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ABSTRACT There are many existing models that are capable of changing hair color or changing facial
expressions. These models are typically implemented as deep neural networks that require a large number
of computations in order to perform the transformations. This is why it is challenging to deploy on a
mobile platform. The usual setup requires an internet connection, where the processing can be done on a
server. However, this limits the application’s accessibility and diminishes the user experience for consumers
with low internet bandwidth. In this paper, we develop a model that can simultaneously transform multiple
facial attributes with lower memory footprint and fewer number of computations, making it easier to be
processed on a mobile phone. Moreover, our encoder–decoder design allows us to encode an image only
once and transform multiple times, making it faster as compared to the previous methods where the whole
image has to be processed repeatedly for every attribute transformation. We show in our experiments that our
results are comparable to the state-of-the-art models but with 4× fewer parameters and 3× faster execution
time.

INDEX TERMS Facial attribute transformations, generative adversarial networks, image translation.

I. INTRODUCTION
With the advancements in deep neural networks and genera-
tive adversarial networks (GAN) [2], models for transforming
facial attributes have produced more and more realistic syn-
thetic images.Many of these advancements rely on increasing
the model capacity and adding more layers to improve the
quality of the transformations. However, the additional num-
ber of parameters and number of layers come at the cost of
larger memory requirements, larger number of computations,
and longer processing times. This makes it harder to deploy
these models to mobile phones since it has significantly fewer
computational resources as compared to desktop computers.

A common work around to this problem is to setup a server
where all the processing and transformations are performed.
The resulting images are then sent back to the user’s mobile
phone. However, in this setup, the images have to be sent back
and forth for every variation in the transformations, such as
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different hair colors. This is heavily dependent on the quality
of the internet connection and limited by the bandwidth that
is available to the user, which is a luxury for many developing
countries.

In this paper, we propose a Simple Attribute Transforma-
tion model based on GANs (SAT-GAN) that can simultane-
ously perform multiple facial attribute transformations such
as changing hair colors or changing the facial expression.
Our model has significantly fewer number of parameters and
more efficient computations, which leads to faster transfor-
mations with lower memory requirements. This allows our
model to be easily deployed on mobile platforms. As shown
in Figure 1, we designed our model to have an encoder-
decoder type architecture which can encode an image into
a lower dimensional latent representation and re-use that
encoded vector for all the possible transformations. This
is in contrast to one big feed-forward convolutional neural
network of StarGAN [1], which is inefficient since they will
need to perform all the computations again for every attribute
transformation. The caching property of our encoder-decoder
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FIGURE 1. We present a simple attribute transformation model based on generative adversarial networks (SAT-GAN) that can simultaneously transform
multiple facial attributes. (a) shows our proposed model for facial attribute transformation and (b) shows a state-of-the-art baseline StarGAN [1]. Our
encoder-decoder architecture, as shown in (a), enables us to encode the image once and cache the lower dimensional encoded vector. This allows us to
save half of the computations when transforming across multiple facial attributes, which makes it more computationally efficient. This is in contrast
to (b) StarGAN [1] where they use one feed-forward network, which requires the whole image to be repeatedly processed again for every transformation.

architecture is a desirable property since users will most
likely try different configurations for the images they are
trying to transform. Our setup allows faster user interactions,
thus improving the overall user experience. We show in our
experiments (Section IV) that our model produces high qual-
ity images that are comparable with existing state-of-the-art
models with 4× fewer parameters and 3× faster execution
time.

II. RELATED LITERATURE
The main idea of traditional approaches for transform-
ing facial attributes is to extract attributes from a sepa-
rate reference image and then combine it with the input
generating an image corresponding to the attributes of the
reference image, some are done using colorization tech-
nique [3], [4] or style transfer [5]–[8]. For these approaches,
a template or a reference image is required to perform the
desired attribute transformation, this implies that different
reference images are needed to perform different transfor-
mations thus making it difficult to control the transforma-
tions. These approaches also assume some constraints on
the poses by requiring frontal faces [5], [6]. Yang et al. [8]
worked around this limitation by using a 3D face
model.

Recently, deep generative models have shown great poten-
tial in a wide range of applications [9]–[17]. One approach
on generative modeling is using Variational Autoencoders

(VAE) [12], [18] which impose a prior on the represen-
tation space z in order to regularize the model and gen-
erate images from it. Despite its successes, VAEs use
pixel-wise reconstruction error which cause generated images
to be blurry [11]. Another approach to generative modeling
uses Generative Adversarial Networks (GANs). GANs have
achieved impressive results in several tasks such as image
generation [9], [10], image editing [19], and representation
learning [20], [21]. GANs learn these generative models by
setting up an adversarial game between the generator and the
discriminator. First, the generator learns to transform noise
vectors into fake samples which resemble the real samples
drawn from the distribution of natural real images. The dis-
criminator then tries to distinguish between the real and fake
samples.

Isola et al. [22] showed the capacity of GANs to model
transformations where most of the information is not present
in the input image, such as generating realistic objects
from the respective sketch, colorization of grayscale images
and converting from day to night. However, their approach
requires the ground truth image of the opposed transfor-
mation to be provided. Zhu et al. [23] proposed a solution
to the problem of needing ground truth images through a
cycle consistency constraint, but their framework only allows
for binary transformations. Extending it to multiple attribute
transformations requires training a different model for every
pair-wise mapping.

VOLUME 7, 2019 36401



J. H. Soeseno et al.: Faster, Smaller, and Simpler Model for Multiple Facial Attributes Transformation

Perarnau et al. [11] built on top of the work of
Radford et al. [10] by conditioning the generator and discrim-
inator with facial attribute labels, allowing them to perform
multiple transformations in a singlemodel. Antipov et al. [24]
extended their work for face aging by adding an iden-
tity preservation constraint. They have shown that this
helps the generator create a more realistic reconstruction.
Choi et al. [1] introduced a similar framework that can handle
multiple transformations and also incorporates cycle consis-
tency to learn in an unpaired setting.

The current state-of-the-art image to image translation
StarGAN [1] is able to handle multiple facial attribute trans-
formations using a single model. However, StarGAN [1] uses
one big feed forward convolutional neural network where
they take an image together with a target attribute as an
input, which we argue is computationally inefficient since
we need to recompute everything for every transformation.
We propose a model for facial attribute transformations that
significantly reduces the computational requirements while
still producing a comparable result to the state-of-the-art
methods. Our framework uses an encoder-decoder setup for
the generator where we can cache the encoded image and
insert the information regarding the transformation attribute
only to the decoder. This gives a speed up in the transfor-
mations since only half of the computations are needed for
the succeeding transformations thus requiring fewer compu-
tational resources.

III. PROPOSED METHOD
A. BACKGROUND
In this subsection, we briefly discuss some concepts that our
method is built on top of.

1) GENERATIVE ADVERSARIAL NETWORKS
The fundamental idea behind Generative Adversarial Net-
works (GANs) is the inclusion of the discriminator. It trans-
forms the learning problem into a game, more specifically a
two-player minimax game, where the optimal solution is a
Nash equilibrium.

A typical framework of GANs includes a generatorG and a
discriminator D. The role of the discriminator is to learn how
to tell apart real images from synthetic images. The genera-
tor G, on the other hand, synthesizes images from randomly
sampled noise vector z and tries to make it as realistic looking
as possible in order to trick the discriminator D into classify-
ing the synthesized image G(z) as real. This is represented as
a minimax optimization in the form shown in Eq. 1, where
p(x) and p(z) represent the distributions of the input images x
and the distribution of the noise vector z respectively. In the
formulation of these networks, the generator G has access
to the gradients of the discriminator D and therefore has
some form of instruction as to how to improve itself. This
enables the generator to learn how to produce realistic looking
images.

min
G

max
D

LGAN = Ex∼p(x)[logD(x)]
+Ez∼p(z)[log

(
1− D(G(z))

)
] (1)

In the beginning of the training process, the fake images
generated by G are extremely poor and are rejected by D
with high confidences. Therefore it is better forG to optimize
for log(D(G(z))) instead of log(1−D(G(z))). Both objectives
result in the same fixed point, but log(D(G(z))) provides
stronger gradients in the early stages of learning.

2) WASSERSTEIN GENERATIVE ADVERSARIAL NETWORK
The original formulation of GANs uses the standard binary
cross-entropy loss to classify real from fake images. If we
solve for the optimal discriminator and replace it back to the
original objective function, we can show that this objective
optimizes for the Jensen-Shannon (JS) divergence. Several
problems have been found from this formulation that con-
tributes to the instability of GANs [21], [25]. One is that the
binary cross-entropy innately uses the sigmoid function to
model the probability of the image being real. While it has
nice probabilistic interpretations, it suffers from vanishing
gradients. More specifically, if the discriminator is too good
at classifying real from fake, then the discriminator’s loss
will be close to zero and the gradients will also quickly drop
close to zero. This is also related to the problem in the JS
divergence formulation where the two distributions have to
have an intersection for it to train. On the other hand, if the
discriminator performs poorly, then the feedback that it gives
to the generator will also be meaningless. Arjovsky et al. [25]
also showed that JS-divergence are not sensible cost functions
when learning distributions supported by low dimensional
manifolds. This is most likely the case for images where the
distribution of natural images lie in amuch lower dimensional
manifold. This is a reasonable assumption since there are
many constraints that governs natural images, for example,
simply setting the values of the pixels randomly will make
a valid image but it won’t be considered as a natural image
since it will look very far from an image that we can observe
when we capture a scene or an object from a camera.

Arjovsky et al. [25] proposed to change the metric from
JS-divergence to the earth-mover distance or also called
Wasserstein-1 distance, which can be interpreted as how
much work you need to spend in order to transport a pile
of dirt / earth. The earth-mover distance is continuous and
differentiable almost everywhere and it can still provide
meaningful smooth distances between two non-overlapping
distributions in low dimensional manifolds [25]. The new
objective function is shown in Eq. 2. In this formulation,
the discriminator loses its direct interpretation of distinguish-
ing real images from fake ones but the idea of learning
guiding the generator to produce samples that gets closer to
real data distribution is still there.

min
G

max
D

Ex∼p(x)[D(x)]− Ez∼p(z)[D(G(z)))] (2)

To make the problem more tractable, they also constrained
the search space of the discriminator to the set of 1-Lipschitz
functions. This bounds the magnitude of the gradients to be
less than one. Intuitively, this has an effect that the functions
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FIGURE 2. This figure shows an overview of our framework. Our model first encodes the input image producing a lower dimensional encoded vector.
Next, we combine the encoded vector with the target attribute vector and feed it into the decoder which produces a synthesized image with the desired
attributes. Our model is trained under the GAN framework where we have a discriminator that encourages the generator to produce realistic outputs.
Details of each layer are shown in Table 2.

will not be too steep and will roughly be linear which, makes
it more well behaved. In the original paper, they used weight
clipping to enforce the Lipschitz constraint. However, this
is not a good approach since it hampers the flexibility of
the neural networks. Gulrajani et al. [26] proposed to use
a soft constraint where they add a gradient penalty term in
the objective function that encourages the magnitude of the
gradients to be close to one, as shown in Eq. 3.

E
[
(‖∇xD(x)‖2 − 1)2

]
(3)

B. PROBLEM FORMULATION
Suppose we have a natural face image x, the task is to be
able to freely transform across k facial attributes such as
hair color, skin tone, and facial expression. We can formulate
this problemmathematically as learning a non-linear function
F : (x(a)|y(b)) → x(b), that takes in an input image x(a)

having some facial attribute a and transform it to an image
x(b) having the facial attribute b corresponding to the target
attributes specified by y(b). The attribute vector y is a vector
of size k wherein the elements correspond to target attributes
that the user wants to be present or absent. A positive number
denotes the presence of the particular attribute and a zero
denotes absence. We show in our experiments (section IV)
that this formulation allows us to control the degree of the
transformations. The function F is approximated using a
deep convolutional neural network trained to optimize an
adversarial loss, a self cycle consistency loss, and an attribute
classification loss.

Our goal for this paper is not only to be able to perform
the task of facial attribute transformation, but also to make
it fast and easily deployable to mobile platforms. The core
motivation is to improve the user experience of facial attribute
transformation applications. A typical scenario would be a
user selects a photo and try to change the hair color andmaybe
make the person smile more. However, prior to any visual
feedback of the transformation, there is no way to know how
the image would look like on a particular parameter setting.

This means that the user will have to try different parameter
settings such as how much blonde or how much smile until
they see a result that they like. A few seconds delay on the
visual feedback is enough to spoil the user experience, thus,
for these types of applications, speed is crucial.

C. SAT-GAN
An overview of our framework is shown in Figure 2.
Our model follows a generative adversarial network (GAN)
framework where there are two networks, a generatorG and a
discriminator D, that plays a minimax game during training.

The generator takes in a facial image with a target attribute
label as input and synthesizes a transformed version of the
input having the desired attributes. The discriminator D per-
forms two tasks where it tries to predict whether the synthe-
sized image looks real or fake (denoted as DGAN), and also
predict the facial attributes present in it (denoted as Dattr).
The discriminator D acts as guide or a critic in the sense that
it guides the generator in learning to produce more realistic
outputs that correctly follows the facial attributes specified by
the user.

Since a typical use case of our application will require the
model to process the same image multiple times, it would be
desirable if there were parts of the computations that can be
cached. With this in mind, we divided our generator G into
two networks namely, encoder Genc and decoder Gdec. The
role of the encoder Genc is to extract features from the image
and project it in a lower dimensional representation while
still preserving as much information that are relevant to the
transformations. The encoder Genc produces image represen-
tations that is independent of the attributes. Intuitively, we can
think of the encoder as extracting structure such as the shape
of the hair and face, and identifying features which remains
constant regardless of the target attributes specified by the
user.

The decoder Gdec then accepts this lower dimensional
representation together with the target attribute labels y
and synthesizes the desired attributes on the facial image.
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TABLE 1. Comparison in terms of memory requirements and number of
parameters. For CycleGAN [23] the number of parameters have to be
multiplied by the number of possible permutations among k facial
attributes taken 2 at a time P(k, 2). This is because it can only transform
from one specific attribute to another per model. The formula for
permutation P with n objects taken r at a time is defined in Eq. 9.

The attribute labels are tiled and concatenated channel-wise
to the encoded representation. With this framework, we can
cache the encoded representations and only use the decoder
in synthesizing images with different attributes.

D. NETWORK ARCHITECTURE
Our network architecture is detailed in Table 2. The encoder
is composed of three convolutional layers which down-
samples the image representations by a factor of 4. Similarly,
the decoder is composed of four convolutional layers that
upsamples the image representations back to the original
dimensions. We used instance normalization and ReLU acti-
vation function for every layer except the output layer of the
decoder where we used tanh.We explored addingmore layers
but we found that the improvements are very minimal which
is not worth the added parameters and operations as we show
in our experiments in section IV.

The discriminator consists of six convolutional layers and
branches at the end to produce two outputs. One branch out-
puts the probability of being real (which we denote as DGAN)
and the other predicts the attributes present in the image
(which we denote as Dattr). There were no normalization
layers in the discriminator and we use LeakyReLU to avoid
sparse gradients.

E. LOSS FUNCTIONS
Our network optimizes for three objectives, the reconstruc-
tion loss, the GAN loss and the attribute classification loss.
The reconstruction loss encourages the network to preserve
the content in the input image. This is usually implemented
as a mean squared error or mean absolute error of the input
image with the ground truth image. However, in our setting,
we do not have access to ground truth transformed version
of our input images. It is also very costly and impractical to
collect ground truth transformed images for every attribute
we want to consider. Inspired by Zhu et al. [23], we use a
cycle-consistency loss to train our network in an unpaired
setting, without ground truth images. The core idea of the
cycle-consistency loss is to first transform the image x(a)

having some facial attribute a and transform it to image
x(b) having some facial attribute b, then back to x ′(a) again.
This forms a transformation cycle x(a) → x(b) → x ′(a).
Since these are all the operating on the same content image,
we expect x(a) to be equal to x ′(a). This is enforced with a

TABLE 2. Detailed network architecture of our proposed SAT-GAN model.
In order to save space, we simplified the notations for the convolutional
layers where ‘Conv64_k7_s1_p3’ denotes a convolutional layer with
64 filters, kernel size of 7, stride 1, and padding 3.

mean absolute error or L1 norm, as shown in Eq. 4.We choose
the intermediate attribute b in the transformation cycle by
randomly shuffling the attributes in the mini-batch. Without
the cycle-consistency constraint, the generator will not have
any incentive to synthesize images that still look the same as
the input image.

Lrec = E
[∥∥∥x − G(G(x|y(b))∣∣y(a))∥∥∥

1

]
(4)

The reconstruction loss alone produces blurry images since
the mean absolute error will tend to produce outputs around
themedian image. To address this, we include aGAN loss that
encourages the outputs to look like the images in the train-
ing data. We employ Wassertein’s GAN [25] with gradient
penalty [26] (WGAN-GP) to train our model to synthesize
realistic images. The WGAN loss is expressed mathemati-
cally as shown in Eq. 5, where x is the input image, y is the
attribute label. The gradient penalty term is shown in Eq. 6
where x̂ is a randomly interpolated vector from the of the real
and synthesized image.

LGAN = E[DGAN(x)]− E[DGAN(G(x|y))] (5)

LGP = E
[
(‖∇x̂DGAN(x̂)‖2 − 1)2

]
(6)

Lastly, we need to add an objective that would ensure that
the generator follows the target attribute specified by the
user. We impose this by adding an additional task for the
discriminator, which is to classify the attributes present in
the input image. We use a simple binary cross-entropy loss,
as shown in Eq. 7, since more than one attribute may be
present in one image. Our final objective is defined in Eq. 8,
where λrec, λGAN, λGP, and λattr are hyper-parameters that
controls the relative importance of the terms.

Lattr = E
[
y logDattr(G(x|y))

+ (1− y) log(1− Dattr(G(x|y)))
]

(7)

min
G

max
D

L = λrecLrec + λGANLGAN

+ λGPLGP + λattrLattr (8)
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TABLE 3. Comparison in terms of execution time. The execution time is measured as the total number of seconds the model takes on a Xiaomi Mi 5s
mobile phone. We show the time it takes for each model for different number of transformations (e.g. varying degrees of blonde hair) and different
number of changed attributes (simultaneously changing hair color and facial expression counts as two changed attributes).

FIGURE 3. This figure shows sample transformations of different network architectures that we explored. We started with the simplest architecture as our
baseline and slowly added more layers and filters to increase the capacity. We found that simply increasing the capacity does not lead to significantly
better quality results. (This figure is best viewed in color.).

IV. EXPERIMENTAL RESULTS
A. DATASET
For our experiments, we used the CelebFaces Atrributes
(CelebA) dataset. It contains 202,599 facial images of
celebrities with 10,177 unique identities each annotated
with 40 attribute labels. Similar to the epxeriments of
Perarnau et al. [11], we used a subset of 17 facial attributes
that had the most noticeable visual changes. We excluded the
attribute ‘‘wearing hat’’ since it is an accessory not a facial
attribute.We set aside some images as our test images in order
to evaluate the performance of our model on unseen faces.
We used the aligned images and center cropped a square patch
of size 128× 128. All the image intensities were scaled to be
in the range of [−1, 1].

B. IMPLEMENTATION DETAILS
We trained SAT-GAN using the Adam optimizer with
β1 = 0.5, β2 = 0.999. We initialized the weights randomly
from a Gaussian distribution with 0 mean and 0.02 standard
deviation.We used a learning rate of 1×10−4 for the discrimi-
natorD and 2×10−5 for the generatorG. We use a mini-batch
size of 16 for both the generator and discriminator. In our

experiments, we found λGAN = 1, λrec = 10, λattr = 1, and
λGP = 10 to work well. The execution times were computed
on a Xiaomi Mi 5s.

C. VARYING THE NETWORK ARCHITECTURE
We experimented on various network architectures to find the
most suitable one for our application. Figure III-E, shows the
results of some of the architectures that we explored. Since
processing time and number of parameters are important
factors for our goal, we started with the simplest architecture
as our baseline where the encoder and decoder each consist
of 3 convolutional layers. It can be observed that it already
gives satisfactory results. We tried adding more convolu-
tional layers to see its effects. The quality of the transforma-
tion slightly improved as we increased the layers, however,
the improvements are minimal. We can see in Figure III-E
that adding a single convolutional layer removes some of
the artifacts on the lower left hair for the blonde attribute.
We also experimented on adding residual blocks but while
it supposedly has a larger capacity than a normal convo-
lutional layer, it introduces a large amount of parameters
and its improvements on the quality of the images are
minimal.
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FIGURE 4. This figure shows a comparison of our model with state-of-the-art facial attribute transformation models namely, StarGAN [1] and
CycleGAN [23]. We can observe that our method achieves comparable results with significantly fewer parameters. (This figure is best viewed in color.).

Since increasing depth did not seem to have significant
effects, we tried to increase the number of filters instead to
see if it gives us more improvements. Even after doubling the
number of filters per layer (which also doubles the number
of parameters), it does not seem to be significantly better.
Thus, in our final model, we used 3 convolutional layers for
the encoder and 4 convolutional layers in the decoder since
it has the least number of parameters that still achieves good
quality transformations.

D. COMPARISONS WITH PREVIOUS APPROACHES
We first compare against StarGAN [1] and CycleGAN [23],
which are two state-of-the-art models for facial attribute
transformation. We used their publicly available code for
all the experiments. Figure III-E shows sample transfor-
mations of hair colors from the models. Memory require-
ments and number of parameters of each model are shown
in Table 1. We also measured execution times on a Xiaomi
MI 5s as shown in Table 3. We measured the time it takes
for each model to change multiple facial attributes such as
changing hair color together with changing facial expression
(as denoted by ‘‘# of changed attributes’’ column). We also

measured the total time each model takes for performing
multiple transformations with different configurations such
as different degrees of blonde (denoted by ‘‘# of transforma-
tions’’ column).

CycleGAN [23] arguably achieves the best quality of trans-
formation. However, it can only perform one attribute trans-
formation per model. If we wanted to transform freely across
three hair colors, we would need to train six different models.
This means that the number of parameters that we need to
store will multiply by the number of permutations among
k attributes taken 2 at a time P(k, 2), defined in Eq. 9. More-
over, we would need a separate classifier to determine which
model to choose for the transformation, i.e., if the input image
has black hair and we want to transform it to blonde, we need
to correctly choose the black → blonde model and not
brown→ blonde model.

P(n, r) =
n!

(n− r)!
(9)

Another drawback of CycleGAN [23] is that its process-
ing time scales with the number of attributes you want to
simultaneously apply since it needs to chain multiple mod-
els in order to combine multiple attributes. For example,
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FIGURE 5. This figure shows a comparison of our model with ModGAN [27] and StarGAN [1] on single and multiple facial attribute transformations. Note
that we exclude CycleGAN [23] in this comparison since it is not designed to handle multiple facial attributes simultaneously. (This figure is best viewed
in color.).

if we want to apply blonde hair and smiling, we would
need to first transform it to blonde hair and then trans-
form the resulting image to smiling. This makes it difficult

and impractical to scale to more attributes. In contrast, our
model can perform multiple attribute transformation simulta-
neously using only a single model. It also has constant time
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FIGURE 6. This figure shows a comparison of our model with StarGAN [1] on changing facial expressions on the RaFD Dataset [28]. (This figure is best
viewed in color.).
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FIGURE 7. This figure shows the capability of our model to perform simultaneous multiple attribute transformation as well as control the degree of these
transformations. (This figure is best viewed in color.).

complexity with respect to the number of attributes being
considered.

Visually, our model produces images that are comparable
with that of StarGAN [1]. But as shown in Tables 1 and 3,
our model is approximately 3× faster and has 4× fewer
parameters. Moreover, our encoder-decoder architecture is
computationally more efficient than StarGAN [1] when we
perform more transformations on the same image since Star-
GAN [1] has to process the entire image all over again for
every transformation, while our model can cache the encoded
image and only needs to perform the decoding, as illustrated
in Figure 1.
We also compare against a more recent work on mul-

tiple facial attribute transformation called ModGAN [27],
as shown in Figure 5. Since ModGAN [27] has no publicly
available code, we compare against the image examples they
provided in their paper. We can observe that our model
(SAT-GAN) is able to better preserve the features of the
original image while still being able to produce the desired
attributes. This is most noticeable in the first example of
Figure 5. In changing the expression, ModGAN [27] also
changed the face and therefore changing the identity of the
person, while our method is able to preserve the identity

of the person. We hypothesize that this is due to the errors
compounded during the chaining of multiple modules in
ModGAN [27]. StarGAN [1], on the other hand, is not able to
preserve the skin tones well, as evidenced in the ‘‘BlackHair’’
and ‘‘Blonde Hair’’ attributes, where the skin tone becomes
darker and lighter respectively. In contrast, our model has a
more consistent skin tone across all attribute transformations.
We hypothesize that the consistency of our model is due to the
encoder-decoder design where the encoder learns an attribute
agnostic representation that preserves the features of the input
image regardless of the desired target attributes.

To further validate our model, we experimented on the
RaFD Facial Expressions dataset [28]. Figure 6 shows the
comparison of our model with StarGAN [1]. We can observe
that both our model (SAT-GAN) and StarGAN [1] can handle
different poses such as facing left, facing right, and facing
front. In terms of transformation quality, we can observe that
there are minimal differences between the two methods.

These experiments show that our model is able to achieve
the same image quality and more consistent transforma-
tions as compared to CycleGAN [23], ModGAN [27], and
StarGAN [1], even though our model has much lesser param-
eters and computational costs.
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TABLE 4. This table shows the aggregated votes of participants for every image in the user-study comparing our method (SAT-GAN) against StarGAN [1].
The ‘‘instances of majority votes’’ column shows the number of images where a model has garnered the majority votes.

TABLE 5. This table shows the aggregated preferences of each participant in the user-study comparing our method (SAT-GAN) against StarGAN [1]. The
‘‘instances of majority votes’’ column shows the number of times a model has garnered the majority of the votes.

TABLE 6. This table shows the aggregated votes of participants for every image in the user-study comparing our method (SAT-GAN) against
CycleGAN [23]. The ‘‘instances of majority votes’’ column shows the number of images where a model has garnered the majority votes.

E. CONTROLLING THE DEGREE OF TRANSFORMATIONS
Another good property of our model is that we can work
on multiple facial attribute simultaneously while being able
to control the degree of each facial attributes, unlike Cycle-
GAN [23] where the transformations are fixed for every
model. This is an emergent property of training the model
with attribute vectors. Our network learns to associate differ-
ent portions of the space in the lower dimensional latent space
to different attributes. Since this latent space is continuous,
we can move the encoded image towards the direction of a

particular attribute in order to enhance or degrade the effects
of the attribute. This can be done by using a floating point
number for the attribute labels instead of just ones and zeros
to indicate presence and absence of an attribute. Intuitively,
a number greater than one would emphasize the attribute
more and a number less than one would weaken the attribute
effect. An example of this is shown in Figure 7, where we
could gradually change the hair color, make the mouth slowly
open and also make the eyebrows bushier. Note that if we
move too far in this latent space, there is no guarantee that
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TABLE 7. This table shows the aggregated preferences of each participant in the user-study comparing our method (SAT-GAN) against CycleGAN [23]. The
‘‘instances of majority votes’’ column shows the number of times a model has garnered the majority of the votes.

the image will look realistic since it will over exaggerate the
attributes.

F. USER STUDY
We conducted a user study to further evaluate our model’s
performance. We transformed 20 images with unique iden-
tities using SAT-GAN, CycleGAN [23] and StarGAN [1].
We conducted two separate surveys where one compares our
method against StarGAN [1] and the other compares our
method against CycleGAN [23]. There were 30 participants
on each survey. Each of them were asked to choose which
image looks more realistic. A third option, ‘‘No Preference’’,
was included to account for the case where the two images
looks equally good and the participant had no preference
between the two. Note that the participants did not know
which image came from which model. Tables 4 and 5 show
the results of our survey in comparison with StarGAN [1],
while Tables 6 and 7 show the results of our survey in
comparison with CycleGAN [23]. It can be observed that
their preferences are roughly split in half with several of the
responses ‘‘No Preference’’ between the two. This verifies
that our model’s outputs are on-par with StarGAN [1] and
CycleGAN [23] in terms of quality of the generated images,
but our proposed model requires significantly lesser compu-
tational resources.

V. CONCLUSION
In this paper, we proposed SAT-GAN, a simple attribute
transformationmodel that can simultaneously transformmul-
tiple facial attributes. Our simple model produces results that
are comparable to the state-of-the-art models but with up
to 4× fewer parameters and 3× faster execution time. The
encoder-decoder architecture design effectively saves half of
the computations for every succeeding transformation, mak-
ing it more practical for mobile applications.
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