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ABSTRACT We present a method for digital subtraction angiography based on phase-based nonrigid
deformation with specific consideration for changes between the image pairs. Input images are transformed
into a scale-space representation using complex-valued filter responses. We apply a novel selection criterion
to discern object motion and actual change by comparing the magnitudes in the responses. By manipulating
phase, we directly generate a deformed image without explicit calculation of motion vectors. Our method
is particularly useful in angiographic imaging where subtle changes between the image pairs should be
preserved within the deformation and subtraction process. The experiments show that the proposed method
preserves contrast for vessels and tumor stains while reducingmotion artifact, which is clinically meaningful.

INDEX TERMS Image registration, change detection, biomedical imaging, angiography.

I. INTRODUCTION
Angiography is a fluoroscopic technique to visualize the
patient’s blood vessels by injecting radiopaque contrast
medium into the vessels which are normally invisible in plain
radiography images. It is widely used in interventional proce-
dures identifying vascular abnormalities, detecting injury to
arteries after trauma, or evaluating arteries feeding a tumor
prior to surgeries. Digital Subtraction Angiography (DSA) is
where a pre-contrast image (called mask image) taken before
the injection is subtracted from the contrast image (called
live image) to enhance the visibility of the vessel. Given
that the live and mask image pairs are acquired at differ-
ent points in time, a simple subtraction strategy may yield
undesirable artifacts due to patient motion. While nonrigid
registration is often applied before subtraction, it can have
trouble distinguishing changes in the image due to motion
and changes due to injection of contrast medium. This may
lead to the reduction of desirable contrast from the visualized
vessels or unsatisfactory reduction of motion artifacts.

A. RELATED WORK
An early method for motion compensation in DSA, pixel-
shift [4], tracks a region in the mask image and compensates
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the motion by panning the whole live image. It has been
widely adopted in commercial products for its simplicity but
is limited to addressing rigid body motion only.

To this end, Meijering et al. [5] introduced a new method
to handle the nonrigid motion between the mask and live
images. The method extracts feature points in both images
and matches the features to find correspondences. In [6],
Nejati et al. follow the feature-based approach employing
the multi-level b-spline to cover the artifacts from larger
displacements. The method is further improved by model-
ing of intensity variation in [26]. Liu et al. [25] presents a
spatial rotating coordinate system designed to eliminate the
incorrect feature points. In contrast to the sparse feature-
matching methods, an image-based approach obtaining dense
correspondence was proposed in [7]. This technique pro-
duces highly accurate registration results but is not practi-
cally applicable due to its heavy computational complexity.
Since those nonrigid approaches generally assume uniquely
matching points, they may fail to find correspondences for
newly visible vessels (by the contrast medium) in the live
image. Several methods [6], [8] carefully select features that
are independent of the vessel region or exclude the vessel
region in the registration process. This step usually requires
manual interaction of qualified experts.

An energy subtraction angiography [22], [23] can han-
dle motion artifact as well, which employs a dual-energy
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X-ray source to capture two consecutive frames with different
energy level within a very short time. However, they inher-
ently suffer from low contrast of the resulting DSA due to
the insufficient energy gap between vessels and background
tissues. A recent method [27] introduced respiratory synchro-
nization to implement fast and accurate compensation for a
real-time solution, but it has difficulty dealing with motions
stemming from unintended factors, such as heartbeat or bowel
movement. Moreover, those methods require special hard-
ware to generate fast kV switching or to match the respiratory
phase of the patient and thus are not applicable to the general
DSA system.

There have been many works on change detection in
images. We refer the interested reader to the systematic
review in [1], introducing various strategies with robust
registration as a critical preprocessing step. One approach
to jointly solve the image registration and change detec-
tion is optical flow estimation with occlusion handling [3].
An up-to-date method [21] presents a novel occlusion detec-
tion criterion, which does not critically depend on a pre-
computed dense motion flow field. Hur and Roth [20]
recently proposed to utilize symmetry properties of the flow
and occlusion; i.e., the forward-backward consistency and
occlusion-disocclusion symmetry in the energy function.
Wang et al. [19] adopted unsupervised learning for explicit
occlusion modeling and introduced a new warping approach
to accelerate training of significant motion. Although these
approaches yield state-of-the-art accuracy for dense corre-
spondence field (even for the occluded region,) handling the
fluoroscopic images can be a different problem, where the
occluding objects are generally partially opaque and are often
close to transparent.

B. OUR APPROACH
We thus propose a new method for DSA to inherently detect
and isolate changes between the images within a frame-
work for nonrigid image alignment. Inspired by the work
of [9] and [10], we also model the motion of individual
pixels as a phase shift in the frequency domain. Within this
framework, aligning the source pixel phase with the target
can synthesize a deformed target image, without explicit
computation of motion vectors. To this end, input images
are first transformed into the frequency domain. Multi-scale
local representations are generated with complex steerable
pyramid filters [11], yielding phase and magnitude images
with various orientations at each level of scale. Within this
domain, we essentially detect regions with newly visible
vessels based on magnitude. Our assumption is that regions
common in both images, where motions have occurred, will
have similar magnitudes but shifts in phase. For these regions,
we compensate for the motion by adjusting the phase dif-
ference. In contrast, for regions with newly visible vessels,
the actual appearance change will cause the magnitudes to be
different. For these regions, we leave the phase unchanged.
Based on the adaptively manipulated phases with the original
magnitudes, a deformed image is reconstructed. The vessels

are visually enhanced by subtracting the deformed image
from the target image. Compared to the other state-of-the-
art registration methods, the proposed method shows reduced
motion artifact while better preservation of the vessels.

We note that some previous approaches also employ
the local frequency information for image registration pro-
cess [12], [13], but as a part of matching criteria to obtain
the explicit motion vectors, due of its invariance to image
modality. Since they do not assume changes between images,
they are not suitable for DSA.

FIGURE 1. 1-D toy example to conceptually explain the proposed method.
(a) Reference image. (b) Magnitude and (c) phase spectrums obtained by
applying DFT to the reference image. (d) Target image. (e) Magnitude and
(f) phase applying DFT to the target image. (h) Magnitude for the
deformed image, copied from (b). (i) Phase for the deformed image,
which is determined by comparing the magnitude of the reference (b) and
that of the target (e) for each frequency. (g) Deformed image applying
iDFT to (h) and (i).

II. METHOD
A. DISCERNING CHANGES USING PHASE
AND MAGNITUDE: A CONCEPT
We start with a conceptual toy example. Assume an 1-D ref-
erence image I (x) comprising three sinusoidal signals shown
in Fig. 1(a), Sk (x) = Ak sin(ωk (x − 8k )), where Ak , k ∈
{1, 2, 3} with ω1 < ω2 < ω3. Likewise, a corresponding
target image can be defined as J (x) =

∑3
k=1 Bk sin(ωk (x −

1k )). We consider S1 and S2 as individual objects that have
moved in different direction by amount of 81 − 11 and
82−12 respectively. Notewe setB3 = 0 and the target image
(Fig. 1(d)) contains only two sinusoids. The sinusoid S3 can
be considered as the actual difference which is only shown
in the reference image. Our goal is to construct a deformed
reference image defined by I ′(x) =

∑3
k=1 A

′
k sin(ωk (x −

8′k )). Initially we set I ′(x) = I (x), thus ∀k,A′k = Ak and
8′k = 8k .

In the first step, the images are transformed into the fre-
quency domain. Fig. 1(b), (c), (e), and (f) illustrate the mag-
nitude and phase information of both signals resulting from
Discrete Fourier Transform (DFT.) Next, wewalk through the
discrete frequency domain and compare the magnitudes of
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the reference and the target images. We assume the similar
magnitudes in the frequency domain indicate the identical
signals in the original domain. In this case object motion can
be compensated by adjusting the phase; we may simply set
those phases of the deformed image identical to the phases of
the target, such that 8′1 = 11 and 8′2 = 12. In contrast, the
magnitudeA3 of the reference will be significantly larger than
that of the target (B3 = 0) for the actual difference signal S3,
and in this case we set the phase of the deformed image
to stay unchanged. Finally we reconstruct the deformed
image by applying the inverse Fourier transform, as shown
in Fig. 1(g). The algorithm can be easily extended to a general
signal represented by a sum of complex sinusoids, I (x) =∑
∞

−∞
Aωeiωx .

B. EXTENSION TO 2-D NONRIGID MOTION
USING STEERABLE PYRAMID
While the signals comprising sinusoids in the above example
can readily be interpreted through their frequency spectrums
computed by the global Fourier transform, this is obviously
not the case for 2-D medical images. For real images, both
the source and target images have different locally vary-
ing appearances, and thus locally different frequency com-
ponents. For the same principle as the example mentioned
above to be applicable, we need to obtain localized frequency
analyses for each local region. Furthermore, since images are
in 2-D, the orientation of the frequency components can also
be considered to compare the source and target images in
more detail.

We thus employ the complex steerable pyramid [11], which
provides frequency analyses that are localized in terms of
both translation and orientation. It has shown good results in
applications such asmotionmagnification [9], [14] and image
interpolation [10]. To build the pyramid, a set of scalable
filters with orientation, 9ω,θ are applied to yield a complex-
valued response Rω,θ on the spatial domain for frequency
ω and orientation θ ; that is, Rω,θ = (I ∗ 9ω,θ )(x, y) =
Cω,θ (x, y) + iSω,θ (x, y). Here, the frequency spectrum Rω,θ
is the frequency spectrum of the local image appearance at
spatial coordinate (x, y), for the frequency and orientation
bands centered at ω and θ . Also, Cω,θ and Sω,θ denotes the
real and imaginary parts of the response.

If we assume Nω frequency bands and Nθ , a total of Nω ×
Nθ convolutions must be performed on the whole image to
compute the steerable pyramid. This can be computed more
efficiently by first transforming the image and the filters9ω,θ
into the frequency domain. Then, by applying the convolution
theorem F(I ∗ 9ω,θ ) = F(I ) · F(9ω,θ ), where F denotes
the DFT, we can replace convolution with multiplication.
Here, DFTs of filter responses decompose DFT of the image
into a set of oriented subbands in the frequency domain.
Fig. 2 shows an example of efficiently building the steerable
pyramid using the convolution theorem. Since the subbands
constitute a ‘‘tight’’ frame [11], the original image can be
reconstructed from aggregation of the subbands (Fig. 2 (d))
using inverse DFT.

FIGURE 2. Efficient computation of steerable pyramid. (a) Original input
image. (b) DFT of the input image (the real part). (c) DFT of steerable
pyramid filters. Each subband represents a filter and is illustrated with
different colors [9]. (d) Aggregation of filter responses. Each response can
be easily calculated by multiplying corresponding subband to the DFT of
input image. Applying inverse DFT to the aggregation can reconstruct the
original image.

FIGURE 3. Visualization of the steerable pyramid, of phases, for the
sample input image of Fig. 2. The border color for each level corresponds
to the color of the subband in Fig. 2 (c). We build a pair of pyramids,
corresponding to magnitude and phase from the input image, and
generate the corresponding filter response Rdef for the deformed image
by combining magnitude and phase that are defined by the proposed
algorithm.

C. ALGORITHM DETAILS OF PROPOSED METHOD
We build a pair of complex steerable pyramids from a
reference image I ref and a target image I tar , producing
two sets of complex-valued filter responses Rrefω,θ and Rtarω,θ .
It is straightforward to compute magnitude Aω,θ (x, y) =√
Cω,θ (x, y)2 + Sω,θ (x, y)2 and phase 8ω,θ (x, y) =

arctan(Sω,θ (x, y)/Cω,θ (x, y)) from the responses. Fig. 3
demonstrates the pyramid of phases for an input image. The
boundary color for each phase corresponds to the color of
subbands in Fig. 2 (c).
For each response, we can generate the corresponding filter

response Rdef for deformed image by combining magnitude
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and phase that are defined by,

Adefω,θ (x, y) = Arefω,θ (x, y) (1)

8
def
ω,θ (x, y) =

{
8
ref
ω,θ (x, y), if Atarω,θ (x, y) < βArefω,θ (x, y)

8tar
ω,θ (x, y), otherwise

(2)

where β is a parameter controlling the similarity comparison
constraint, with the range of 0 < β < 1. If β is close to
0, only significant magnitude differences are considered as
actual changes. In the opposite case that β is close to 1, most
of changes are considered as object motion.

The proposed algorithm can be summarized as follows:
1) For input reference image I ref and a target image I tar ,

build a complex steerable pyramid pair to yield a set
of filter response pairs Rrefω,θ and Rtarω,θ , for all possible
values of ω and θ .

2) Compute magnitudes Arefω,θ , A
tar
ω,θ and phases 8ref

ω,θ ,

8tar
ω,θ from Rrefω,θ and R

tar
ω,θ .

3) Generate the magnitude Adefω,θ and phase 8def
ω,θ accord-

ing to the Eq. (1) and (2) to compute a filter response
for a deformed image.

4) Reconstruct the deformed image Idef from Adefω,θ
and 8def

ω,θ .
5) Compute subtracted image I sub = I tar − Idef .

III. EXPERIMENTAL RESULTS
A. DATASET
We validate our motion compensation method on 16 image
sets captured with interventional angiography machines
(AXIOM Artis; Siemens Medical Solutions, Malvern, PA)
in 2016 in Seoul National University Bundang Hospital.
Each image set contains 20–200 images. The institutional
review board waived informed consent due to the retrospec-
tive study design and the use of anonymized patient data. The
image sets contain various clinical cases such as transarte-
rial chemoembolization (TACE), adrenal venography, angio-
plasty for hemodialysis arteriovenous fistula, and bronchial
artery embolization.

All the images are resized to 512 × 512 pixels. Both the
number of orientations and the number of levels in a steerable
pyramid are set to six. The scale factor between the levels
is set to two. More levels and orientations hardly improve
registration accuracy in our experiments but require more
computational complexity. All the experiments are executed
on a system with 3.30Ghz Intel Core i5 CPU. For the differ-
ence criteria comparing magnitudes, we set β = 0.1.

B. COMPARATIVE METHODS
Wecompare the proposed approachwith twomethods [6], [7]
recently showing excellent results in DSA motion correction.
A method designed for accurate optic flow estimation [3]
is also included, which presents a highly competitive per-
formance, particularly for occlusion detection. Other recent
methods [23], [27] are excluded since they only accept

images from special devices such as dual energy X-ray or res-
piratory phase matching, which is not comparable to our
method dealing with common images from generic hardware.

The first method for comparison [6] utilizes the mul-
tilevel B-spline (MBS) with the Free Form Deformation
(FFD) [15], that is defined on a uniform mesh of control
points. An optimal deformation is then determined that bal-
ances the alignment of local features of the source image
to the target image and the cost of deforming the uniform
mesh. The second method for comparison [7] is based on
the Markov Random Field (MRF), a graphical model, where
an energy function is defined on constituent vertices subsets
immediately connected by edges. Most often two types of
potentials are defined: The data term measures similarity of
local appearance and the smoothness term measures similar-
ity of displacement neighboring vertices. The negative log
likelihood of these potentials results in a cost function along
with a scalar balancing parameter λ and is optimized by an
iterative energy minimization strategy. The third method for
comparison [3] also follows this approach for the cost func-
tion, but it proposes a more elaborated data term extending
the coarse-to-fine scheme to handle motion detail of fine
structures, gradually addressing occlusion in each scale. Our
implementation of the comparative methods are built on the
publicly available softwares [17], [18] and the program code
provided by the authors.

C. QUALITATIVE COMPARISON
To the best of our knowledge, a standard quantitative measure
for assessing the quality of DSA images does not exist.
An angiographic change should be noticed and evaluated by
an actual human user in a clinical environment, but it is chal-
lenging to create the ground-truth map for the angiographic
change and also to define how well the change is noticed.
Thus, we first evaluate the performance in a qualitative
manner.

In Fig. 4, we show (a) live and (b) mask images used for
TACE, along with subtraction images (c) w/o motion com-
pensation, and with motion compensation using (d) MBS [6],
(e, f) MRF [7] with varying λ, (g) motion-detail preserv-
ing (MDP) optical flow method [3] and (h) the proposed
method. The images contain small motion of organs due to
the patient’s respiration together with the actual appearance
change due to the contrast medium injection. Note the live
image contains a faint tumor stain, indicated by the red box
in (a), and shownmore clearly in Fig 5. Localizing this region
is clinically very important, and it should be more obviously
recognized in DSA results. For the results of MBS (d), we see
the dark tumor is indeed visible. But the various noise sur-
rounding the tumor due to the errors in registration and the
sparse control points may interfere with the observer noticing
the tumor. The result from MRF (e) significantly reduces the
motion artifact with the emphasis on flexibility of the regis-
tration (λ = 0.1), but it also reduces contrast for the clinically
important tumor stain as well as the small vessels. This may
stem from the fact that the technique tries to find the best
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FIGURE 4. DSA results for TACE. (a) Live image with contrasted vessel. A tumor is also faintly stained by contrast medium, indicated in the red
box. (b) Mask image. (c) DSA without motion compensation. (d) DSA with MBS [6] (λ = 0.1). (e) DSA with MRF [7] (λ = 0.1). (f) DSA with
MRF [7] (λ = 1.0). (g) DSA with MDP [3]. (h) DSA with the proposed method. Best viewed electronically.

FIGURE 5. The respective zoomed views of Fig 4 (c,d,e,f,g,h) for the region
in the red box of Fig 4 (a). The faint tumor stain can be seen in the image
center. (upper left) without motion compensation, significant artifact
stemming from lung motion is presented (the black arc-line over the
stain.) The artifact from a marker seems obvious as well. (the white
object under the vessels). (lower left) MBS result. The artifacts are
reduced, but the various noise including the Gaussian blur may interfere
with the observer noticing the tumor. (upper middle) MRF result with
λ = 0.1 shows significantly reduced the motion artifact with the emphasis
on flexibility of the registration but also presents reduced contrast for the
clinically important tumor stain as well as the small vessels. (lower
middle) MRF result with λ = 1.0. We may better recognize the tumor
stain, but the artifacts caused by lung motion become vivid as a trade-off
effect. (upper right) MDP result also suffers from the trade-off effect.
(lower left) proposed method result successfully preserves the contrast
for the tumor stain while greatly reducing the motion artifact.

corresponding pixel in the target live image for every pixel in
the mask, including ones that are actually occluded, i.e., the
vessel and the tumor stain. Depending on the sufficiency of
pixel intensity contrast from the contrast agent, the contrasted

regions may be incorrectly registered to similar regions, actu-
ally making the subtraction more vague in the result. With
a different parameter reducing flexibility (λ = 1.0), we may
better recognize the tumor stain in Fig. 4(f) but the artifacts
caused by lung motion become vivid as a trade-off effect.
The result of MDP (g) shows slightly less artifact than (f)
by controlling the balancing parameter, but it also suffers
from the tradeoff effect showing slightly less contrast than (f).
In contrast, the proposed method (h) successfully preserves
the contrast for the tumor stain while significantly reducing
the motion artifact, as seen in the figures.

Experimental results in cases with tumor stains are demon-
strated in Fig. 6 to highlight the clinical usefulness of the
proposed method. We show (a) the live images along with
DSA results (b) without motion compensation, (c) withMBS,
(d) with MRF (λ = 0.1) and (e) with the proposed method.
Each couple of rows shows results of different cases. The
tumor stains are indicated in the red boxes on the live images
in the leftmost position of the upper row. The whole frames
shown in the upper rows and the zoomed tumor boxes are
shown on the bottom. The first case, shown in the top two
rows presents a case with a relatively large and conspicuous
tumor observed even in the live image. The proposed method
enhances the contrast and effectively removes the overall
motion artifacts. For the second case, shown in the third and
fourth rows, the tumors are relatively faint or small and thus
difficult to delineate. In this case, noise resulting frommotion
may generate more contrast for the tumors as in the result
without motion compensation of the second row case. While
our method may show slightly lower contrast, the clarity
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FIGURE 6. From left column: (a) live images, (b) DSA without motion compensation, (c) DSA with MBS, (d) DSA with MRF (λ = 0.1), and
(e) DSA with the proposed method. From top row: each consecutive two rows represent different cases, where among the two the top row
shows the whole image and the bottom row shows the zoomed view of the red box, containing a stained tumor, in the live image above. The
proposed method enhances the contrast, especially for the stained tumor, and also effectively reduces the overall motion artifacts. Best
viewed electronically.

of the boundary is improved due to the reduced noise. The
bottom two rows show a case with complex structures includ-
ing the lung and the ribs, which cause considerable motion

artifacts. Our method is very effective in reducing the motion
artifacts, again resulting in slightly weakened tumor contrast
but clarified tumor boundary.
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FIGURE 7. From left column: (a) live images, (b) DSA without motion compensation, (c) DSA with MBS, (d) MRF (λ = 0.1), and (e) DSA with the
proposed method. The proposed method enhances the contrast and effectively removes the overall motion artifacts.

Further experimental results in cases with large motion
between frames due to the respiratory motion of the lungs are
shown in Fig. 7. We can see that the proposed method shows
the least amount of artifacts in the regions without contrast
agents, indicating the most accurate registration. We can also
see from the results of the proposed method, that regions
with contrast agent have high contrast, with clear delineation.
This indicates that the proposed method is successful in only
applying registration to the appropriate regions.

D. QUANTITATIVE COMPARISON
Although standard quantitative measures do not exist for
an assessment of the quality of DSA images, we evaluate
our method with Peak Signal-to-Noise Ratio (PSNR) and
Contrast-to-Noise Ratio (CNR) with a specific definition of
the foreground and background regions. We design the PSNR
as a metric for image alignment and the CNR as a metric for
change detection, respectively. The PSNR and CNR calcula-
tions employ the following definitions:

PSNR = 20 log10

(
MAXI
MSEbg

)
(3)

CNR = 20 log10

(
|mfg − mbg|

σbg

)
(4)

where MAXI is the maximum possible pixel intensity
(= 4096) and MSEbg stands for mean squared error for
background region. Note that the foreground is excluded in
calculating MSE since the intended contrast should not be
counted as a registration error.mfg andmbg indicate themeans
of intensities for foreground and background regions respec-
tively, while σbg is the standard deviation for background.

FIGURE 8. (Top row) Foreground (contrasted region, e.g., vessel)
segmentation maps. (Bottom row) Live images presenting the contrasted
region. We segment the region by simply thresholding the intensity of the
DSA image without motion compensation. The resulting foreground
approximately contains important vessel structures as seen. The
erroneous non-foreground spots are negligible compared to the whole
image size.

We consider the foreground as the region that is only visi-
ble in the live image due to contrast media (e.g., vessels and
tumor stains.) To delineate the foreground region, we apply
simple intensity thresholding to the DSA image without
motion compensation. The resulting foreground approxi-
mately contains important vessel structures as illustrated
in figure 3. Although the foreground determined by this sim-
ple approach will likely include erroneous non-foreground
regions due to the lack of motion compensation, the rela-
tive amount of these errors will most likely be negligible
compared to the whole image size.

The image sets generally contain whole scenes of angio-
graphic processes, i.e., from injection of the contrast medium
to the final washout of the medium. We found the image
frame from each image set that maximally presented
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FIGURE 9. Ablation study on values of Nω , Kθ , and β. First row: PSNR and CNR depending on Nω , PSNR and CNR depending on Kθ , respectively.
Second row: Computational complexity depending on Nω and Kθ , PSNR and depending on β and β, respectively.

TABLE 1. PSNR and CNR results from MBS, MRF, MDP and the proposed
method. Our method yields the highest performance in terms of the PSNR
as well as the CNR.

contrasted vessels, and then chose five consecutive frames
around the frame for quantitative comparison.

Table 1 comparesmean PSNR and CNR results fromMBS,
MRF, MDP and the proposed method. The proposed method
outperforms other methods for PSNR in 8 out of 16 image
sets, while MRF produces the highest values in the rest of
the eight sets. When comparing CNR, our method shows the
best results in 10 out of 16 image sets. Among the remaining
five, MBS, MRF, MDP is the best for two sets respectively.
Overall, the proposed method presents the best results for
both the mean PSNR and CNR values on average.

The proposed method also shows good performance
regarding computational complexity. The overall computa-
tion takes 8.6, 5.2, 6.1, and 1.3 seconds for MBS, MRF, MDP
and the proposed method respectively. We note the computa-
tion time for our method increases linearly with the number
of levels, but it does not exceed 1.8 seconds. We provide a
more detailed ablative analysis in the next section.

In sum, our method yields the highest performance con-
cerning the PSNR, CNR as well as the computation time.
These results strongly support our contribution that the

proposed method effectively reduces registration errors in
background regions, while maximizing contrast between
background and foreground regions.

E. ABLATIVE STUDY
There are three parameters that must be determined in the
proposed method: 1) the number of frequency bands for ω,
which we denote as Nω, 2) the number of orientation levels
for θ , which we denote as Kθ , and 3) the parameter β which
controls the similarity comparison constraint, with the range
of 0 < β < 1.

We first present ablative analysis on the values of Nω
and Kθ . Fig. 9(a), (b), (c) and (d) shows the average quan-
titative performance, measured in by both PSNR and CNR
for fifteen cases. Since both Nω and Kθ are used together to
create the steerable pyramid, we compute the average values
for all possible values of Kθ when computing for Nω and vice
versa. We can see that the performance increases, regarding
PSNR, when increasing either the number of frequency bands
Nω or the number of orientation bands Kθ , but also that Nω
has amuchmore significant effect. RegardingCNR, the effect
of the Nω value is somewhat unclear. On the other hand, it is
clear that increasing Kθ improves CNR on average.
We then examined the tradeoffs of increasing Nω and

Kθ by measuring the computational cost for each value.
Fig. 9(c) and (d) show the average computational time, in sec-
onds, for different values of Nω and Kθ . It shows that the
computation increases linearly with increasing Nω, but does
not depend on Kθ . This is expected since larger values of
Nω increases the number of pyramid levels of the steerable
pyramid, where each level is iteratively computed. Thus,
it should be noted that we can expect better DSA quality with
higher Nω, but with a slight additional computational cost.
Also, it is generally safe to use a high value of Kθ for higher
DSA quality.

We finally examined the cost of different β values on DSA
quality. We can see that the PSNR is high and the CNR is
low when β is closer to 0, meaning that only considering
significant magnitude differences is better for DSA quality.
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IV. CONCLUSION
We developed a novel algorithm for nonrigid deformation
preserving the actual differences between images. The pro-
posed method applies for phase-based motion compensation
in the frequency domain, on filter responses obtained using
complex steerable pyramids. Regions with likely changes are
estimated based on the magnitude and explicitly excluded
from this process to generate a deformed image which aligns
motion but preserves changes. As a result, we demonstrated
enhanced contrast as well as improved motion compensation
quality, compared to a previous state-of-the-art registration
technique.

The proposed method is also efficient and does not require
a critical parameter to be tuned. Our work can be easily
extended to three-dimensional applications such as computed
tomography angiography or magnetic resonance angiogra-
phy. It may also be applied to multi-modal registration due
to the use of the frequency domain.

The major drawback of the proposed method is the lim-
itation on the amount of motion that can be compensated.
The bound of possible motion can be theoretically calcu-
lated [10], to be up to 2 to the power of Nl − 1, where Nl
is the number of levels. In practice, however, ringing artifacts
usually occur because high-frequency signals that form the
object boundaries are mixed and difficult to distinguish. This
issue will be addressed in our subsequent future works, e.g.,
by applying new approaches [28], [29] classifying signals
through machine learning.
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