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ABSTRACT Structural modifications of 5-nm node nanosheet FETs (NSFETs) were quantitatively analyzed
using fully calibrated TCAD. The NSFETs with crescent inner spacer improve the short-channel effects by
increasing effective gate lengths but also increase the parasitic capacitances by greater outer fringing electric
field. The NSFETs with a crescent inner spacer and slanted source/drain (S/D) increase the physical gate
lengths of bottom NS channel, but the anisotropic over-etching of substrate regions induces punchthrough
effect at the bottom transistor. Bottom isolation by depositing dielectrics prior to S/D formation is effective
to eliminate the punchthrough effect as well as to attain shorter RC delay by better electrostatics and parasitic
capacitance reduction. In addition, the isolated S/DNSFETswithout punchthrough stopper decrease parasitic
and gate capacitances further at the frequency greater than 600 MHz at which the inversion carriers are
not formed at the bottom transistor. Thus, although the crescent inner spacer and slanted S/D structure are
unintendedly formed under process, these modifications lead to the performance boosting and the process
simplicity of the 5-nm node NSFETs.

INDEX TERMS 5-nm node, bottom isolation, bottom transistor, crescent inner-spacer, nanosheet, slanted
source/drain.

I. INTRODUCTION
Si fin field-effect transistors (FinFETs) have been scaled
down to 10-nm node successfully by narrowing fin with
high aspect ratio and optimizing metal-lines (M0) [1].
However, under device scaling, increase of sub-fin leakage
and decrease of contact area along with fin depopulation
degrade power and performance critically [2]. Gate-all-
around FETs improve the short-channel effects (SCEs) by
wrapping around the channel, but there are performance bot-
tlenecks by small effectivewidths (Weff ) andAC performance
degradation [3].

In the meantime, three-stacked nanosheet FETs (NSFETs)
have been introduced to attain greater current drivability and
better SCEs [4]. Wider Weff of NSFETs under the same
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footprint enabled the performance boosting by increasing
drive currents and decreasing parasitic capacitances (Cpara)
out of gate capacitances (Cgg) [5], [6]. However, structural
concerns of the NSFETs that can affect the performance
estimation in the following technology node have not been
analyzed in detail.

In this work, the 5-nm node NSFETs having different,
but realistic structures are investigated using fully-calibrated
3-D TCAD. After evaluating the structural effects of the
NSFETs, a promising structure is suggested in the perspective
of device performance.

II. DEVICE STRUCTURE AND SIMULATION METHOD
5-nm node NSFETs were simulated using Sentaurus
TCAD [7]. Drift-diffusion transport model was calcu-
lated with Poisson and carrier continuity equations self-
consistently. Density-gradient model was used to consider the

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

38593

https://orcid.org/0000-0002-3132-4556
https://orcid.org/0000-0002-0000-6416
https://orcid.org/0000-0003-3137-9335
https://orcid.org/0000-0002-6175-8101


J.-S. Yoon et al.: Punch-Through-Stopper Free NSFETs

FIGURE 1. (a) Schematic diagram of three-stacked NSFETs and
(b) structural modifications as shown in [4]. Four different structures
were reference, crescent inner-spacer (IS), slanted source/drain (S/D),
and isolated S/D.

quantum confinements of the NS channels. Carrier mobility
and recombination models used in this work were equivalent
to [8]. Deformation potential model was used to consider
the changes of energy bandgap, effective mass, and effective
density-of-states by the stress.

Fig. 1a shows a schematic diagram of 5-nm node NSFETs.
Detailed simulated process flow of NSFETs is specified
in [9]. Diamond-shaped source/drain (S/D) epi wrapped with
5-nm-thick NiSi was used. M0 region consisted of Co metal,
2-nm-thick Ti liner (250 µ� · cm), and 3-nm-thick TiN
barrier (350 µ� · cm) [10]. There were several structural
concerns under the NSFET process (Fig. 1b): crescent inner-
spacer (IS), slanted S/D, and isolated S/D. Crescent IS is
formed because some of Ge atoms diffuse toward Si NS
channels under STI annealing and make etching rates of
NS spacing different between the middle and the corner [4].
Slanted S/D epi is formed because anisotropic etching is not
ideally vertical. Isolated S/D is introduced to remove the
bottom leakage current.

Fig. 2 shows the TCAD results calibrated to the 10-nm
node FinFETs [1]. Ballistic coefficient and saturation veloc-
ity were finely tuned by Monte Carlo simulation. Several
mobility parameters related to surface roughness scattering
were then tuned to fit the drain currents (Ids) at on-state.
Contact resistivity at the NiSi interface was 5×10−9� · cm2.
S/D regions were highly doped with phosphorus (boron) at
1020 (5 × 1020) cm−3 for NFETs (PFETs), and channel was
undoped at 1015 cm−3. Table I defines all the geometrical
parameters of the NSFETs as in [11].

III. RESULTS AND DISCUSSION
Fig. 3 shows the transfer characteristics of the 5-nm node
NSFETs having four different structures at the operation
voltage (VDD) of 0.7 V. Off-state currents (Ioff ) were fixed
to 0.1 nA for standard performance (SP) applications.
Slanted S/D NSFETs have high leakage currents due to the
punch-through effects at the bottom transistors. Except (3),
as the NSFET structure changes from (1) to (4) as shown
in Fig. 1, subthreshold swing (SS) and drain-induced bar-
rier lowering (DIBL) are improved. Crescent IS structure
increases outer-fringing field at the S/D extension and

FIGURE 2. TCAD results (lines) calibrated to the experimental data
(symbols) of the 10-nm node FinFETs [1].

TABLE 1. Geometrical Parameters For 5-nm node NSFETs.

FIGURE 3. Transfer characteristics of 5-nm node NSFETs with four
different structures. SS and DIBL are also summarized.

lengthens the effective gate length (Leff ), which is a similar
effect as the high-k spacer devices [12]. Slanted S/D structure
with bottom isolation (=isolated S/D) increases the Lg of the
bottom NS channel and reduces SS and DIBL under the same
footprint. Thus, these unintended structural modifications are
helpful to improve the SCEs in the 5-nm node.

Fig. 4 shows on-state currents (Ion) and stresses along the
channel direction (SZZ). Ion and Cgg are extracted at the
gate (Vgs) and drain (Vds) voltages of VDD, and RC delay
is calculated as CggVDD/Ion. Crescent IS NFETs have
smaller Ion than do the reference devices, whereas the PFETs
are the opposite. Crescent IS NFETs do not improve the
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FIGURE 4. (a) On-state currents (Ion) for SP applications and (b) stresses
along the channel direction (SZZ) of the NSFETs.

SCEs because of small S/D doping penetrations into the
S/D extensions enough to maintain good SCEs even without
crescent IS. On the other hand, the PFETs have larger S/D
doping, which penetrates largely into the NS channels and
degrades the SCEs. Thus, crescent IS PFETs improve the
SCEs greatly, leading to the Ion increase.

Isolated S/D NSFETs improve the SCEs much by increas-
ing the Lg, but the Ion values of P- and NFETs show dif-
ferent aspects. As the structure changes from the reference
to isolated S/D, PFETs decrease the |SZZ| greatly from
2.20 to 1.52 GPa. The bottom NS has elongated Lg as well
as dwindled S/D epi, losing the |SZZ| critically (Fig. 4b).
Isolated S/D NFETs, however, have larger |SZZ| than do the
reference devices because the gate of crescent IS encircles
NS channels greatly and increases the SZZ [10]. By means
of improved SCEs and high SZZ, the NFETs have larger Ion.
Interestingly, isolated S/D NSFETs with the punch-through
stopper (PTS) doping of 2×1018 and 1015 cm−3 have the
same Ion.
Fig. 5a shows the gate capacitances of reference, cres-

cent IS, and isolated S/D NSFETs at the frequency of 1 MHz.
Crescent IS NSFETs increase the Cpara due to greater outer-
fringing field [13], but isolated S/D devices reduce the Cpara
by separating S/D epi from the bottom. Lower PTS doping
reduces the Cpara much, but increases the Cgg at high Vgs
especially for PFETs.

This Cgg increase is understood by carrier density profile
at on-state in Fig. 5b. The 1-MHz frequency is large enough
for minority carriers to follow the response by the Vgs. The
electron (hole) lifetimes are 9.00 (2.73) µs and 55.6 (17.5) ns
at the PTS doping of 1015 and 2×1018 cm−3, respectively.
Carriers are not generated at the bottom transistor having
larger threshold voltage than do the NS channels. Instead, the

FIGURE 5. (a) Gate capacitances of the NSFETs at 1 MHz and (b) Carrier
density of the isolated S/D NSFETs at on-state.

FIGURE 6. Cgg of the 5-nm node NSFETs at the frequency from 1 M to
10 GHz.

carriers are generated at the bottom corner by high electric
field from the S/D epi. As the electric field becomes larger
by higher S/D doping or/and lower PTS doping, more carriers
are generated and thus larger Cgg is obtained.
Although the PFETs with the PTS doping of 1015 cm−3

have high Cgg, substantial decrease of Cgg at high fre-
quency alleviates this concern (Fig. 6). The frequency that
the holes can not follow the Vgs response is about 600 MHz,
which is slower than the operation speed of CMOS inverter
and SRAM [14]. Therefore, the isolated S/D NSFETs with
undoped PTS are advantageous not only to decrease the Cgg
but also to do the reliable process by eliminating PTS doping
process.

Fig. 7 summarizes RC delay of all the NSFETs. Cres-
cent IS NSFETs have larger Cgg than any other structures
and degrade the RC delay in spite of the improved SCEs.
Although bottom isolation decreases the |SZZ| greatly, better
SCEs and smaller Cgg reduce the RC delay of both P- and
NFETs for all the applications.
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FIGURE 7. RC delay of the 5-nm node NSFETs for LP (Ioff = 10 pA),
SP (Ioff = 0.1 nA), and HP (Ioff = 1 nA) applications.

IV. CONCLUSION
Structural effects of 5-nm node NSFETs were analyzed thor-
oughly using fully-calibrated TCAD simulations. Crescent IS
structure decreases SS and DIBL, but also increases the Cpara
by greater outer-fringing field. Slanted S/D structure with
bottom isolation increases the Lg of the bottom NS channel,
which improves the SCEs further and thus RC delay in spite
of |SZZ| reduction for PFETs within the same footprint. Also,
lower PTS doping decreases the Cpara and Cgg at normal
CMOS operating frequency greater than 600 MHz. Thus,
the unintended structural modifications achieve the decent
DC/AC performance and the PTS-free process that prevents
the NS surface damage, decreases the fabrication cost, and
avoids the variability concerns by PTS.
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