(c) FreePlane. (d) jKiwi. (e) Joda. (f) jStock. (g) jText. (h) LWJGL. (i) Quartz.
(j) ModBus. (k) openGTS. (l) OpenRocket. (m) Spring and (n) SubSonic
software.

E. LOGITBOOST
Table 6 and Figure 5 indicate the 10-cross validation results
for each of 14 software systems.

F. MULTILAYER PERCEPTRON
The result of 10-cross validation obtained over multilayer
perceptron technique over the data indicated in Table 7 and
Figure 6.

G. MODEL EVALUATION
Any self-assured cut off point is not selected to get conformity
between the measure of classes expected as change slanted.

VOLUME 7, 2019 37419



N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

FIGURE 3. ROC curves for Bagging Analysis. (a) AOI. (b) CheckStyle.
(c) FreePlane. (d) jKiwi. (e) Joda. (f) jStock. (g) jText. (h) LWJGL.
(i) Quartz. (j) ModBus. (k) OpenGTS. (l) openRocket. (m) Spring and
(n) SubSonic software.

The cut-off motivation driving the need indicate was directed
by ROC examination. The AUC metric is used for enrolling
the precision of the ordinary models. The AUC of the models
expected utilizingMultilayer Perceptron ismore obvious than
that of the others. Both the affectability and specificity ought
to be high to envision unimaginable and awful areas. Overall,
in terms of sensitivity, specificity and AUC, the best model
suitable for predicting a class in change prone or not is
determined as Multilayer Perceptron.

For a technique to be effective in making predictions,
a probability of correct classification should be at least 70%.
After software is developed, there is a number of changes and

TABLE 5. 10-cross validation results for Decision Tree.

TABLE 6. 10-cross validation results for LogitBoost.

faults that start cropping up in the working and functioning
of the software. The main aim of a Machine Learning or a
Deep Learning system is to determine in whichmodules there
can be changes in functioning of the software (that is in the
maintenance phase of software). By considering the metrics

37420 VOLUME 7, 2019



N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

FIGURE 4. ROC curves for Decision Tree Analysis. (a) AOI. (b) CheckStyle.
(c) FreePlane. (d) jKiwi. (e) Joda. (f) jStock. (g) jText. (h) LWJGL. (i) Quartz.
(j) ModBus. (k) OpenGTS. (l) OpenRocket. (m) Spring and (n) SubSonic
software.

of different modules of software, it can be predicted that in
the future, when the software is into functioning what faults
may arise and in which modules. 70% chance to predict the
amount of change means that the Machine Learning system
can predict 70% of the changes that can occur in the future
when the software is used. Here, two different measures
are used to evaluate the correctness of models: sensitivity
and specificity. As we know the number of classified true
instances which are absolutely correct is equal to the number
of classified false instances which are absolutely correct. For
a model to be effective, both these values must be high. This
would mean that the model makes correct classifications for
both true and false values. In other words, the model performs
well for both true and false values.

From the results, it is clear that Multilayer Perceptron per-
forms best in comparison to all other models. In our dataset

TABLE 7. 10-cross validation results for Multilayer Perceptron.

of 14 software systems, it exhibited a sensitivity superior to
0.70 or in most cases and specificity higher than 0.67 or more.
This means that over the dataset of 4120 classes, the multi-
layer perceptron was able to correctly classify 1272 change
prone classes out of 1817 and 1544 classes as not change
prone out of 2303. This encourages results in Predicting Class
Change Proneness.

Any self-assured cut off point is not selected to get con-
formity between the measure of classes expected as change
slanted. The cut-off motivation driving the need indicate was
directed by ROC examination. The AUC metric is used for
enrolling the precision of the ordinary models. The AUC of
the models expected utilizing Multilayer Perceptron is more
obvious than that of the others. Both the affectability and
specificity ought to be high to envision unimaginable and
awful areas. Overall, in terms of sensitivity, specificity and
AUC, the best model suitable for predicting a class in change
prone or not is determined as Multilayer Perceptron.

For a technique to be effective in making predictions,
a probability of correct classification should be at least 70%.
After software is developed, there is a number of changes and
faults that start cropping up in the working and functioning
of the software. The main aim of a Machine Learning or a

VOLUME 7, 2019 37421



N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

FIGURE 5. ROC curves for Logit Boost Analysis. (a) AOI. (b) CheckStyle.
(c) FreePlane. (d) jKiwi. (e) Joda. (f) jStock. (g) jText. (h) LWJGL. (i) Quartz.
(j) ModBus. (k) OpenGTS. (l) OpenRocket. (m) Spring and (n) SubSonic
software.

Deep Learning system is to determine in whichmodules there
can be changes in functioning of the software (that is in the
maintenance phase of software). By considering the metrics
of different modules of software, it can be predicted that in
the future, when the software is into functioning what faults
may arise and in which modules. 70% chance to predict the
amount of change means that the Machine Learning system
can predict 70% of the changes that can occur in the future
when the software is used. Here, two different measures
are used to evaluate the correctness of models: sensitivity
and specificity. As we know the number of classified true
instances which are absolutely correct is equal to the number
of classified false instances which are absolutely correct. For
a model to be effective, both these values must be high.
This would mean that the model makes correct classifications
for both true and false values. In other words, the model
performs well for both true and false values.

FIGURE 6. ROC curves for Multilayer Perceptron Analysis. (a) AOI.
(b) CheckStyle. (c) FreePlane. (d) jKiwi. (e) Joda. (f) jStock. (g) jText.
(h) LWJGL. (i) Quartz. (j) ModBus. (k) openGTS. (l) openRocket. (m) Spring
and (n) SubSonic software.

From the results, it is clear that Multilayer Perceptron per-
forms best in comparison to all other models. In our dataset
of 14 software systems, it exhibited a sensitivity superior to
0.70 or in most cases and specificity higher than 0.67 or more.
This means that over the dataset of 4120 classes, the multi-
layer perceptron was able to correctly classify 1272 change
prone classes out of 1817 and 1544 classes as not change
prone out of 2303. This encourages results in Predicting Class
Change Proneness.

H. PREDICTION
The predictions obtained from the algorithms also help in
detecting the Code smells as the faults or change is related to
code smells. The pre-identification of smells checks accuracy
of the learning algorithms. The algorithm tested on a software

37422 VOLUME 7, 2019



N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

with minimum code smell gives better accuracy than a soft-
ware with code smell. Thus, decreasing in the accuracy of
an algorithm is an indication of code smell and also caps the
performance of the algorithm.

How Is The Prediction Useful for a Software
Developer?

From Machine Learning perspective, a dataset is divided
into two parts: a training dataset and a test dataset. An algo-
rithm is trained to the different outputs and the prediction
ability of an algorithm is tested based on the test dataset
i.e. whether the algorithm has been able to learn properly
or not. In our scenario, the dataset contains the metrics of
a specific module in different software, and the outputs are
the faults and changes that have come up. Indeed, we have
divided the dataset into training and test and applied our
neural network on the training dataset by which our model is
able to learn how to predict changes in software. The model is
then tested on the test dataset and the accuracy is determined
i.e. given the metrics of the module whether our model is able
to give proper prediction of the faults.

When software is developed, it is very hard for a software
developer or a team of software developers to understand the
look and feel of the software or how it is working as unlike
other engineering objects it is not physically present. For this
reason, there can be a number of errors that may arise in
the software when it is used by the customer or the client.
There might be errors that might have not come up during
the testing phase. In such a situation, any error discovered
during the maintenance phase is challenging to handle like
any unforsaken situation. Our model is a very handy tool for
an organization or a software developer as it will raise an
alarm to the software developer pointing out the models that
might be at fault and the errors that might occur after software
is developed and handed over to the client.

I. COMPARISON OF OUR RESEARCH WITH
THE PREVIOUS WORKS
In predicting class change proneness, the empirical evidence
in [3] and [8] is still limited because of small number of
datasets. Subsequently the probability of smell detectors
becomes less. Past works analyzed the impact of code smells
on change and accuse slant, relied upon data got from cus-
tomized see pointers. But such discoveries are frequently
prepared to achieve a conventional level of precision; it has
been up till now that their innate imprecision impacts the
outcomes of the examination. The previous works demon-
strated that a few smells can be more destructive than others,
however their examination did not think about the greatness
of watched wonder. This was illustrated in the experiments
of this research appropriately. Various studies have been
made to indicate that classes influenced by code smells have
more opportunities to display abandons than other classes;
however, using huge datasets and applying multiple machine
learning algorithms such as in this research, this observation
has been observed more clearly with changes and defects
being significantly low.

V. CONCLUSIONS
The aim of this paper is to determine prediction power for
class level change proneness through code smell. Firstly,
a total of 4120 classes were selected for this study after pre-
processing. Two versions of 14 softwares were compared
to find out the change prone classes. After that, a ten-cross
validation was used to divide the dataset into ten subsets
among which nine for training machine learning model.
Six machine learning algorithms (Naive Bayes Classifier,
Multilayer Perceptron, LogitBoost, Bagging, RandomForest,
and Decision Tree) were used to predict change proneness
using code smells. The predicted values were then compared
and analyzed against the actual Change Prone classes using
ROC analysis to get the false positives and true positives.
It has been concluded from this study that: a) Code smell
can predict class change proneness with a probability supe-
rior to 70%, b) the Multilayer Perceptron provides the best
results and prediction power in comparison or other machine
learning models.

Even though we have performed extensive analysis as
above, there are some limitations regarding the quantity of
code smells and adaptation to a specific context. Therefore,
in the future, we aim to provide solution to some problems
that might occur: Firstly, we need to design a suitable thresh-
old technique which is mathematically well-posed [23]–[29].
Secondly, the number of code smells should be studied to
enhance the performance of prediction.

ACKNOWLEDGMENTS
The authors would like to thank the Editor-in-Chief and
the anonymous reviewers for their valuable comments and
suggestions.

REFERENCES
[1] M. Fowler, Refactoring—Improving the Design of Existing Code, 1st ed.

Boston, MA, USA: Addison-Wesley, 1999.
[2] G. Rasool and Z. Arshad, ‘‘A lightweight approach for detection of code

smells,’’ Arabian J. Sci. Eng., vol. 42, no. 2, pp. 483–506, Feb. 2017.
[3] M. Gatrell and S. Counsell, ‘‘The effect of refactoring on change and fault-

proneness in commercial C# software,’’ Sci. Comput. Program., vol. 102,
pp. 44–56, May 2015.

[4] G. Hecht, N. Moha, and R. Rouvoy, ‘‘An empirical study of the perfor-
mance impacts of android code smell,’’ in Proc. Int. Workshop Mobile
Softw. Eng. Syst., May 2016, pp. 59–69.

[5] N. Sae?Lim, S. Hayashi, and M. Saeki, ‘‘Context-based approach to prior-
itize code smells for prefactoring,’’ J. Softw. Evol. Process, vol. 30, no. 6,
p. e1886, Jun. 2017. doi: 10.1002/smr.1886.

[6] A. Kaur, K. Kaur, and S. Jain, ‘‘Predicting software change-proneness with
code smells and class imbalance learning,’’ in Proc. IEEE Int. Conf. Adv.
Comput., Commun. Inform. (ICACCI), Sep. 2016, pp. 746–754.

[7] K. Kaur and S. Jain, ‘‘Evaluation of Machine Learning Approaches for
Change-Proneness Prediction Using Code Smell,’’ in Proc. 5th Int. Conf.
Frontiers Intell. Comput. Theory Appl., Mar. 2017, pp. 561–572.

[8] F. Khomh, M. Penta, and Y. Gueheneuc, ‘‘An exploratory study of the
impact of code smells on software change-proneness,’’ Proc. 16th Working
Conf. Reverse Eng., Oct. 2009, pp. 75–84.

[9] W. Ma, L. Chen, Y. Zhou, and B. Xu, ‘‘Do we have a chance to fix bugs
when refactoring code smells?’’ Proc. IEEE Int. Conf. Softw. Anal. Test.
Evol. (SATE), Nov. 2016, pp. 24–29.

[10] R. Morales, Z. Soh, F. Khomh, G. Antoniol, and F. Chicano, ‘‘On the use
of developers’ context for automatic refactoring of software anti-patterns,’’
J. Syst. Softw., vol. 128, pp. 236–251, Jun. 2017.

VOLUME 7, 2019 37423

http://dx.doi.org/10.1002/smr.1886


N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

[11] R. Nascimento and C. Sant’Anna, C.: ‘‘Investigating the relationship
between bad smell and bugs in software systems,’’ in Proc. 11th Brazilian
Symp. Softw. Compon., Archit. Reuse, Sep. 2017, p. 4.

[12] F. Palomba, N. D. Di, A. Panichella, A. Zaidman, and A. De Lucia,
‘‘Lightweight detection of Android-specific code smell: The aDoctorpro-
ject,’’ in Proc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Feb. 2017, pp. 487–491.

[13] F. Palomba, M. Zanoni, F. A. Fontana, A. D. Lucia, and R. Oliveto,
‘‘Smell like teen spirit: Improving bug prediction performance using the
intensity of code smell,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), Oct. 2016, pp. 244–255.

[14] S. S. Rathore and S. Kumar, ‘‘Towards an ensemble based system for
predicting the number of software faults,’’ Expert Syst. Appl., vol. 82,
pp. 357–382, Oct. 2017.

[15] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, ‘‘An empirical study
of code smell in JavaScript projects,’’ in Proc. IEEE 24th Int. Conf. Softw.
Anal., Evol. Reeng. (SANER), Feb. 2017, pp. 294–305.

[16] S. A. Vidal, C. Marcos, and J. A. DÃ̃ČÂaz-Pace, ‘‘An approach to prior-
itize code smells for refactoring,’’ Automated Softw. Eng., vol. 23, no. 3,
pp. 501–532, Sep. 2016.

[17] M. Hadj-Kacem and N. Bouassida, ‘‘A hybrid approach to detect code
smells using deep learning,’’ in Proc. 13th Int. Conf. Eval. Novel
Approaches Softw. Eng. (ENASE), Madeira, Portugal, Mar. 2018.

[18] F. Fontana,M. Zanoni, A.Marino, andM.Mantyla, ‘‘Code smell detection:
Towards a machine learning-based approach,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance, Sep. 2013, pp. 1–5.

[19] U. Azadi, F. Fontana, and M. Zanoni, ‘‘Machine learning based code
smell detection through WekaNose,’’ in Proc. 40th Int. Conf. Softw. Eng.
Companion, May 2018, pp. 288–289.

[20] D. Nucci, F. Palomba, D. Tamburri, A. Serebrenik, and A. D. Lucia,
‘‘Detecting code smells using machine learning techniques: Are we there
yet?’’ in Proc. IEEE 25th Int. Conf. Softw. Anal., Evolution Reeng.
(SANER), Campobasso, Italy, Mar. 2018, pp. 612–621.

[21] M. Z. Iqbal and S. Sherin, ‘‘Empirical studies omit reporting necessary
details: A systematic literature review of reporting quality in model based
testing,’’ Comput. Standards Interfaces., vol. 55, pp. 156–170, Jan. 2018.

[22] L. Kumar, S.Misra, and S. K. Rath, ‘‘An empirical analysis of the effective-
ness of software metrics and fault prediction model for identifying faulty
classes,’’ Comput. Standards Inter., vol. 53, pp. 1–3, Apr. 2017.

[23] S. Jha et al., ‘‘Neutrosophic soft set decision making for stock trending
analysis,’’ Evolving Syst., to be published. doi: 10.1007/s12530-018-9247-
7.

[24] N. T. Thong, L. Q. Dat, L. H. Son, N. D. Hoa, and M. Ali, ‘‘Florentin
smarandache, dynamic interval valued neutrosophic set: Modeling deci-
sion making in dynamic environments,’’ Comput. Ind., to be published.

[25] M. Ali, L. Q. Dat, L. H. Son, and F. Smarandache, ‘‘Interval complex
neutrosophic set: Formulation and applications in decision-making,’’ Int.
J. Fuzzy Syst., vol. 20, no. 3, pp. 986–999, 2018.

[26] R. T. Ngan, L. H. Son, B. C. Cuong, and M. Ali, ‘‘H-max distance measure
of intuitionistic fuzzy sets in decisionmaking,’’Appl. Soft Comput., vol. 69,
pp. 393–425, Aug. 2018.

[27] M. Khan, L. H. Son, M. Ali, H. T. M. Chau, N. T. N. Na, and
F. Smarandache, ‘‘Systematic review of decision making algorithms in
extended neutrosophic sets,’’ Symmetry-Basel, vol. 10, pp. 314–342, 2018.

[28] M. Ali, L. H. Son, I. Deli, and N. D. Tien, ‘‘Bipolar neutrosophic soft
sets and applications in decision making,’’ J. Intell. Fuzzy Syst., vol. 33,
pp. 4077–4087, Apr. 2017.

[29] T. T. Ngan, T. M. Tuan, L. H. Son, N. H. Minh, and N. Dey, ‘‘Decision
making based on fuzzy aggregation operators for medical diagnosis from
dental X-ray images,’’ J. Med. Syst., vol. 40, no. 12, pp. 1–7, 2016.

NAKUL PRITAM received the M.Tech. degree
in software engineering from DTU. He has more
than 5 years of experience in the software industry,
have done extensive work in the areas of applica-
tion security, high availability application design,
and reporting. His research interests include user
behavior analysis, massively scalable systems,
test automation and optimization, software quality
analysis, software quality improvement, and data
analysis.

MANJU KHARI received the master’s degree in
information security from the Ambedkar Insti-
tute of Advanced Communication Technology and
Research, India and the Ph.D. degree in com-
puter science and engineering from the National
Institute of Technology, Patna. She is currently
an Assistant Professor with the Ambedkar Insti-
tute of Advanced Communication Technology
and Research, under Government of NCT Delhi,
affiliated with Guru Gobind Singh Indraprastha

University, India. She is also a Professor In-Charge of IT services with
the Ambedkar Institute of Advanced Communication Technology and
Research. She has more than 12 years of experience in network planning
and management. She has published 60 papers in refereed national and
international journals and conferences. She has authored six book chapters
and co-authored two books. Her research interests include software testing,
software quality, software metrics, information security, and nature-inspired
algorithms. She is a Life Member of various international and national
research societies (SDIWC and IAENG). She is also a Guest Editor of
the International Journal of Advanced Intelligence Paradigms, a Reviewer
for the International Journal of Forensic Engineering, and an Editorial
Board Member of the International Journal of Software Engineering and
Knowledge Engineering.

LE HOANG SON received the Ph.D. degree
in mathematics–informatics from the VNU Uni-
versity of Science, Vietnam National University
(VNU), in 2013.

From 2007 to 2018, he was a Senior Researcher
and a Vice Director of the Center for High Per-
formance Computing, VNUUniversity of Science,
Vietnam National University. Since 2017, he has
been promoted as an Associate Professor of infor-
mation technology. Since 2018, he has been the

Head of the Department of Multimedia and Virtual Reality, VNU Informa-
tion Technology Institute, VNU. His major fields include artificial intelli-
gence, data mining, soft computing, fuzzy computing, fuzzy recommender
systems, and geographic information systems. He is a member of the Key
Laboratory of Geotechnical Engineering and Artificial Intelligence, Univer-
sity of Transport Technology, Vietnam. He is a member of the International
Association of Computer Science and Information Technology (IACSIT) and
the Vietnam Society for Applications of Mathematics (Vietnam). He serves
for the Editorial Board of Applied Soft Computing (ASOC, in SCIE),
the International Journal of Ambient Computing and Intelligence (IJACI,
in SCOPUS), and the Vietnam Journal of Computer Science and Cybernetics
(JCC). He is an Associate Editor of the Journal of Intelligent and Fuzzy
Systems (JIFS, in SCIE), the IEEE ACCESS (in SCIE), Neutrosophic Sets and
Systems (NSS), Vietnam Research and Development on Information and
Communication Technology (RD-ICT), VNU Journal of Science: Computer
Science and Communication Engineering (JCSCE), and Frontiers in Artifi-
cial Intelligence.

RAGHVENDRA KUMAR received the B.Tech.
degree in computer science and engineer-
ing from SRM University, Chennai, India,
the M.Tech. degree in computer science and
engineering from KIIT University, Bhubaneswar,
India, and the Ph.D. degree in computer science
and engineering from Jodhpur National Univer-
sity, Jodhpur, India. He is currently an Assistant
Professor with the Computer Science and Engi-
neering Department, L.N.C.T Group of College,

Jabalpur, India. He has published 86 research papers in international/national

37424 VOLUME 7, 2019

http://dx.doi.org/10.1007/s12530-018-9247-7
http://dx.doi.org/10.1007/s12530-018-9247-7


N. Pritam et al.: Assessment of Code Smell for Predicting Class Change Proneness

journal and conferences including IEEE, Springer, and ACM. He has
authored 12 computer science books in field of data mining, robotics, graph
theory, and turing machine by IGI Global Publication, USA, IOS Press,
The Netherlands, Lambert Publication, Scholar Press, Kataria Publication,
Narosa, Edupedia Publication, S. Chand Publication, and Laxmi Publication.
His research interests include computer networks, data mining, cloud com-
puting and secure multiparty computations, theory of computer science, and
design of algorithms. He received the Best Paper Award at the IEEE Confer-
ence 2013 and the Young Achiever Award 2016 by the IEAE Association,
for his research in the field of distributed database. He serves as the Session
Chair, a Co-Chair, and a Technical Program Committee Member for many
international and national conferences, and a Guest Editor for many special
issues from reputed journals (indexed by: Scopus, ESCI).

SUDAN JHA was born in Kathmandu, Nepal.
He received the Proficiency in Certificate Level
from the Saint Xavier’s College, Kathmandu,
the B.E. degree in electronics engineering from
the Motilal Nehru Regional College, Allahabad,
India, in 2001, and the master’s degree in com-
puter science. He was a Lecturer with the Nepal
Engineering College (NEC), one of the premium
and largest engineering college and the first one
in the private domain in Nepal, where he got full

sponsorship from the employer (NEC) for his master’s study in computer
science. He was promoted as an Assistant Professor of the Department of
Computer Science and Engineering, and later, he became the Head of the
Computer Science and Engineering Department. He chaired and organized
five international conferences, some of the proceedings of those conferences
have been published by Springer Verlag, World Science Series, and Imperial
Press London.

ISHAANI PRIYADARSHINI received the
B.Tech. degree in computer science engineering
and the master’s degree in information security
from KIIT University and the master’s degree in
cybersecurity from the University of Delaware,
USA, where she is currently pursuing the Ph.D.
degree in electrical and computer engineering
(cybersecurity). Her areas of interests include
cryptography, network security, and machine
learning.

MOHAMED ABDEL-BASSET received the
B.Sc., M.Sc., and Ph.D. degrees in information
systems and technology from the Faculty of Com-
puters and Informatics, Zagazig University, Egypt.
He focuses on the application of multi-objective
and robust meta-heuristic optimization techniques.
He has published more than 150 articles in inter-
national journals and conference proceedings. His
current research interests include optimization,
operations research, data mining, computational

intelligence, applied statistics, decision support systems, robust optimization,
engineering optimization, multi-objective optimization, swarm intelligence,
evolutionary algorithms, and artificial neural networks. He is the Pro-
gramChair ofmany conferences in the fields of decisionmaking analysis, big
data, optimization, complexity, and the Internet of Things, and an Editorial
Collaborator of some journals of high impact. He is an Editor/a Reviewer for
different international journals and conferences.

HOANG VIET LONG received the Ph.D. Diploma
degree in computer science from the Hanoi Uni-
versity of Science and Technology, in 2011. His
Ph.D. Diploma dissertation was on fuzzy and
soft computing field. He has been an Associate
Professor of information technology, since 2017.
He is currently the Head of the Faculty of Infor-
mation Technology, People’s Police University
of Technology and Logistics, Vietnam. He is a
Researcher of the Institute for Computational Sci-

ence, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Recently,
he has been concerning in cybersecurity, machine learning, bitcoin, and block
chain. He has published more than 20 papers in ISI-covered journal.

VOLUME 7, 2019 37425


	INTRODUCTION
	RESEARCH QUESTIONS
	MATERIALS AND METHODS
	DATASETS
	DATA ACQUISITION AND PROCESSING
	CHANGE AND SMELL ESTIMATION

	MACHINE LEARNING METHODS
	RANDOM FOREST
	NAÏVE BAYES
	BAGGING
	DECISION TREE
	LOGITBOOST
	MULTILAYER PERCEPTRON


	RESULTS AND DISCUSSION
	RANDOM FOREST
	NAÏVE BAYES
	BAGGING
	DECISION TREE
	LOGITBOOST
	MULTILAYER PERCEPTRON
	MODEL EVALUATION
	PREDICTION
	COMPARISON OF OUR RESEARCH WITH THE PREVIOUS WORKS

	CONCLUSIONS
	REFERENCES
	Biographies
	NAKUL PRITAM
	MANJU KHARI
	LE HOANG SON
	RAGHVENDRA KUMAR
	journal
	SUDAN JHA
	ISHAANI PRIYADARSHINI
	MOHAMED ABDEL-BASSET
	HOANG VIET LONG


