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ABSTRACT A large number of charging piles installed on roadside parking spaces and smart poles on the
roadside of the Internet have become essential substation infrastructure (roadside) for building a vehicle-
road coordinated charging network for electric vehicles. The management system of China National Grid’s
network-load interaction includes the interaction between these main stations (traffic control stations) and
substations (roadsides). The Internet-friendly interactive communication protocol for China’s vehicle-road
coordination is IEC 60870-5-104 (104 protocol). The control network of the vehicle-road collaborative
charging network has many characteristics, such as multiple levels, multiple types, and frequent information
exchange for monitoring and control. Various types of operational information and control commands are
subject to eavesdropping, tampering, and interruption during collection, transmission, and triggering. This
paper proposes a command-level anomaly detection (CAD)method for a vehicle-road collaborative charging
network. The CAD method analyzes the protocol for the specification format and business command
characteristics of the 104 protocol. This paper uses the dynamic analysis protocol fuzzy test to realize the
dynamic information in the program to guide the generation of test cases and pass theMarkov state transition
diagram.We describe the state transition and abnormality identification of protocol messages.We also design
a long-termmemory network to implement instruction-level anomaly feature mining. The experiment proved
the validity of CAD. If we adopt other new protocols for the vehicle-road coordinated network in different
countries or regions, the analysis of the new protocol can be completed in the same way, which has strong
application value and prospect.

INDEX TERMS Protocol analysis, command-level anomaly detection, vehicle-road collaborative charging
network.

I. INTRODUCTION
As electric vehicles take the lead in realizing the connectivity
of the vehicle network control and the vehicle road coordi-
nation system, they become the best carrier for intelligent
network connection and automatic driving. In 2016, Norway,
Sweden, and other countries announced that they would stop
selling fuel vehicles in 2030. The United States, Japan, India,
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and other countries have announced a road map of electrifica-
tion and intelligence. The 8th Clean Energy Ministerial Con-
ference in 2017 proposed the ‘‘EV30@30 Target Initiative’’,
which means ‘‘30% of cars should be new energy vehicles
by 2030’’. Electrification and intelligence are leading the
new direction of the development of the global automotive
industry.

At present, the State Grid of China has built a fast elec-
tric vehicles network with 240,000 electric vehicle charging
stations, covering more than 150 cities. The communication
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protocol of network-load Interactive in vehicle-road collabo-
rative charging network is IEC 60870-5-104 (104 protocol).
Although the 104 protocol has solved the problem of mon-
itoring data transmission of the interactive terminal, it does
not propose a practical solution to the security description
and the abnormal identification, which seriously threatens the
security of the transportation infrastructure. At present, from
the charging equipment, communication system to informa-
tion service, there are different forms of industrial control
terminals for data acquisition, command scheduling, remote
control and so on. The 104 protocol achieves the flow of
control flow and data flow between these industrial control
terminals and the primary station. In the implementation
process of the industrial control terminal code pair 104 pro-
tocol, the protocol field is trusted, but when the attacker
modifies the data values of these fields by using the protocol
defect, the program can be controlled to run. For example,
the destination address parameter of the jump instruction
usually comes from a trusted data source inside the program.
However, if the attacker rewrites the destination address of
the jump instruction, it can illegally control the operation
process of the industrial control system. The mainstream
solution to such problems is the protocol format analysis
[1]–[5]. However, the traditional protocol parsing method is
complicated to be universal, and it is difficult to construct a
context-free grammar representation of the protocol. Also,
the traditional parsing process is mostly based on stack,
script-based, or compiler-based reasoning, so the resolution
speed is limited. Therefore, it is urgent to research the abnor-
mal feature detection method of instruction level.

Most of the Intelligent Vehicle-Infrastructure Cooperative
Systems and V2X have a similar problem. These interactive
control systems are complex nonlinear systems that are sub-
ject to a variety of external factors. The macro-instruction
behavior of interactive control is often complex and change-
able. The data contains a variety of periodic fluctuations, and
there are nonlinear rising and falling trends, and uncertain
random factors also interfere it. Therefore, how to select and
optimize the nonlinear model has become the research focus
of the analysis of the instruction-level anomaly characteristics
in the interactive control system in recent years [6]– [9].

The Long Short Term Memory (LSTM) is mainly used
to describe complex and interactive systems for abnormal
state analysis. It has been used in large-scale systems such as
Real-Time systems, electronic circuits, and communication
networks [10]– [16]. This paper proposes a command-level
anomaly detection method (CAD) for vehicle-road collabo-
rative charging network. CAD firstly analyzes the protocol
according to the specification format and business instruction
characteristics of the communication protocol. So that we
can implement the program execution through the tracking
protocol, find the input field that affects the execution of the
conditional branch through dynamic pollution analysis and
capture the dependency relationship between the conditional
branches. In this way, the use case generation is guided to
achieve the instruction level feature extraction. Secondly,

the Markov time-varying model (MTM) is used to design the
state transition diagram to describe the protocol message state
transition and abnormality recognition. Finally, through the
training and learning of Long Short Term Memory Networks
(LSTM), we realize the discrimination of command anoma-
lies in the network-load interaction control of the vehicle-road
collaborative charging network.

II. RELATED RESEARCH
The instruction exception of the network control system
mainly comes from the instruction vulnerability. In the field
of command vulnerability detection, there have been analysis
techniques such as dynamic analysis, symbolic execution and
fuzzy testing [6], [17]. Compared with other technologies,
fuzzy testing requires only a small amount of target knowl-
edge and is easy to expand and reusable. Therefore, it has
become the most popular instruction vulnerability discrimi-
nating scheme. The representative fuzzy is SPIKE [18]. The
principle of SPIKE is to describe the protocol as a block
sequencemodel, by dividing the data structure of the message
and automatically counting the length of the field after the
mutation. SPIKE improves the validity of test cases, but the
ability to describe constraint relationships in protocol mes-
sages is not sufficient. Sulley [19] and Peach [20] extended
the data model based on SPIKE and added more descriptions
of the dependencies between data blocks. In order to provide a
more flexible and accurate fuzzy framework, AFL [21] tracks
the path coverage of each input by lightweight instrumenta-
tion of the source program and uses a hash mechanism to
assign IDs to the basic blocks on the path randomly. Thus we
can judge whether the input generates a new path and use it as
a seed. This hashing method is prone to collisions, and there
is a problem that the input arrives at the new path, but it is not
reported. The CollAFL proposed by Gan et al. [22] assigns
ID values to each basic block employing greedy algorithms to
ensure that the hash values of each side are different, avoiding
hash collisions, and making path coverage judgment more
accurate. Moreover, they use the number of path neighbor
branches as weights to sort the seeds, leading the fuzzy to
explore paths that have not arrived. Rawat et al. [23] proposed
VUzzer without prior knowledge of any application or input
format. They mainly use static and dynamic analysis of con-
trol flow and data flow features to aid mutation and selection
of seed files. In this progress, they assign each basic block
specific weights to drive the program to a deeper level. How-
ever, these methods are difficult to apply to the 104 protocol
with complex input syntax.

III. COMMAND-LEVEL ANOMALY DETECTION METHOD
The flow of the command-level anomaly detection method
designed in this paper is shown in Figure 1. The method
mainly includes some modules, such as packet cap-
ture, packet depth analysis, MTM-based protocol fea-
ture modeling, protocol feature tracking and identification
based on LSTM, and instruction extraction of 104 proto-
col. The packet capture module provides necessary input for
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FIGURE 1. Command-level anomaly detection method of vehicle-road
collaborative charging networks.

subsequent modules. The packet depth analysis module per-
forms expert analysis of the link layer, the network layer
and the transport layer of the data packet. The MTM-
based protocol feature modeling implements the construc-
tion of the spatial state diagram of the protocol message
features and the protocol feature description. The protocol
feature tracking and identification module perform instruc-
tion level analysis of the application layer data stream accord-
ing to the protocol feature model. The LSTM network real-
izes the feature processing of the measured object through
self-learning.

A. DEEP ANALYSIS OF DATA PACKETS
The steps for deep packet parsing are designed as follows:

STEP (a) Protocol segmentation. Further subdividing the
‘‘detection flow’’ by the session. For example, one interaction
of 104, one user login behavior of FTP, and one mail trans-
mission/reception of SMTP/POP3, which can be abstracted
into one ‘‘detection flow’’;

STEP (b) Protocol domain segmentation. The message is
segmented at the smallest granularity, dividing the detection
stream into the Header and Body parts, and the Header is
subdivided into individual Fields. Protocol domain segmen-
tation helps to determine whether the header field needs to be
detected. It can determine whether the feature of the header
field hits its definition, and identify the key location for
extracting audit log information;

STEP (c) Analyze the interaction process of remote sig-
naling, telemetry, and remote control. Decode the header of
the protocol, and send the decoded field to the fuzzy test
algorithm engine.

STEP c.1. After receiving the 104 message, parse the
message, obtain the frame header by looking for 68H, and
then obtain the frame length.

STEP c.2. Determine which type of information frame the
message is based on the type flag.

For example, a network frame of data is received as 68
14 2E 00 04 00 1E 01 03 00 01 00 0B 00 01 31 25 16
15 12 04 0B. It is a remote burst frame, its data length
is 20, the type identifier is 30, and the single point infor-
mation with time stamp CP56Time2a. 0B 00 01 indicates
that the information object address is 65547. 31 is the code
value description (bit IV is 0 for valid, bit NT is 0 for
current value, bit SB is 1 for replaced, bit BL A value
of 1 indicates that it is blocked, and a bit PI of 1 indi-
cates that the switch position is ON, that is, the switch is
closed.)

Another example, the telemetry frame 68 10 2C 00 04
00 09 01 03 00 01 00 01 40 03 3E 00 00 is received.
The type identification is 09 for normalized measurement.
01 40 03 for information object address is 212993. 3E
00 indicates that the telemetry value is 62, where 00 is the
code value description (bit IV is 0 means valid, bit NT is
0 means the current value, bit SB is 0, the table is not
replaced, bit BL is 0 means unblocked, bit OV is 0 means no
overflow ).

STEP c.3. Analyze the data according to the frame struc-
ture to get relevant information. The values of the obtained
remote signal, telemetry, remote control, and remote adjust-
ment are assigned corresponding numbers and placed in the
memory.

STEP (d) Negotiation protocol identification. Negotiation
is used for data transmission. The corresponding protocol
parser can identify the quintuple features inherent in the
negotiation protocol through the parsing of session packets,
and identify the session by negotiating the matching of the
association table.

In the processing phase of ‘‘deep analysis of data packets,’’
the fuzzy test algorithm engine discovers potential vulnerabil-
ities by injecting a large amount of malformed data into the
target system andmonitoring the execution state of the system
[25-38]. The advantage of the fuzzy test algorithm engine
is that it is easy to deploy, and is not limited to the internal
implementation details and complexity of the system under
test. It can be executed with or without source code and has
good scalability and practicability. In CAD, the processing of
the fuzzy test algorithm engine is shown in Figure 2. For the
industrial control protocol implementation program, dynamic
information is obtained through dynamic stain analysis to
guide the generation of test cases. In order to avoid a situation
where the number of test cases is insufficient due to single
sample data, the method uses multiple protocol messages as
input.
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FIGURE 2. 104 protocol fuzzy test flow based on dynamic analysis.

For a conditional branch in the control program, its
dynamic information contains two parts: dynamic interaction
field and dependency control relationship.
Definition 1 (Dynamic Interaction Field) In the given pro-

gram execution, for conditional branchxi (the i execution of
conditional branch x), there is
DIF(xi)={Fj|Fj is the protocol field that affects xi execu-

tion.}Where DIF(xi)is the set of protocol fields.
Definition 2 (Dependency Control Relationship) In a given

program execution, if there is a true or false conditional
branch yi directly determines whether xi is executed, then xi is
said to be dependent on the dynamic control of yi, denoted as
CDC(xi) = {yj,T |F}, where CDC(xi) = {yj,T |F} is the set
of qualified branches, and Constraint(xi) is the conditional
branch xi. Constraint.
Definition 3 (Dynamic Control Flow Graph) For each

program input, its execution path can be represented by a
dynamic control flow graph, where conditional branch xi is
a node, DIF(xi) is a node dynamic interaction field, and
CDC(xi) is an edge, indicating a dependency relationship
between conditional branches.

CAD uses dynamic stain analysis to determine which input
protocol fields affect the conditional branch, pollute the token
for each protocol input field, and track the contaminated
data stream during program execution. Since the checksum
(such as CRC) is common in the 104 protocol field, if the
propagation in the control information flow leads to the flood
of pollution data, when using the dynamic stain analysis
method, we only pay attention to the propagation pollution
in the data stream. Do not track pollution in the control flow.
Algorithm 1 is the specific description.

In Algorithm 1, the main function dynamicFuzz takes
the executable program P, the protocol syntax G, and the
protocol message I as input, processes the multiple proto-
col inputs, and outputs the triggered exception information.
Lines 1∼2 of Algorithm 1 initialize the data structure used
for storage. Since the generated test case is also used as
new input, it is placed in a queue for recursive execution.

Algorithm 1 FUZZY TEST algorithm
Input: Program P, protocol syntax G, protocol message I
Output: Exception information
Function dynamicFuzz (P, G, I)

1. probedPath, inputQueue, checklist← empty()
2. inputQueue.push(I)
3. while inputQueue.notEmpty() do
4. input← inputQueue.pop()
5. dcfg← executionAnalysis (P, I)
6. node← dcfg.start(probedPath)
7. while node 6= NULL do
8. c← dcfg.getConstraint (node.CDC)
9. if checklist.find(node.DIF, c) &&
10. node.true, node.false 6= NULL then
11. node← dcfg.next()
12. continue
13. end
14. tcList← makeTestCases (node.DIF, c, G)
15. for each tc in tcList do
16. input’← makeInput (input, tc.value, c)
17. res← executionMonitor(P, input’)
18. if (res.execption) then
19. return getExceptionInfo(res)
20. end
21. if(probedPath.isNew(res.pathInfo)) then
22. inputQueue.push(input’)
23. end
24. end
25. checklist.add(node.DIF, c)
26. node← dcfg.next()
27. end
28. end
29. probedPath.add(dcfg)

Line 5 combines the two parameters of the program and pro-
tocol, and uses the dynamic stain analysis method to find the
DIF(xi) and CDC(xi) sets of each conditional branch in each
program, and constructs the corresponding dynamic control
flow with DIF(xi) as the node and CDC(xi) as the edge. Line
6 begins with the blurring operation from the start of the
executable path in the control flow graph. Line 8 infers the
constraint Constraint(xi) corresponding to the node based on
the dependency control relationship as a parameter of the test
case generation algorithm. Line 16 of Algorithm 1 indicates
that when the test case is generated, we need to use it as
new input, replacing it with the value of the protocol field
in the DIF(xi) set in the original input, and modifying all the
fields associated with Constraint(xi) to meet the constraints.
In order to ensure that the test cases can be executed to a
deeper level in the program, the remaining protocol fields that
are not related to DIF(xi) and Constraint(xi) should be valid
according to the protocol syntax. For example, the values of
the two fields of the start and end addresses in the protocol
input are 1 and 2 become 3 and 6, respectively. Even if there
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FIGURE 3. Flow of MTM-based protocol feature modeling.

are no constraints, the corresponding address data field will
be regenerated according to the original standard size of its
protocol (increasing from 1 to 3). But if the two addresses are
blurred after the invalid test case of 6 and 3 (start address is
less than the end address), the fields unrelated to DIF(xi) and
Constraint(xi) will remain at reasonable values.
Lines 17-20 of Algorithm 1monitor for abnormalities such

as crashes or memory leaks during the execution of the test
case. Although the test case is used as a new input, the method
does not repeatedly acquire the dynamic information of each
conditional branch, considering the overhead incurred by
program execution. Lines 21-24 store the traversed code path
during the execution of the test case. If a conditional branch
that has not been resolved is encountered, it will be placed
in the input queue, and the number of new branches deter-
mines the priority. Line 25 saves the dynamic information
sequence of each node, which facilitates the judgment of
whether the current node generates test cases in lines 9∼13.
When a dynamic information sequence already exists in the
list and test cases are generated and correspond to DIF(xi)
and Constraint(xi) of the current node xi, then the test case
generation of the node can be skipped directly. Line 29 is to
store the dynamic control flow graph as a probed path in the
queue after the program code path has been completed.

In order to be able to directly embody the dynamic infor-
mation extracted from the program in the construction of the
test case, the method selects the generated technology as the
main, the mutation as the supplementary. The test case syntax
is generated for the node xi in combination with its corre-
sponding dynamic information. Algorithm 2 describes the
specific process, the test case generation function makeTest-
Cases, with the protocol field fields, that is, the element
of the DIF(xi) set in the definition 1, the rule constraint
C and the protocol syntax G are the input, and the output
test case set tcList . The key to the function is to generate
test cases by getting the valid syntax of each node and the
opposite syntax. According to Definition 2, the valid syntax

under Constraint(xi) can be applied to each protocol field in
DIF(xi). Line 3 indicates that when there are multiple valid
grammars in the protocol field, multiple grammars are stored
in the test case set by the combination of them. For example,
for node xi, there is DIF(xi) = {Fa,Fb}, and the correct
grammar derived at Constraint(xi) is Fa = (0|1),Fb = 2,
then the combined syntax is (Fa = 0,Fb = 2) and (Fa =
1,Fb = 2) . Then, in lines 4∼9 of the algorithm, for each field
in the correct grammar, the corresponding valid grammar is
negated under the condition that the Constraint(xi) constraint
is satisfied, and the grammar of the other grammar is added
to the test case. In the collection.

When the applicable test syntax is not found in DIF(xi),
the use case data is generated by mutation, such as using
random bit flips, replacing with extreme values or boundary
values.

Algorithm 2 Test Case Generation Algorithm
Input: protocol field fields, rule constraint c, protocol
syntax G
Output: test case set tcList
Function makeTestCases(fields, c, G)
1) tcList← empty()
2) validGrams← extractGrams(fields, c, G)
3) tcList← combination (validGrams) ^c
4) for each g in validGrams do
5) fg←∼g ^c
6) fuzzyGram← fg ^(other g’in validGrams)
7) tcList.add(fuzzyGram);
8) end
9) return tcList

B. MTM-BASED PROTOCOL FEATURE MODELING
The MTM-based protocol feature model is to track and ana-
lyze the instruction frame of the historical protocol mes-
sage and match with the rules in the rule set to judge the

34914 VOLUME 7, 2019



Q. Li et al.: CAD: CAD for Vehicle-Road Collaborative Charging Network

non-abnormality of the instruction. It realizes the initial
screening of the instruction abnormality, and improve interac-
tion security of the control master station and Roadside sub-
station unit. Interactive commands are mostly used to change
the state of running terminal devices, such as remote control
and remote adjustment. There are two types of instruction
transfer: direct instructions, select and execute instructions.

The flow of MTM-based protocol feature modeling is
shown in Figure 3. The non-abnormality analysis of proto-
col packets is mainly divided into the message space state
diagram and the protocol feature description module. The
framework of the exception state of message space is mainly
divided into two parts: the abnormality recognition rule set
generation module and the non-anomaly discrimination mod-
ule. The non-abnormality analysis rule set generation mod-
ule analyzes the interaction process of the grid-load unit
communication protocol message. It uses the Markov time-
varying theory to model the interaction process. Thereby
it generates a non-abnormality analysis rule set. The non-
abnormality discrimination module performs matching in the
non-abnormality analysis rule set according to the data packet
provided by the data acquisition layer. In this way, the non-
abnormality of the protocol message interaction process is
discriminated, to analyze the non-abnormality of the grid-
load unit protocol message. The protocol feature description
module provides unified visual non-abnormality real-time
analysis results display, non-abnormality overall situation
display, and other functions.

In the abnormal state diagram of the message space,
the exception detection rule set generation module is the
core component. It plays a role in the overall data flow of
the model. The message space anomaly state diagram can
be described by the Markov time-varying model as shown
below:

M = (S, s0,V , I ,P,A,T ) (1)

where, S ={s0,s1,. . . ,sn}: A non-empty finite state set, the set
describes various steps experienced by the security protocol
message in performing the non-abnormality analysis process.
S0: Initial state, describing the starting state of the non-

abnormality analysis process.
V ={v1,v2,. . . ,vn}: A set of variables that describe vari-

ables such as data fields or counters that need to be provided
during non- abnormality analysis. The set of variables in
V that can be used as transition input parameters is called
the input variable set Vi, such as various data fields in the
data packet; The set of remaining variables is collectively
referred to as the context variable set Vc, then V = Vi ∪ Vc;
The variable value space of V is represented as V , and the
value of the current variable consists of a variable value vector
Vi = (v1, v2, · · · , vn).
I: A non-empty input set, ∀i ∈ I with a form

i = (v1, v2, · · · , vk), where vk ∈ Vi, k ≥ 0, (v1, v2, · · · , vk)
is a list of input parameters that describe the parameters that
need to be provided at each step during the non- abnormality
analysis.

P: A set of assertions that operate on variables. It describes
what decisions the non- abnormality analysis process needs
to make at each step.
A: An action set that operates on a variable. It describes

which variables need to be manipulated when an assertion is
established, such as an execution counter plus one or zero.
T : Non-empty transition set, which describes the state

transition of Markov time-varying during non- abnormality
analysis. It describes the conditions and effects when the
transfer occurs.

T = S × V × I × P→ S × V × A;

∀ti ∈ T , ti = (sstart , i, p, a, send ) (2)

where sstart and send indicate the start and end states of the
transition ti. i ∈ I indicates the input primitive of the transi-
tion ti. p ∈ P indicates the predicate conditional expression
that must be satisfied when the transition ti is performed.
a ∈ A Indicates the action that must be completed when the
transition ti is executed.
The construction process of the message space state dia-

gram is as follows:
STEP (a). Constructing a set of states S which have been

experienced during the operation of the state diagram accord-
ing to the non-abnormality analysis process described in the
104 Statute. Constructing a variable set V containing input
variables and context variables according to the non- abnor-
mality analysis process described in the 104 protocol and the
data fields provided in the protocol message data package;

STEP (b). Constructing the input set I according to the
variables that need to be provided when the states of the non-
abnormality analysis are transferred;

STEP (c). Constructing a set of assertions P that operate on
the variables according to the conditions that need to be made
during the transition of each state in the non- abnormality
analysis process;

STEP (d). Constructing an action set A that operates on
the variable according to the influence of each state on the
variable during the non- abnormality analysis process;

STEP (e). Constructing a transition set T based on the state
transition in the process of non- abnormality analysis;

When constructing the message space state diagram, it is
necessary to note that the smart unit terminal that has not
undergone security enhancement may participate in the inter-
action process. Therefore, when performing non-abnormality
analysis, it is necessary to consider that the protocol packet
message does not adopt the security enhancement mecha-
nism. The workflow of the message space state is shown
in Figure 4. After obtaining the data packet, it will send
the data packet to its corresponding Markov time-varying
for analysis according to the type of the protocol message.
After the model obtains the data packet, it will send the
data packet to its corresponding Markov time-varying for
analysis according to the type of the protocol message. When
analyzing the data in the packet, the model first analyzes the
non-abnormality of the data packet structure. For example,
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FIGURE 4. Flow of the message space state diagram.

it will analyze whether the port number used by the data is
correct or whether the content of some data fields meets the
requirements. If the structure of the packet does not meet the
specifications, it is directly determined that the packet is not
compliant. If the structure of the data packet conforms to the
specification requirements or the terminal device that gener-
ated the data packet does not perform security enhancement,
then it will analyze the non-abnormality of the data in the
application layer of the packet again. It determines whether
the consistency of the data content is correct or whether there
is a replay attack on the content of the packet. If the content
of the application layer data does not meet the specification
requirements, it is determined that the data packet is not
compliant. If the content of the packet application layer data
meets the specification requirements or because the termi-
nal device that generated the data packet does not perform
security enhancement, the data packet is determined to be
compliant.

Typical instruction exceptions include three types of
exceptions: protocol structure exceptions (malformed pack-
ets), protocol interaction exceptions, and instruction func-
tion code exceptions (including frequency, range, and other

FIGURE 5. Recursive neural network structure.

feature exceptions). In the monitoring process of the inter-
active network terminal, when it reaches the preset calcula-
tion monitoring window period, the significant characteristic
indicators of the command abnormality are calculated, such
as service flow, remote adjustment uplink/downlink message
ratio, remote control timeout interval, and the number of
connected messages.

After packet depth parsing, combined with the MTM-
based protocol feature modeling, the tracking matching
related abnormal instruction identification can also be sent
to the subsequent module for processing.

C. LSTM BASED ON AUTOCORRELATION COEFFICIENTS
Recurrent neural network (RNN) is a popular learning
method in the field of deep learning in recent years. As shown
in Figure 5, the RNN uses a looping structure in the net-
work, establishing the connection of neurons to themselves.
Through this structure, the neuron can ‘‘memorize’’ the input
information from the previous moment in the neural network
and affect the output of the current moment. Therefore, RNN
can reflect the timing relationship of data, and often has a
good performance in the analysis of the abnormal state.

LSTM is a variant of RNN. It replaces the neurons in the
hidden layer of the RNN with the cell state. The information
remains on the cells. As shown in Figure 6, cellular states
are transmitted over the time chain with only a small amount
of linear interaction. Each memory contains one or more
memory cells and three nonlinear summation units. The non-
linear summation unit is also called ‘‘Gate’’ and is divided
into three types: ‘‘Input gate,’’ ‘‘Output gate’’ and ‘‘Forget
gate,’’ respectively. Matrix multiplication controls the input
and output of memory cells [10].

The LSTM first calculates the partial derivative corre-
sponding to the memory cell output value. Then calculate
the output gate partial derivative. Then calculate the memory
cell state, the forgetting gate, and the partial derivative cor-
responding to the input gate. Finally, the gradient weighting
method is used to update the connection weight of the model.

The instruction state timing sequence is a collection of
temporally ordered data. The time series model assumes that
the law of past state data changes over time is also applicable
to the future.We can judge the command anomaly by learning
the information of historical state data, and further perform
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FIGURE 6. LSTM neural network model structure.

real-time abnormal state analysis and even short-term abnor-
mal state analysis.

Assume that the time series is (y1, y2, y3. . . yt), where yt
represents the data value at time t. We analyze the value
of ym+1 by the abnormal state by (ym−k+1, ym−k+2. . . ym),
where k represents the number of data steps used for each
abnormal state analysis. The autocorrelation coefficient rk is
used to indicate the degree of correlation between the time
series itself and the lag k period data [10]:

γk =

∑T−k
t=1 (yt − ȳ)(yt+k − ȳ)∑T

t=1(yt − ȳ)
(3)

where y1, y2. . . yT represent time series data; T represents
the size of the data set; represents the average number of
sequences. The higher the rk value, the better the autocorre-
lation of the state data over the period k.

The RNN timing sequence abnormal state analysis model
analyzes the trend of the series and analyzes the next moment
according to the abnormal data state of the previous T time
steps. According to experience, the instruction frame data has
a positive autocorrelation in the period, which means that the
data before a particular time can competently represent the
characteristics of the frame data at the current time. However,
since the previous frame data and the frame data of the first T
time steps do not constitute a continuous timing relationship,
the conventional RNN neural network is not suitable for
modeling by adding autocorrelation features.

This paper proposes an improved LSTM network based on
autocorrelation coefficients. As shown in Figure 7, the origi-
nal LSTM network is unchanged, and the value analyzed by
the abnormal state is combined with several values before a
self-correlation cycle to form the input of the DNN network.
By training the DNN network, the autocorrelation feature and
the timing feature of the state data traffic are combined to
achieve the purpose of discriminating the abnormal message.
In the memory learning process of long-short-term memory
networks based on autocorrelation coefficients, if a specific
state is detected in the regular event set without this event,
the event is an abnormal event. It is necessary to discriminate
whether it is an error response of error event or information
security of the abnormal event. Then it will record the feature

FIGURE 7. Improved LSTM structure.

of the unknown event, associated with the abnormal state
set, construct the abnormal command state spanning tree (as
shown as figure.8), and perform state expansion.

The construction algorithm of the abnormal instruction
state generation tree takes the abnormal message types DM
and SMA as input and derives the analytical SMA from
the start field of the abnormal message type. First, create a
root node (line 1) for the start field (DM.Z). Then, find the
generator corresponding to the start field in the generation
set (DM.P) of the exception message type (line 2). The pro-
duction processing function, Production Disposal, is called
to process it. Finally, the generation tree of the abnormal
instruction state corresponding to the SMA is output.

Production Disposal implements the core function of SMA
parsing. That is, the SMA is sequentially compared with the
constituent elements on the right side of the generator to
obtain the grammatic structure of the SMA. Before process-
ing each component, we calculate the value of its inherited
property (line 7). Because its value may affect the resolution
of the post-order field. When dealing with grammar elements
to identify SMA, Algorithm 3 is divided into three cases
according to the type of field:

1) If it is an atomic field (lines 8-10), we extract the value
of the field in the SMA according to the attribute value of
the field (get-data function), and create a node (the Node
function) to add the exception instruction state spanning tree;
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FIGURE 8. Abnormal packet status learning process of LSTM.

2) If it is a compound field containing structure attributes
(lines 12-13), we calculate the structure attribute value corre-
sponding to SMAaccording to the attribute rule first. Thenwe
construct the analysis tree according to the general compound
field processing method;

3) If it is a general compound field (lines 14-18), firstly,
we create a node for the composite field to join the tree and
find the generator of the composite field. Then we recur-
sively call the production processing function (Production
Disposal), until the SMA analysis is completed or the model
derivation is terminated. At the same time, when the profiling
of the composite field is ultimately resolved, the significant
properties need to be calculated (line 18).

After the abnormal command state spanning tree is con-
structed, it is post-ordered and traversed, and the newly deter-
mined abnormal exception message is selected for automatic
mutation. In the case where the mutated element is not man-
ually specified, all fields are mutated by default. In order to
avoid repeated sample learning of common fields between
samples, the method introduces a set of measured feature ele-
ments for recording feature elements of the memory network
that have been long and short. When looking for variability
features, duplicate long-term memory networks are avoided
by comparison with the set feature elements. At the same
time, it can also be sent to subsequent module processing,
such as Permit/deny, Drop to drop subsequent messages,
Redirect, generate attack log alarms, and so on.

IV. EXPERIMENT AND ANALYSIS
Take the common subscriber/publisher model in the vehicle-
road collaborative charging networks platform of State Grid
Corporation as an example. Subscribers/publishers are pri-
marily used to provide a one-way exchange of informa-
tion for time-critical and periodic-based services. Moreover,
subscriber/publisher can be used for the transmission of
multi-party information, that is, the exchange of information
between the publisher and multiple subscribers. This paper
aims at the abnormality of the subscriber/publisher mode in
the 104 protocol. First, we analyze the consistency of themes-
sage and determine whether the data packet structure meets
the requirements of 104 specifications. Second, we apply the
message. The layer data is analyzed to determine whether the
data packet has a replay attack behavior.

The working process of this part of the 104 protocol is
shown in Figure 9. In Figure 9, Stop represents the stop
state; Retransmission pending represents the retransmission
pending state; Retransmission represents the retransmission
state.

The part of the non-abnormality analysis process in the 104
protocol.

Constructing a state set S ={s1,s2,. . . ,s8}, where s1 indi-
cates that the message has been received, waiting for the
status of the signature value to be extracted; s2 indicates that
the signature value is successfully extracted, waiting for the
status of the verification signature value; s3 indicates that
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FIGURE 9. Subscriber/publisher process of IEC104.

the verification of the signature value is successful, waiting
for the state of the reserved field 2; s4 indicates that the
reserved field 2 is extracted successfully, waiting for the
status of the verification CRC value; s5 indicates that the CRC
value verification success, waiting to verify the status of the
APDU time value is correct; s6 indicates that the time value
verification in the APDU is successful, waiting to verify the
status of the status number in the APDU; s7 indicates that
the status number verification in the APDU is successful, the
status of the data packet compliance; s8 indicates the status
of the packet is not compliant; s1 is the initial state, s7 and s8
are the termination states.

Construct a input variables set Vi={vi1,vi2,. . . ,vi16}, where
vi1 is the value of the TPID field in the message; vi2 is the
value of the TCI in the message; vi3 is the value of the
EtherType in the message; vi4 is the value of the APPID in
the message; vi5 is the value of the Length in the message;
vi6 is the value of reserved field 1 in the message; vi7 is the
value of reserved field 2 in the message; vi8 is the content of
the APDU in the message; vi9 is the content of the Reversed
field in the message; vi10 is the content of the Private field in
the message; vi11 is the content of the signature value in the
message; vi12 is the value of the message time in the APDU;
vi13 is the value of the message status number in the APDU;
vi14 is the value of the allowable lifetime in the APDU; vi15
is the system time; vi16 is the maximum status number.

Construct a set of context variables Vc={vc1}, where vc1
is the most recent state number.

Construct an input set I ={i1,i2,..,i6}, where
i1 = (vi11) indicates the signature value in the input message;
i2 = (vi3, vi4, . . . , vi11) indicates the content from the Ether-
Type field to the signature value field in the input message;

i3 = (vi7) indicates that the content of the reserved field
2 in the input message; i4 = (vi1, vi2, vi3, vi4) indicates the
content from the TPID field to the APPID field in the input
message; i5 = (vi12, vi15), indicates the message time and
system time in the input APDU; i6 = (vi13, vi14, vi16, vc1)
indicates the message status number, the allowable survival
time, the maximum status number and the most recent status
number in the input APDU.

In this paper, we construct an assertion set that operates on
a variable P = {p1, p2, . . . , p12}, where p1 indicates that the
signature value is not empty; p2 indicates that the signature
value is empty; p3 indicates that the signature value extracted
in the message is the same as the calculated signature value;
p4 indicates that the signature value extracted in the message
is different from the calculated signature value; p5 indicates
that the value of reserved field 2 is not empty; p6 indicates
that the value of reserved field 2 is empty; p7 indicates that
the value of reserved field 2 is the same as the calculated CRC
check value; p8 indicates that the value of reserved field 2 is
different from the calculated CRC check value; p9 indicates
that the difference between the time obtained from the APDU
and the system time is less than 2 minutes; p10 indicates that
the difference between the time obtained from the APDU and
the system time is greater than 2 minutes; p11 indicates that
the status number obtained from the APDU is greater than or
equal to the latest status number and the allowable lifetime
does not expire; p12 indicates that the status number obtained
from the APDU is less than the latest status number or the
allowable lifetime timeout.

In this paper, the protocol fields are merely referred to
as I, L, F, S, E, D, and C. Figure. 10 is a control flow
graph and an execution path input for the first time, which
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Algorithm 3 Abnormal Instruction State Generation Tree
Construction Algorithm
Input: Exception packet type DM, single data sample
Sample
Output: SMA abnormal command state generation
tree GT
Gratree_Build (DM,Sample)
{
1) GT.root←Node(DM.Z);
2) p←Search(DM.Z,DM.P);
3) ProductionDisposal(p, GT.root, Sample)
4) return GT;
5) }

ProductionDisposal(production, treenode,Sample)
{
6. for each x in right of p
7. x ←RuleCompute_inherit(DM.R, x);
8. if(x ∈ F)
9. x.v←getData(x, Sample);

10. treenode.child←Node(x);
11. else
12. if(x ∈SA)
13. x ←RuleCompute(DM.R, x);
14. childnode←Node(x);
15. treenode.child← childnode;
16. p’← Search(x, DM.P);
17. ProductionDisposal(p’, childnode)
18. x ←RuleCompute_ synthetize(DM.R, x);
}

FIGURE 10. Control flow graph and execution path entered for the first
time.

is constructed by an active input performing a write function.
The dynamic control flow graph, the right half is the input
path that is covered in the sample program run, and the dotted
line is the newly discovered execution path at each node.

FIGURE 11. Control flow graph and execution path for the second input.

According to Definition 3, the starting node 31
in Figure.10 represents the first execution of the conditional
branch corresponding to the third row of the sample code,
the elements in the curly braces represent the field DIF(31)
that affects the conditional branch of the third row, and the
edgewith the arrow indicates dependence control relationship
CDC(31). The control flow shown in Figure. 11 is a test case
generated by selecting an input as the second input, with
a function code of 0x05 and n data field combinations in
the case where the node 241 is true during the first input
execution.

The Markov time-varying for this process part of the
104 protocol is shown in Figure 12. Construct the action set
A = {a1} of the operation, where a1 indicates that the most
recent state number is assigned the current state number.

Construct a transition set T={t1,t2,. . . ,t12}, where
t1=(s1,i1,p1,s2), indicates the transition from s1 to s2;
t2=(s1,i1,p2,s3), indicates the transition from s1 to s3;
t3=(s2,i2,p3,s3), indicates the transition from s2 to s3;
t4=(s2,i2,p4,s8), indicates the transition from s2 to s8;
t5=(s3,i3,p5,s4), indicates the transition from s3 to s4;
t6=(s3,i3,p6,s5), indicates the transition from s3 to s5;
t7=(s4,i4,p7,s5), indicates the transition from s4 to s5;
t8=(s4,i4,p8,s8), indicates the transition from s4 to s8;
t9=(s5,i5,p9,s6), indicates the transition from s5 to s6;
t10=(s5,i5,p10,s8), indicates the transition from s5 to s8;
t11=(s6,i6,p11,s7), indicates the transition from s6 to s7;
t12=(s6,i6,p12,s8), indicates the transition from s6 to s8.
During the abnormal test of the 104 protocol sub-

scriber/publisher mode command of the State Grid from
June 2017 to December 2017, a total of 76,324 exceptions
occurred in 59 cases. By locating the exception code, merg-
ing exceptions with the same key code, we get four types
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FIGURE 12. Instruction state transition of subscriber/publisher mode in 104 protocol based on MTM.

of exceptions. Then, we compare the vulnerability analysis
and the published protocol vulnerability database. Three of
them are verified as released vulnerabilities and the other is
unknown vulnerability. Among them, twowell known vulner-
abilities (BAGTRAQ-8445, BAGTRAQ-8440) are caused by
improper handling of the server name in the message returned
by the host server to the network side server. As a result,
a string overflow vulnerability and another well known vul-
nerability (BAGTRAQ - 8443) is a format string processing
vulnerability that is triggered when a terminal processes a
server information using a format string from a server. The
unknown vulnerability is a stack overflow vulnerability in
ACPI packets. Figure 13 shows the debugging information
for this vulnerability.

As shown in Figure 13, the SEH chain in the stack is
overwritten by the extra longmessage data, causing an excep-
tion in the execution of the program. If we construct the
overlay data carefully, the attacker can execute arbitrary code
with system privileges. The discovery of the vulnerability
illustrates the effectiveness of the instruction-level anomaly
feature extraction and parsing method for the industrial net-
work with grid-load interaction.

This paper compares learning results of 9 types
of IEC104 protocol messages by learning LSTM-DNN

FIGURE 13. Unknown vulnerability debug in abnormal test of the
104 protocol subscriber/publisher mode command.

completely shown in Table 1. It can be seen from the data
in Table 1 that although SPIKE and Peach generate the same
total number of LSTM-DNN learning cases, the efficiency
of LSTM-DNN learning cases is much lower than that of
Peach. Because SPIKE adopts a flat block sequence structure,
which has insufficient expression ability for the structure
and constraint relationship in the protocol message. Thus it
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TABLE 1. Comparison of the Effects of IEC104 Protocol Using LSTM-DNN.

TABLE 2. Experimental Comparison Results.

FIGURE 14. Number of test cases under different sample sizes.

generates too many invalid LSTM-DNN learning cases, and
only two overflow vulnerability due to improper processing
of the server name are found. Compared with Peach and
this method, this method finds more vulnerabilities. It uses
a smaller LSTM-DNN learning case to achieve higher code
coverage. In addition, it should be noted that when defining
the LSTM-DNN learning script, SPIKE and Peach need to
write LSTM-DNN learning scripts for each type of IEC104
message format. This work is redundant and the script work
is heavy. We only need to define a single exception packet
type to parse all types of packet formats. The format is more
concise.

We choose AFL-fuzzer as the tool for the comparison
experiment. The slave station waits for a request message
from its master station. In the experiment, the master station
sends 5, 10, 15 request messages as test inputs to the slave
station. Then the slave program is blurred and the target
program is monitored to detect whether an exception has
occurred. In order to evaluate the performance of themethod
in this paper, we compare the number of test cases, the total
number of execution paths, code coverage, and test time with
the same number of samples.

The experiment counts the number of test cases generated
by the two fuzzy test methods under 5, 10, and 15 sample data.
The number of test cases here refers to the total number of
samples generated after the program crashes or the sample is
executed completely. It can be seen from Fig. 14 that with the

increase of the number of samples, the test data generated by
this method is significantly less than the test data generated
by AFL-fuzzer. This is because the method uses the gener-
ated technology to construct test cases, compared with the
use of mutation strategy. The AFL-fuzzer is naturally much
less in number. In addition, we can see that the number of
test cases generated by AFL-fuzzer increases more smoothly
as the number of samples increases. This is because AFL-
fuzzer considers that users may provide low-quality initial
samples, resulting in certain types of Variations may result
in data redundancy. So the input samples are pruned. While
themethods in this chapter aremore dependent on the number
of samples, but the resulting strategy is more targeted.

Table 2 shows the statistics of the crash of the target
program.When combining the program dynamic information
to guide the test case generation, the test time is longer
than using AFL-fuzzer. But there is a significant increase
in the number of execution paths and code coverage. This
indicates that during the running of the program, the more the
number of execution paths found in the traversed conditional
branch, the greater the possibility that the test case reaches the
program to trigger the exception deeper, and its pertinence is
also strengthened. Therefore, in the case of abnormality in
the program, except for the test time, the method is superior
to AFL-fuzzer in implementing 104 protocol test overall.

V. CONCLUSION
To execute command-level anomaly detection for vehicle-
road collaborative charging network, this paper proposes a
long-short-period neural network method for autocorrelation
sequence processing combined with dynamic information.
The method performs the tracking program execution, finds
the input fields that affect the execution of the conditional
branch through dynamic pollution analysis, and captures the
dependencies between the conditional branches, to guide the
grammar generation of the test cases and increase the chances
of executing the deep code. The comparison experiment
proves that the method improves the validity and code cov-
erage of the test cases to a certain extent. It also dramatically
increases the abnormal probability in the discovery protocol
implementation.
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