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ABSTRACT Clustering analysis has been widely used in pattern recognition, image processing, machine
learning, and so on. It is a great challenge for most existing clustering algorithms to discover clusters
with complex manifolds or great density variation. Most of the existing clustering needs manually set
neighborhood parameter K to search the neighbor of each object. In this paper, we use natural neighbor
to adaptively get the value of K and natural density of each object. Then, we define two novel concepts,
natural core point and the distance between clusters to solve the complex manifold problem. On the basis
of above-proposed concept, we propose a novel hybrid clustering algorithm that only needs one parameter
M (the number of final clusters) based on minimum spanning tree of natural core points, called NCP. The
experimental results on the synthetic dataset and real dataset show that the proposed algorithm is competitive
with the state-of-the-art methods when discovering with the complex manifold or great density variation.

INDEX TERMS Clustering, complex manifold, natural neighbor, natural core points, minimum spanning
tree.

I. INTRODUCTION
Clustering is one of primary research topic in data mining.
Clustering has been widely used in many areas, such as
pattern recognition, machine learning, face recognition and
community detection. It aims at grouping N data points into
M clusters so that data points in same cluster as similar as
possible, while data points in different cluster as distinct
as possible. Relative to classification, clustering is a unsu-
pervised learning method, since the class label is unknown
before clustering. Up to present, a number of clustering algo-
rithms have been proposed. These algorithms can be roughly
divided into distribution-based clustering [1]–[3], partitional
clustering [4]–[6], density-based clustering [7], [8], hierar-
chical clustering [9]–[11] and so on.

Distribution-based algorithm assumes that the objects in a
specified cluster are most likely to be derived from a unique
distribution. Such as Expectation Maximization (EM)-based
method [12]. Moreover, it is usually difficult for researcher to
know the model or describe the distribution of real datasets
before clustering. Given a dataset X = {x1, x2, . . . , xn},
the basic idea of a partitinal clustering method is to partition
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the dataset into K clusters(K < n). This kind of clustering
algorithm generally starts with an initial partition of X and
then uses an iterative control strategy to optimize an objective
function until get the optimal solution or meet the termination
condition. K-means [4] and K-medoids [5] are the primary
representatives of partitional clusteirng method. However,
These two types of clustering algorithms are not applicable
to non-spherical or nonconvex datasets [13].

The performance of Density-based clustering and hierar-
chical clustering algorithm is well on non-spherical datasets
and nonconvex datasets. The key idea of density-based clus-
tering is that the clusters are defined as areas with higher
density. Density-based clustering algorithm also has a certain
capacity to cluster the datasets with manifold. DBSCAN [14]
is a primary representative of Density-based clustering algo-
rithm. However, density-based clustering algorithms cannot
successfully cluster datasets with great density variations or
complex manifold.

Generally, a hierarchical clustering algorithm partitions a
dataset into various clusters by an agglomerative or a divisive
approach based on a dendrogram. Agglomerative clustering
and divisive clustering are two main clustering strategies
of hierarchical clustering. At first, agglomerative clustering
considering each point as a cluster. Then agglomerative
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clustering iteratively combines two most similar clusters in
terms of an objective function until gains the final clustering
results. On the contrary, divisive clustering starts with only
one cluster that including all data points of datasets. Then
divisive clustering iteratively according to some strategy to
selects a cluster and partitions it into two subclusters. The
advantage of hierarchical clustering is that the dendrogram
of clusters is more useful than the final clustering results for
user. However, although hierarchical clustering is applicable
to datasets with manifold, hierarchical clustering has a rela-
tively high computational cost since it constructs the dendro-
gram on all points of datasets. Such as Single linkage [15]
and complete linkage [16] that two well-known examples of
hierarchical clustering algorithms take O(N 2 logN ) time.
Besides the above clustering algorithms, many hybrid clus-

tering algorithms that combine the advantages of hierar-
chical and partitional clustering have been proposed in the
literature [17]–[22]. The hybrid clustering algorithms mainly
consist of two stages. In the first stage, hybrid clustering
algorithms divide the datasets into many subsets with a parti-
tioning criterion. In the second stage, hybrid clustering algo-
rithms continually merge two subsets into one cluster in terms
of a similarity measure until meet the termination condition.
CHAMELEON [18] is the representation of hybrid clustering
algorithm. Zhong andMiao [23] proposed a hybrid clustering
method in which a minimum spanning tree (MST) and an
MST-based graph are employed to guide the splitting and
merging process.

Minimum spanning tree (MST) is a useful graph struc-
ture, which has been employed to capture perceptual
grouping [24]. A number ofMST-based clustering algorithms
have been proposed. Xu et al. [25] proposed threeMST-based
algorithms: removing long MST-edges, a center-based itera-
tive algorithm and a representative-based golbal optimal algo-
rithm. Paper [26] propose MST-LOF algorithm. MST-LOF
employs LOF [27] to discard noise points whose density
factors are larger than a threshold during the construction
of MST. Many other MST-based clustering algorithms that
maximize or minimize the degrees of link of the vertices are
proposed in paper [28], [29].

However, most of existing clustering algorithms face with
two problem: (1) It is difficult to cluster the datasets with
complex manifold; (2) In order to solve the first problem,
clustering algorithms need so many parameters that manually
set. For instance, K-means, K-medoids, AP [30], DP [31]
etc. do not apply to cluster the datasets with complex man-
ifold. Although DBSCAN, MST-LOF, DAAP is applicable
to the datasets with manifold, these algorithms need many
parameters that manually set. For example, MST-LOF need
manually set three parameters: the number of neighbors of
each object (K); the number of final cluster (M); the outlier
rates (α). Even DBSCAN also need manually set two param-
eters: scan radius (eps) and the minimum points (minpoints).
It is well known that if one of the parameters is not set appro-
priately, most of clustering algorithm can’t effectively cluster
the datasets. In other words, the value of each parameter may

directly influence the clustering results. However, in fact,
determination of each parameter is dependent on the knowl-
edge of researches experience and a lot of experiment.

In order to solve the problem that mentioned above, in this
paper, we combine the core idea of hybrid clustering algo-
rithm with minimum spanning tree, and proposed a novel
clustering algorithm, called NCP. Fist, NCP use the concept
of Natural Neighbor to adaptively obtain the value of neigh-
borhood parameter K, and find all Neural Core Points of
datasets. Second, the proposed algorithm split the datasets
into a number of subsets with a partitioning criterion that
spreading from natural core point to sparse area. Therefore,
one natural core point represents one initial cluster. Thirdly,
the proposed algorithm cluster-distance (detailed explaining
in section 3) of all adjacent initial clusters, and constructs
the minimum spanning tree of natural core points according
to cluster-distance. Finally, the proposed algorithm split the
dataset into M clusters according to a cut scheme that itera-
tively cut the maximum edge of the minimum spanning tree
of natural core points until gains M clusters. The proposed
algorithm is applicable to datasets with complexmanifold and
great density variations, and only need one parameter M that
the number of final cluster.

The remainder of this paper is organized as follows.
Section 2 presents a brief overview of the related work, and
describes the concept of Natural Neighbor. The proposed
algorithm and its correlative definitions are presented in
Section 3. The experimental results are presented in Section 4.
Finally, the conclusion is provided in Section 5.

II. RELATED WORK
A. MST-BASED AND CENTER-BASED
CLUSTERING ALGORITHM
For clustering algorithms, minimum spanning tree is a useful
graph structure, since MST can effectively reflect the internal
structure of datasets. And a number of MST-based clustering
algorithms have been proposed. The core idea of MST-based
clustering algorithms is that continually cut the maximum
edge of minimum spanning tree of all points in datasets until
gain the final M clusters. Therefore, MST-based clustering
algorithm is applicable to arbitrary shape datasets. However,
the result of MST-based clustering algorithm is easy to be
affected by noise points. In other words, the existence of
noise points may reduce the clustering effect of MST-based
clustering algorithm, such as algorithms that proposed by
paper [25], [28], [29], [32]. In order to avoid the influence of
noise points, paper [26] propose a new MST-based algorithm
(MST-LOF). Unlike the traditional MST-based clustering
algorithms that directly construct MST on original datasets,
MST-LOF firstly employs LOF [27] to remove the noise
points of original datasets before constructing MST.

Fig.1(a) shows the minimum spanning tree of dataset
without noise points. p ∈ C1, q ∈ C2. Form Fig.1(a)
we can see that e(p,q) is the only edge, which link up
C1 with C2. And e(p,q) is the maximum edge of minimum
spanning tree. Therefore, we can easily cluster the dataset via
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FIGURE 1. The effect of noise on minimum spanning tree.

cutting edge e(p,q). Fig.1(b) shown the minimum spanning
tree of dataset with noise points (marked in red). From
Fig.1(b) we can see that C1 is connected with C2 via noise
points. Moreover, these noise points shorten the edge that
link up C1 with C2. Therefore, the noise points may lead to
edges that link up C1 with C2 are not the maximum edge of
minimum spanning tree. As a result, traditional MST-based
algorithm may not get the desirable clustering result via
cutting maximum edge of MST. The idea of MST-LOF is
that lengthen the edge that link up C1 and C2 via removing
the noise of datasets. However, in order to gain the desir-
able clustering result, MST-LOF may regard some normal
points as noise. Same as the traditional clustering algorithm,
although MST-LOF remove the noise pints, MST-LOF still
has a relatively high computational cost, since MST-LOF
construct MST on all remainder points of datasets.

For many clustering algorithm, the key stage is to find the
cluster centers, called center-based clustering algorithm, such
as K-means and K-medoids. However, most of center-based
clustering algorithm do not apply to cluster Non-spherical
datasets, such as AP [30] and K-AP [33]. Although DP
is applicable to non-spherical, DP do not apply to clus-
ter datasets with complex manifold. In order to solve this
problem, Jia et al. [34] proposed a clustering algorithm
that can solve the complex manifold problem by comput-
ing the graph-based distance which is defined as the sum
of the Edge-Weight of shortest path, called DAAP. However,
the time complexity of DAAP is much higher than AP, K-AP
and DP, and the number of parameter that needed by DAAP,
AP and K-AP is more than DP. DP only needs one parameter
that cutoff distance. DAAP needs too many parameters such
as density factor ρ, maximal iteration maxits, convergence of
iteration coefficient convits and the number of neighbors and
final clusters.

B. NATURAL NEIGHBOR
For many of traditional clustering algorithms, the basic step
is to find neighbors of each object. And the most widely used

concept of neighbors is K-nearest neighbors and ε-nearest
neighbors that proposed by Stevens [35]. The basic idea of
K-nearest neighbors is that finding K nearest or most similar
objects for each object. K is a parameter manually set. The
smaller the K-distance that the distance between one object
and its K-th neighbor is, the bigger the value of this object’s
density is. ε-nearest neighbors based on the idea: finding all
neighbors that distance smaller than scan radius ε for each
object. ε is a parameter manually set.
However, although the concept of K-nearest neighbors and

ε-nearest neighbors have been widely used in clustering,
there is an obvious problem that these two concept of neigh-
bors need parameter K or parameter ε. In this paper, in order
to solve the problem that need manually set parameter K or ε,
we introduce a new neighborhood concept, Natural Neighbor,
into clustering algorithm.

Compared with K-nearest neighbors and ε-nearest neigh-
bors, Natural Neighbor [36] is a new neighbor concept. The
great advantage of Natural Neighbor is that the searching
procedure of Natural Neighbor do not need any parameter.
And the concept of Natural Neighbor has been used in some
area of data mining, such as clustering analysis [37], [38],
outlier detection [39] and prototype reduction [40]. Unlike
K-nearest neighbors and ε-nearest neighbors, the key idea of
Natural Neighbor is that not all objects have same number
of neighbors. Natural Neighbor suppose that the core objects
should possess a more number of neighbors than other ordi-
nary objects. The Natural Neighbor searching algorithm as
the Algorithm 1.

Rnb(x) is the times that point x is contained by the neigh-
borhood of other points, which the number of x’s reverse
neighbor. NNr (x) is the r-neighborhood of x. RNNr (x) is the
r-reverse-neighborhood of x. supk is the average value of the
number of each point’s neighbors, called Natural Eigenvalue.
The time complexity of KNN and RNN for each object in
the database isO(N 2). Since KD-tree is introduced into NaN-
Searching, the time complexity of NaN-searching algorithm
is O(N*lgN). N is the number of object in D.

VOLUME 7, 2019 43709



J. Huang et al.: Novel Hybrid Clustering Algorithm Based on Minimum Spanning Tree of NCPs

Algorithm 1 RoughlyCluster(D,k) //D Is the Unclassified
Dataset

• Output: Natural Eigenvalue supk
1) Initiallizing: r = 0,Rnb(i) = 0;NNr (i) =
∅,RNNr (i) = ∅,NaNr (i) = ∅;

2) Kdtree=creatKDTree(D); //create a KD-tree
3) While

a) Use kdtree to find the r-th neighbor y for each data
point x;

b) Rnb(y)=Rnb(y)+1;
c) NNr (x) = NNr (x) ∪ y;
d) RNNr (y) = RNNr (y) ∪ x;
e) Compute the number(Num) of data point x that

Rnb(x)=0;
4) Until Num has not changed;
5) supk = r and output the max Rnb(i);

Definition 1 Natural neighbor-NaN: Based on the Natu-
ral Neighbor searching algorithm, if point x belongs to the
neighbors of point y and y belongs to the neighbors of point
x, then x is called as y’s Natural Neighbor (NaN). In the same
way, y is Natural Neighbor of x.

Compared with the concept of neighbor that proposed by
Stevens, the great advantage of Natural Neighbor is that
the search method of Natural Neighbor is non-parameter.
Through the above NaN-Searching algorithm, we can obtain
two eigenvalue Rnb(x) and supk .

III. THE PROPOSED ALGORITHM
In this section, the proposed algorithm and its related con-
cepts will be introduced in detail. Let D be a database, p and
q be some objects in D, and K be a positive integer to
indicate the number of neighbors of each object. The value
of K is adaptively obtained by NaN-searching algorithm but
manually set in all following concept and definition.

In order to find Natural Core Point, the proposed algo-
rithm needs to compute the density for every point. Tradi-
tional density measurement, like DBSCAN, DP and DAAP
used, is not applicable to dataset with great inter-class den-
sity variations [38] and need set neighborhood parameter
manually.

In order to solve the above problem, in this paper, we intro-
duce Natural Neighbor in density measurement. First, we use
NaN-searching algorithm to compute the adaptive value of
K = supk . Then we proposed a new density measurement,
named Natural Density (NDen), defined as follows:

NDen(p) =
1

DistK (p)
(1)

Therefore, we can gain the value of NDen(p) without K
that manually set. Afterwards we divide the neighbors of
every point into Natural Dense Neighbors (NDN) and Natural
Sparse Neighbors (NSN), which are defined in Definition2.
Definition 2 NDN and NSN: If NDen(q) > NDen(p) and

q ∈ KNN (p), then the object q is called the Natural

Dense Neighbor of p, denoted as NDN(p). On the contrary,
if NDen(q) ≤ NDen(p) and q ∈ KNN (p), then q is called the
Natural Sparse Neighbor of p, denoted as NSN(p).
Definition 3 Natural Exemplar: If object q satisfies the

following conditions at once, then we call q is the Natural
Exemplar of p.

1) q ∈ Q = {q|NDen(q) = max{NDen(KNN (p))} and
p 6= q}

2) and d(p, q) = minqi∈Q{d(p, qi)}
From the definition of Natural Exemplar, we can know that

each point possesses at most one Natural Exemplar. There is
a special case that the Natural Density of p is greater than
the Natural Density of all K nearest neighbors and reverse K
nearest neighbors of p. Obviously, in this situation, p is the
Natural Exemplar of itself. Then we call p a Natural Core
Point that defined as follows:
Definition 4 Natural Core Point: If object p satisfies one

of the following two conditions, then we call p a Natural Core
Point (NCP).

1) ∀q ∈ KNN (p),NDen(p) ≥ NDen(q) or
2) ∀q ∈ RKNN (p),NDen(p) ≥ NDen(q)

FIGURE 2. Natural exemplar graph and natural core point.

Fig.2 is the Natural Exemplar Graph (NEG) which can be
comprised by connecting each point p to its Natural Exem-
plar. As shown in Fig.2, the value of K is 19 that adaptively
gained by NaN-searching algorithm. The red points are Nat-
ural Core Point. Although some noise points are regarded
as Natural Core Point, these red points will be regarded as
noise points that will be explained in Algorithm 2. Natu-
ral Core Point is different from traditional cluster center.
One traditional cluster center represent one final cluster.
In other words, the number of cluster centers determines
the number of final clusters, in traditional center-based clus-
tering algorithm. Therefore, once obtain the wrong number
of cluster centers, the final clustering result are unavailable.
However, one cluster may have multiple Natural Core Points,
that means the number of Natural Core Points does not
directly determines the number of final clusters. The detailed
clustering procedures will be described in the following
content.
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Algorithm 2 Initial-Clustering(D) //D Is the Unclassified
Dataset

• Output: initial clustering results C = {c1, c2, . . . , cn}
1) Initiallizing: r = 0,Distk (i) = 0,NDen(i) =

0,KNN (i) = ∅,RKNN (i) = ∅,NSN (i) =

∅,Exemplar(i) = i,NCP = ∅, visited(i) = false;
2) K=NaN-searching(D);
3) for ∀x ∈ D

a) find KNN(x) and RKNN(x);
b) compute the Distk (x) and NDen(x);
c) find the NSN(x);

4) endfor
5) for ∀x ∈ D

a) y=max(NDen(KNN(x)));
b) if y 6= x then Exemplar(x)=y;
c) else r=r+1 and NCP(r)=x;
d) endif
e) z=max(NDen(RKNN(x)));
f) if x == z then r=r+1 and NCP(r)=x;

6) endfor
7) for i=1 to r

a) ci = NCP(i) ∪ NSN (NCP(i));
b) for ∀x ∈ ci i.

i) if visited(x) 6= true then visited(x)=true and
ci = ci ∪ NSN (x);

c) endfor
8) endfor
9) for i=1 to r

a) if |ci| ≤ K
i) all points of ci will be marked as noise;
ii) delete ci from C;

b) endif
10) endfor

As shown in Fig.2, we can roughly cluster the dataset and
get initial clusters by Natural Exemplar Graph. The steps are
descripted in Algorithm 2.

Firstly, Initial-Clustering algorithm uses NaN-searching
algorithm to adaptively obtain the value of K. Secondly,
Initial-Clustering algorithm finds KNN and RKNN of each
point, and computes the natural density of each point. Thirdly,
Initial-Clustering algorithm finds all Natural Core Points
using Definition 4. After that, Initial-Clustering algorithm
obtains the initial clusters via the following steps.

1) Initial-Clustering algorithm finds a unvisited Natural
Core Point, and classifies it and its Natural Sparse
Neighbors to the same cluster ci.

2) Then Initial-Clustering algorithm arbitrarily finds a
point p in ci and classifies the Natural Sparse Neighbors
of p to cluster ci, until all points of this cluster have been
visited.

3) Afterwards, Initial-Clustering algorithm repeats the
above steps, until all Natural Core Points have been
visited.

4) Finally, if |ci| <= k , then delete ci and mark all
points of ci as noise. Therefore, these noise points that
regarded as Natural Core Points are still marked as
noise points.

By doing so, we can obtain many initial clusters, but not
final clusters. For example, as shown in Fig.2, the lower
left cluster will be divided into 3 initial clusters since this
cluster possess three Natural Core Points. In the same way,
the upper right cluster will be divided into 7 initial clusters.
In order to obtain the final clustering result, we construct a
minimum spanning tree of Natural Core Point, that is mini-
mum spanning tree of initial clusters. EachNatural Core Point
represent an initial cluster. Therefore, we need to compute
the distance between initial clusters. We define the distance
between initial clusters as follows.
Definition 5 Distance between initial cluster: Distance

between initial clusters Ci and Cj, denoted as Dis(Ci,Cj),
is defined as the ratio of max(|Ci|, |Cj|) and |Ci ∩ Cj|. The
formulation of distance between clusters is shown as follows:

Dis
(
Ci,Cj

)
=

{max(|Ci|,|Cj|)
|Ci∩Cj|

if Ci ∩ Cj 6= ∅

max{Dis
(
Ci,Cj

)
} + 1 if Ci ∩ Cj = ∅

(2)
Here, |Ci| is the number of points in initial cluster Ci.

We use Initial-Clustering algorithm to obtain the initial clus-
ters that spread from dense areas to sparse areas. Therefore,
some points that located in sparse areas will be classified to
two or more initial clusters. As shown in Fig.3, the set of
red points is the intersection of C1 and C2. The two blue
points are the Natural Core Point of C1 and C2 respectively.
|C1| = 169, |C2| = 241, |Ci ∩ Cj| = 17. Therefore, based
on the above formula, the distance between C1 and C2 is
Dis(C1,C2) = 241/17 = 14.1.

FIGURE 3. The intersection between C1 and C2.

After obtain the distance between all initial clusters,
we construct minimum spanning tree of initial clusters,
as shown in Fig.4. The red points are Natural Core Points.
From Fig.4 we can see that two spherical classes have only
one Natural Core Point, one spherical class have two Natural
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FIGURE 4. Minimum spanning tree of initial clusters.

Core Points. The complex manifold class have many Natural
Core Points, and these Natural Core Points conform to the
manifold distribution of this manifold class. It has to be
noticed that these blue lines represent the distance between
initial clusters but not Euclidean distance between points.

Based on the concept of Natural Core Point and the min-
imum spanning tree of initial clusters, we proposed a novel
hybrid clustering algorithm, called NCP. The procedure of
NCP algorithm is minutely described in Algorithm3.

First, the proposed clustering algorithm NCP uses
Initial-clustering algorithm to roughly cluster the dataset and
obtain the initial clusters. Secondly, NCP constructs the min-
imum spanning tree S of initial clusters. Then, as shown
in Fig.5, NCP obtains the final cluster result via continually
cut the maximum edge until the number of clusters is M that
the only one manually set parameter needed by NCP.

NCP require only one parameter that the number of clusters
to cluster datasets. Moreover, NCP is applicable to datasets
with complexmanifold and great density variations. Different
from the traditional MST-based clustering algorithms, NCP
construct MST of natural core points instead of all points of
datasets. Since NCP needs to get the neighbors for each point
in dataset, the complexity of NCP is O(N 2). If we use the

Algorithm 3 NCP-Clustering(D,M) //D Is the Unclassified
Dataset. M Is the Number of Final Clusters

• Output: Final clustering results C =

{C1,C2, . . . ,CM }
1) Initiallizing: r=1, C=D;
2) Obtaining initial clusters {c1, c2, . . . , cn}=Initial-

Clustering(D);
3) Constructing minimum spanning tree S of initial

clusters {c1, c2, . . . , cn};
4) While r < M

a) Find maximum edge e(ci, cj) in S and cut it
(e(ci, cj) = 0 );

b) Find Ca that ci, cj ⊂ Ca and Ca ⊂ C ;
c) For ∀p ∈ (ci ∩ cj) i.

i) If Dis(p,NCPi) < Dis(p,NCPj) then p is
classified into ci;

ii) Else p is classified into cj
d) endFor
e) Merge ci and all initial clusters that connect with

ci into Cb;
f) Merge cj and all initial clusters that connect with
cj into Cd ;

g) C = C − Ca;
h) C = C + Cb,Cd ;
i) r=r+1;

5) endWhile
6) Output the final clustering results C =

{C1,C2, . . . ,CM };

K-D tree to search the neighbors of each point, the complexity
of NCP would be decreased to O(N ∗ logN ). Fig.6 shows
the running time of NCP when the number of the object in
the uniformly distributed dataset increases (one thousand to
twenty thousand).

IV. PERFORMANCE EVALUATION
In order to evaluate the performance of NCP algorithm, we do
experiments on synthetic data sets that contain clusters with
various shapes, and Olivetti Face Database.

FIGURE 5. Clustering procedure of NCP.
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FIGURE 6. The running time of NCP when the number of object increases.

A. CLUSTERING ON SYNTHETIC DATA SETS
We demonstrate the effectiveness of NCP algorithm by
comparing the proposed algorithm with DP, LOF-MST
and DBSCAN on 4 complex synthetic data sets, illus-
trated in Fig.7. Data1 consists of three spherical classes,

three manifold classes, a total of 399 points. Data2, taken
from [41], consists of three spherical classes, one complex-
manifold class and some noise points, a total of 1400 points.
Data3, taken from [42], is composed of six high density
manifold classes and some noise points, a total of 8000 points.
Data4 consists of 168 points and has one dense spherical class
and one sparse manifold class.

For DP, we show the best clustering result in repeated
tests on Data1 and Data2, and decide on the right number
of clusters to Data3 and Data4. Hence, we don’t show the
decision graph, deciding the number of the clusters, of DP in
all results.

Fig.8 shows the clustering results of each approach on
Data1. It reveals that DP and LOF-MST algorithm fail to dis-
cover the correct clusters. DP correctly cluster the spherical
cluster of Data1. However, DP wrongly divides the manifold
cluster into two clusters and merges the sparse cluster into
adjacent dense cluster. Although LOF-MST (K = 20, α =
0.05,M = 6) correctly cluster the manifold clusters and
one spherical cluster, points in sparse cluster are regarded
as noise points that marked with red color. Two spherical
clusters located in upper left are incorrectly merged into one
cluster by LOF-MST. DBSCAN (eps=0.4, minpoints=5) and
NCP (M=6) algorithms correctly cluster on Data1.

FIGURE 7. Four original synthetic datasets.
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FIGURE 8. The clustering results of (a) DP, (b) LOF-MST, (c) DBSCAN, and (d) NCP algorithm on Data1.

Fig.9 shows the clustering results of each algorithm on
Data2. From this figure, we can see that DP correctly clus-
ters the spherical class, but fails to cluster the complex
manifold cluster that is grouped into 6 clusters. LOF-MST
(K = 20, α = 0.05,M = 4) detect out the noise points
in Data2 via manually set outlier parameter α, and cor-
rectly cluster Data2. DBSCAN (eps = 0.2,minpoints =
20) and NCP (M = 4) algorithms correctly cluster
Data2 and detect out the noise points in Data2 without outlier
parameter.

Fig.10 shows the clustering results of each algorithm on
Data3. Although DP obtain the right number of clusters by
manually select cluster centers in decision graph, three clus-
ters are wrongly clustered by DP. LOF-MST (k = 60, α =
0.3,M = 6) correctly clusters most of data points. However,
many normal data points that located in the border of clusters
are regarded as noise points by LOF-MST. Same as the result
of LOF-MST, DBSCAN (eps = 0.2,minpoints = 20)
correctly clusters most of data points, but some normal data
points are regarded as noise points by DBSCAN. Although
the proposed algorithm NCP (M = 6) regards some noise
points as normal points, all normal points are correctly clus-
tered by NCP. The performance of NCP is superior to DP,
LOF-MST and DBSCAN on Data3.

Fig.11 shows the four algorithm’s clustering results on
Data4. Same as the result on Data3, although DP obtain the
right number of clusters by manually select cluster centers in
decision graph, the dense class is divided into two clusters
by DP. Some normal points in sparse cluster are regarded
as noise points by LOF-MST (k = 10, α = 0.06,M =

2). Moreover, LOF-MST merges most of points in sparse
cluster and dense cluster into one cluster, andwrongly regards
two points, marked with blue, as a cluster. For the density
variations of the two clusters in Data4 is great, DBSCAN
(eps = 17,minpoints = 3) failed to correctly cluster Data4.
DBSCAN wrongly regards most of normal points in sparse
cluster as noise points that marked with red, and the rest
points in sparse cluster are merged into dense cluster. If we
decrease the value of scan radius eps, all points in sparse
cluster may be regarded as noise points. The performance of
NCP (M = 2) is obviously superior to DP, LOF-MST and
DBSCAN on Data4.

From the above results and analysis, we can see that DP
algorithms cannot deal with manifold datasets, although DP
does not need parameters that manually set. LOF-MST algo-
rithm increase the boundary distance between two adjacent
clusters by removing noise points according to the value
of LOF, so that it can discover complex manifold clusters.
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FIGURE 9. The clustering results of (a) DP, (b) LOF-MST, (c) DBSCAN, and (d) NCP algorithm on Data2.

However, some normal points that density is very small
or located in the boundary are recognized as noise points
by LOF-MST. DBSCAN algorithm are able to cluster the
datasets with arbitrary shapes. However, DBSCAN can-
not deal with the datasets that the density variations of
inter-clusters are great, and need manually set two parameter
(eps and minpoints). So, from the result of artificial datasets,
we can conclude that the scope of NCP’s application is wider
than DP, LOF-MST, DBSCAN algorithm. Based on the Natu-
ral Core Points and distance between initial clusters, no mat-
ter the datasets contain complex manifold clusters or great
density variations of inter-clusters, the proposed algorithm
NCP can get satisfactory clustering results without manually
set parameter K that the number of neighbors. In order to
demonstrate the effectiveness of NCP, we also experiment on
real datasets as the follows section.

B. EXPERINMENTS ON REAL-WORLD DATA SETS
We also applied the proposed algorithm to real-world datasets
that obtained from the University of California Irvine (UCI)
machine learning repository, which include Iris, Cancer and
Ecoli. The details are shown in Table 1.

In order to intuitively describe the efficiency of DP,
MST-LOF, DBSCAN and NCP, we use the criteria of Purity,

TABLE 1. The characteristics real datasets.

Recall, RI and F-measure to evaluate the clustering perfor-
mance, which are defined as follows:

Purity =

∑M
i

(
maxtcj∈TC

(
|tcj∩ci|
|ci|

))
M

(3)

Recall =

∑TM
i=1

(
maxcj∈C

(
|tci∩cj|
|tci|

))
TM

(4)

RI =
TP+ TN

TP+ FP+ FN + TN
(5)

F − measure =
2 ∗ P ∗ Recall
P+ Recall

,P =
TP

TP+ FP
(6)

Here, let D be a database and contains TM classes TC =
tc1, tc2, . . . , tcTM . The result of clustering algorithm con-
tains M clusters C = c1, c2, . . . , cM . |ci| is the number
of points of ci. TP is the number of point pair (pi, pj) that
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FIGURE 10. The clustering results of (a) DP, (b) LOF-MST, (c) DBSCAN, and (d) NCP algorithm on Data3.

pi ∈ tc, pj ∈ tc and pi ∈ c, pj ∈ c; TN is the number of
point pair (pi, pj) that pi ∈ tci, pj ∈ tcj and pi ∈ ci, pj ∈ cj;
FP is the number of point pair (pi, pj) that pi ∈ tci, pj ∈ tcj
and pi ∈ c, pj ∈ c; FN is the number of point pair (pi, pj)
that pi ∈ tc, pj ∈ tc and pi ∈ ci, pj ∈ cj, i 6= j. P is the
precision. The value of Purity, Recall, RI and F-measure is
[0,1], the larger the value of Purity, Recall, RI and F-measure
is, the better the clustering performance of the algorithm is.

TABLE 2. The performance comparison of four clustering algorithms on
Iris.

Table 2, table 3 and table 4 show the Purity, Recall, RI and
F-measure of various clustering algorithm on Iris, Cancer and
Ecoli respectively. From table 2 and table 3, we can see that
the value of Purity, Recall, RI and F-measure of NCP is the
maximum on both two real-world datasets. Table 4 shows
that the value of Recall, RI and F-measure of NCP is the
maximum, although the value of Purity of NCP is not the

TABLE 3. The performance comparison of four clustering algorithms on
Cancer.

TABLE 4. The performance comparison of four clustering algorithms on
Ecoli.

maximum that obtained by MST-LOF. Although MST-LOF
get well value of Purity, the value of RI, Recall and F-measure
is undesirable. Although the value of Purity of NCP is not
maximum, the value of NCP is not too bad. So, from the
result of real-world datasets, we can conclude that the results
of NCP is better than DP, LOF-MST, DBSCAN algorithm.
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FIGURE 11. The clustering results of (a) DP, (b) LOF-MST, (c) DBSCAN, and (d) NCP algorithm on Data4.

C. CLUSTER ON OLIVETTI FACE DATABASE
In order to further demonstrate the effectiveness of NCP,
we do experiments on the Olivetti Face Database. As a
widely spread benchmark for machine learning algorithms,
the dataset contains 400 faces images from 40 persons, taken
at different time and with varying lighting, facial expressions
and facial details. We select 100 faces, that is, 10 clus-
ters to do the experiment. Same as the experiment on syn-
thetic datasets, we compare NCP with DP, LOF-MST and
DBSCAN algorithms in this experiment. We regard the cor-
relation of picture A and B as the similarity between two
images, denoted as S(A,B), the formulation as following
equation.

S(A,B) =

∑
m
∑

n(Amn − A)(Bmn − B)√
(
∑

m
∑

n(Amn − A)2)(
∑

m
∑

n(Bmn − B)2)

(7)

Here A and B are the images in the Olivetti Face Database.
Amn andBmn (m = 1, 2, . . . , 112, n = 1, 2, . . . , 92) represent
the pixels of the subject images. The value of S is scaled
between 0 and 1. The larger the value of S(A,B) is, the more

similar A and B are. We define the distance between two
images, denoted as d(A,B), as follows:

d(A,B) = 1− S(A,B) (8)

In order to intuitively describe the efficiency of DP, MST-
LOF, DBSCAN and NCP on Olivetti Face Database, we also
use the criteria of Purity, Recall and RI to evaluate the clus-
tering performance.

Fig.12-15 show the clustering results of the DP, MST-LOF,
DBSCAN and NCP algorithm on Olivetti Face Database
respectively. In all results, faces with the same color belong
to the same cluster. The value of Purity, Recall, RI and
F-measure of the four algorithms is shown in Table 5.

TABLE 5. Comparison in terms of purity, recall and RI.
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FIGURE 12. Clustering results of DP on Olivetti face database.

FIGURE 13. Clustering results of MST-LOF on Olivetti face database.

FIGURE 14. Clustering results of DBSCAN on Olivetti face database.

The results show that NCP get 11 clusters, because one
face image that marked with yellow spot is wrongly
regarded as one separate cluster. Three face images that
within the red border are wrongly clustered. Two face
images marked with red spot are considered as noise by
NCP. Nonetheless, NCP clustering algorithm correctly clus-
ter most of face images. The result of NCP is obvi-
ously superior to DP, MST-LOF and DBSCAN. As shown
in Table 5, the value of Purity=0.98, Recall=0.94, RI=0.98,

F-measure=0.96 of NCP are the maximum in the four
clustering algorithms.

Through above experiments and analysis, we can get the
conclusion that the proposed algorithm NCP outperforms
DP, LOF-MST and DBSCAN algorithms. NCP is applicable
to datasets containing complex-manifold clusters and clus-
ters with great density variations. Therefore, NCP algorithm
has broader application than DP, LOF-MST and DBSCAN
algorithm.
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FIGURE 15. Clustering results of NCP on Olivetti face database.

V. CONCLUSIONS
In this paper, we propose a new hybrid clustering algorithm
called NCP. The core idea of NCP is to search Natural Core
Points and construct minimum spanning tree of Natural Core
Points. In NCP, we first use natural neighbor to adaptively
gain the neighborhood parameter K, and define a new concept
that Natural Density to measure the local density of each
object. Then we define the Natural Core Points, and obtain
the initial clusters through spreading from natural core points
to sparse areas. Each natural core point represent an initial
cluster. After that, we define the distance between initial clus-
ters, and construct minimum spanning tree of initial clusters
(a.k.a. MST of natural core points). Afterwards, NCP obtain
the final clusters via continually cut the maximum edges until
the number of clusters is M that the only one manually set
parameter needed by NCP. The experiments on synthetic data
sets and the Olivetti Face Database demonstrate that NCP
is applicable to datasets with complex-manifold patterns and
great density variations, and NCP is more effective than DP,
LOF-MST and DBSCAN.
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