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ABSTRACT Generative adversarial network (GANs) is one of the most important research avenues in the
field of artificial intelligence, and its outstanding data generation capacity has received wide attention. In this
paper, we present the recent progress on GANs. First, the basic theory of GANs and the differences among
different generative models in recent years were analyzed and summarized. Then, the derived models of
GANs are classified and introduced one by one. Third, the training tricks and evaluation metrics were given.
Fourth, the applications of GANs were introduced. Finally, the problem, we need to address, and future
directions were discussed.

INDEX TERMS Deep learning, machine learning, unsupervised learning, generative adversarial networks.

I. INTRODUCTION
The past several years have witnessed a burgeoning develop-
ment of computer science and data accumulation. Artificial
intelligence (AI) is becoming a thriving field with a great
number of meaningful applications and valuable research
topics. In the AI community, machine learning [1] exerts a
huge impact on different aspects of our daily life. All of
these machine learning algorithms need the representation
of the data they are given. But when one want to use this
skill in other fields or tasks, it is very difficult to extract
useful features. Hence, researchers proposed a new approach
called representation learning [2] to automatically extract
useful information when doing classification and detection.
Deep learning [3] is a type of representation learningmethods
which can easily extract high-level, more abstract features
than other methods by composing some simple representa-
tions.

Generally, according to whether the data set is labeled or
not, machine learning algorithms can be divided into two cat-
egories, supervised and unsupervised learning. For the super-
vised learning, a dataset with diverse features is required, and
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each example in the dataset must be labeled. The represen-
tatives of supervised learning are classification, regression
and structured output problems. However, the unsupervised
learning requires a dataset with no more than the same label.
The goal is to explore the special structure in this dataset.
Customarily, density estimation, clustering, synthesis, and
denoising are always regarded as unsupervised learning.

In case of supervised learning, it is difficult to collect or
annotate labels automatically. Hence, researchers pay more
attention to unsupervised learning. In the task of unsupervised
learning, generative model is one of the most promising
technologies. The typical generativemodels are usually based
on Markov chains, maximum likelihood, and approximate
inference. Restricted Boltzmann Machines [4] and its exten-
sion models (e.g., Deep Belief Networks (DBNs) [5], Deep
Boltzmann Machinescite [6]) are always based on maximum
likelihood estimation. The models generated by these meth-
ods represent distributions, and these distributions have a
number of parameters that are intended to fit with the empir-
ical distribution of the training data.

However, these early models [4]–[6] had serious limi-
tations, they may not have good generalization. In 2014,
Goodfellow et al. [7] proposed a novel generative model,
named Generative Adversarial Networks (GANs). Based on
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the game theory, there are two networks in GANs, one is
generator, and the other is discriminator. The role of the gen-
erator is to create as realistic data as possible to deceive the
discriminator. The role of discriminator tries to distinguish
fake samples from real ones. In this case, we can train both
models using backpropagation [8], and dropout algorithms.
In addition, the approximate inference or Markov chains are
unnecessary for the GANs.

This survey analyzes and summarizes the recent state-of-
the-art GANs, including definition, motivations, and appli-
cations of these networks. The structure of this survey is
as follows. Section II introduces several generative mod-
els and highlights the basic theory of GANs. In addition,
a brief comparison of these models is provided. A series of
derived GANsmodels are presented in Section III. Section IV
provides several training tricks of GANs. Section V dis-
cusses the pros and cons of different evaluation metrics.
The applications of GANs in various fields are reviewed in
Section VI. Section VII discusses the limitations of GANs,
and provides future suggestions. Finally, Section VIII draws
conclusions.

II. GENERATIVE MODELS AND GANs
GANs are one of the deep generative models, they can well
process the generative problems. In this section, we will
firstly present several kinds of deep generative models, which
are more popular to use, and compare the differences between
these models. Then, we will introduce the theory and archi-
tecture of the basic GANs.

A. DEEP GENERATIVE MODELS
The artificial intelligence aims to achieve that the machines
can understand complex world just like humans. Based on
this idea, researchers of machine intelligence have proposed
generative models, which are dedicated to describing the
world around them in terms of probability and statistics. Now
the generative models can be divided into three categories:
Generative Adversarial Networks (GANs) [7], Variational
Autoencoder (VAE) [9], and AutoRegressive Networks [10].
TheVAE is a probabilistic graphical model, which attempts to
model the probability distribution of data. However, its final
probabilistic simulation has a certain bias. So it mostly gener-
ates more blurred samples than GANs. PixelRNN [11] is one
of the autoregressive networks, which translates the problem
of image generation into the problem of pixel prediction
and generation. Therefore, each pixel needs to be processed
one by one, while GANs directly process the sample in one
shot, and this causes GANs to produce a sample faster than
PixelRNN.

As a probabilistic generative model, when the density of
probability is not provided, some of the traditional generative
models that rely on the natural interpretation of data cannot be
trained and applied. But GANs can still be used in this situa-
tion, because GANs introduce very clever internal adversarial
training mechanism.

B. THE PRINCIPLE OF GANs
GANs were inspired by the game theory, the generator and
discriminator will complete with each other to achieve the
Nash equilibrium in the training processing. The architecture
of GANs is illustrated in Fig. 1. The principle of generator G
is to generate fake data as much as possible to fit the potential
distribution of real data, while the principle of discriminator
D is to correctly distinguish real data from fake data. The
input of the generator is a random noise vector z (usually a
uniform or normal distribution). The noise is mapped to a
new data space via generator G to obtain a fake sample, G(z),
which is a multi-dimensional vector. And, the discriminator
D is a binary classifier, it takes both the real sample from
dataset, and the fake sample generated by generator G as
the input, and the output of discriminator D represents the
probability that the sample is a real rather than a fake. When
the discriminatorD cannot determine whether the data comes
from the real dataset or the generator, the optimal state is
reached. At this point, we obtain a generator model G, which
has learned the distribution of real data.

FIGURE 1. The architecture of generative adversarial networks.

C. LEARNING MODEL OF GANs
As two players in game theory, both the generator and the dis-
criminator have their own loss functions. In this case, we call
them J (G) and J (D), respectively. In [7], the discriminator
D is defined as a binary classifier, and the loss function is
represented by the cross entropy,

J (D) = −
1
2
Ex∼pdatalogD (x)

−
1
2
Ezlog (1− D (G (z))) (1)

where x represents the real sample, z represents the random
noise vector, G(z) is the data generated by the generator, and
E represents the expectation. D(x) indicates the probability
that D discriminates x as real data, and D(G(z)) indicates the
probability that D determines the data generated by G. The
goal ofD is to correctly determine the source of the data, so it
wants D(G(z)) approach 0, while the goal of G is to bring it
closer to 1. Based on this idea, there exists a conflict between
these two models (i.e., zero-sum game). Therefore, the loss
of the generator can be derived by the discriminator:

J (G) = −J (D) (2)
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TABLE 1. Classification of GANs models.

FIGURE 2. The generator of deep convolutional GANs.

Consequently, the optimization problem of GANs is trans-
formed into the minimax game as shown below,

min
G

max
D

V (D,G) = Ex∼pdata(x)
[
logD (x)

]
+Ez∼p(z)

[
log (1− D (G (z)))

]
(3)

In the training process, the parameters in G are updated
along with the parameters updating process in D. When
D(G(z)) = 0.5, the discriminator cannot determine the dif-
ferences between these two distributions, and in this status,
the model will achieve the global optimal solution.

III. THE DERIVED GANs MODELS
Due to the deficiencies of original GANs, various derived
GANs models were proposed, and these derived GANs mod-
els can be classified into two groups, architecture optimiza-
tion based GANs, and objective function optimization based
GANs, as shown in Table 1. In this section, we will introduce
a series of selected derived GANs models in details.

A. ARCHITECTURE OPTIMIZATION BASED GANs
1) CONVOLUTION BASED GANs
Convolutional Neural Network (CNN) [30] is regarded as
a very effective model of supervised learning, and is one
of the most common network structures in image process-
ing. In terms of the network structure of generator and
discriminator, the original GANs adopts the Multi-Layer
Perceptron (MLP) to make it work. Due to the fact that
CNN is better than MLP in extracting image features, Rad-
ford et al. [12] proposed a Deep Convolutional Generative
Adversarial Networks (DCGAN). As shown in Fig. 2, this

approach innovatively replaces the fully connected layer with
the deconvolution layer in the generator, which achieved great
performance in image generation tasks.

2) CONDITION BASED GANs
Since the input of the generator is the random noise vector z,
these unrestricted inputs can lead to the collapse of the train-
ing mode. Therefore, Mirza and Osindero [13] proposed
a Conditional Generative Adversarial Networks (CGANs),
which introduced the conditional variable c (variable c can be
labels, text or other data) in both generator and discriminator
to add conditions to the model using additional information
to affect the data generation process. In Fig. 3(a), the input
of the generator is the conditional variable c and the noise
vector z, the input of the discriminator isG(z|c) which is from
generator, and the real sample under the control of the same
conditional variable c. Therefore, the objective function can
be described as,

min
G

max
D

V (D,G) = Ex∼pdata(x)
[
logD (x|c)

]
+Ez∼p(z)

[
log (1− D (G (z|c)))

]
(4)

In addition, Chen et al. [14] proposed another CGANs
named InfoGAN. By introducing mutual information,
the InfoGAN makes the generation process more control-
lable, and the results can be more interpreted. Where, mutual
information represents the correction between the latent code
c and the generated data x. In order to enhance the relationship
between x and c, the value of mutual information needs to
be maximized. Its generator is similar to CGANs, but the
difference is that the latent code c is not known, and thus
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needs to be discovered through training process. In addition to
the original GANs’ discriminator, InfoGAN has an additional
network Q to output the conditional variables Q(c|x). The
objective function is shown as follows,

min
G

max
D

V (D,G)− λI (c,G (z, c)) (5)

where λ is a hyper-parameter of the constraint function
I (c,G(z, c)), this mutual information makes the latent code
c more and more reasonable for the generated data. The
architecture of InfoGAN is shown in Fig. 3(b).

Based on CGANs, Odena et al. [15] proposed an Auxiliary
Classifier GAN(ACGAN). In Fig. 3(c), for the discriminator,
the condition variable cwill not be added, and another classi-
fier will be used to show the probability over the class labels.
The loss function is then modified to increase the probability
of correct class prediction.

FIGURE 3. The architecture of derived GANs models. (a) CGANs;
(b) InfoGAN; (c) ACGAN.

3) AUTOENCODER BASED GANs
Autoencoder is one type of neural networks that is trained
to reconstruct the input into an output. It includes two parts,
encoder z = f (x) and decoder x̂ = g(z), where the encoder

is used to convert the input x (usually image, video, audio
or text data) into the hidden layer (latent code z), which is a
process of decreasing the dimension; the decoder is used to
receive code from the hidden layer h as input. After training,
the decoder attempts to reconstruct the input x as its output
x̂. It is also an unsupervised model because the labels are not
required during training process. In recent years, it has been
used in conjunction with latent variable model theory to apply
autoencoder to generative models.

Autoencoder is also imperfect that the hidden layer
obtained by the encoder is not evenly distributed in the spec-
ified space, which results in that there are a large number of
gaps in the distribution. Hence,Makhzani et al. [16] proposed
an Adversarial Autoencoder (AAE), combining the idea of
adversarial networks with autoencoder. In this approach,
the arbitrary prior distribution is imposed to the distribution
of hidden layer obtained by the encoder. This is to ensure
that there are no gaps in the prior distribution, so that the
decoder can reconstruct meaningful samples from any part
of it. The architecture of AAE is shown in Fig. 4, where
the latent code z (hidden layer) represents fake data and z′

represents prior with the specified distribution p(z). They are
the input of discriminator. After training process, the encoder
can learn the distribution we expect, and the decoder can
finally output the samples which are reconstructed by the
required distribution.

FIGURE 4. The architecture of adversarial autoencoder (AAE).

Some models [17]–[19] only add encoder to GANs. The
generator of these models can learn the features in the latent
space, and capture the semantic changes in the data dis-
tribution. However, it cannot learn the mapping from data
sample distribution to latent space. To address this prob-
lem, Donahue et al. [17] proposed a Bidirectional Generative
Adversarial Networks (BiGAN), which can not only make
valid inferences, but also guarantee the quality of the gener-
ated samples. The architecture of BiGAN and ALI is shown
in Fig. 5(a). In the architecture of BiGAN, in addition to
the discriminator and generator, an encoder is added to the
model, which is used to inversely map the data which was
generated by GANs in the data distribution back to the latent
feature space. The input of discriminator becomes a tuple
consisting of data, and its corresponding latent code. For the
data generated by the generator, this tuple is the generated
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data G(z) and the noise vector z that was used to generate the
data. For real samples x from dataset, the tuple are sample x
and E(x) obtained from x through the inverse mapping of the
encoder. In this approach, the encoder can be used as a feature
capture tool for discriminator. Similarly, Dumoulin et al. [18]
proposed an Adversarially Learned Inference (ALI), which
uses the encoder to learn the latent feature distribution. These
two approaches can both learn the generator and encoder in
parallel.

In addition to the approach of combining the autoen-
coder and adversarial networks mentioned above, Ulyanov
et al. [19] proposed an approach named Adversarial
Generator-Encoder Network (AGE), in which the adversarial
network acts between the generator and the encoder, and the
network does not require the participation of the discrim-
inator. Fig. 5 shows the architecture of AGE in which R
represents the reconstruction loss function. In the structure of
their model, the generator aims to minimize the divergence
between the latent distribution z and the generated data dis-
tribution, while the encoder aims to maximize the divergence
between z and E(G(z)), and minimize the divergence of real
data x. Furthermore, they constructed the reconstruction loss
function to avoid the model falling into the mode collapse.

FIGURE 5. The architecture of (a) BiGAN and ALI; (b) Adversarial
Generator-Encoder Network(AGE).

In Section 2, we have briefly compared VAEs with GANs.
The advantage of VAEs is that they are less affected by the
mode collapse, but the generated samples are blurred. The
generated model based on GANs generates higher quality
samples than VAEs, but it also has the problem of mode col-
lapse. Larsen et al. [20] combined the advantages of GANs
and VAEs to replace the decoder of VAEs with generator of
GANs. In their approach, they combine the adversarial loss
of GANs with the objective function of VAEs, which can

reduce the problem of the VAEs generating blurry images,
while keeping the VAEs able to learn the distribution of the
latent code.

B. OBJECTIVE FUNCTION OPTIMIZATION BASED GANs
To enhance the GANs stability, many efforts [21]–[29] have
been proposed by optimizing the objective function. To adjust
the GANs’ training processes, Metz et al. [21] proposed an
unrolled GANs, which uses a gradient-based loss function to
enhance the generator. And, the original GANswere achieved
by minimizing the Jensen-Shannon (JS) divergence to mini-
mize the loss function of generator. Reference [22] pointed
out that this is just a special case, and any f-divergence can
be used in the architecture of GANs. References [22], [24],
and [26] used different divergences to construct the objective
function to enhance the GANs’ stability.

The other methods for improving the stability of GANs are
using different regularization. Che et al. [23] proposed two
regularizers to make the learning more stable. If there is no
overlap between the distribution of generated data and real
data, or the overlap is negligible, the divergence will set to a
constant. At this time, the gradient is zero, which will cause
the vanishing gradient problem. In order to address the prob-
lem, Arjovsky et al. [27] proposed a Wasserstein Generative
Adversarial Networks (WGAN). They firstly theoretically
showed that the Earth-Mover (EM) distance produces better
gradient behaviors in distribution learning compared to other
distance metrics. This approach provided a weight clipping
method to enforce the Lipschitz constraint, and found a novel
loss metric to address the problem of unstable training pro-
cess. Gulrajani et al. [28] found that the WGAN might still
have unsatisfactory results or could not converge due to the
use of weight clipping in discriminator. Hence, they proposed
a gradient penalty named WGAN-GP to enforce the Lips-
chitz constraint. The method also has a better performance
than the original WGAN, and enables training of various
GANs architectures more stable than before with almost no
hyper-parameter tuning. Furthermore, Petzka et al. [29] pro-
posed a new penalty term to enforce the Lipschitz constraint,
which is known asWGAN-LP. This method further improves
the stability of network training.

In addition, the original GANs assume that the discrimina-
tor has the ability to model infinitely without any restrictions
on the real sample distribution. This easily leads to overfitting
and poor generalization capability. In order to limit the infi-
nite modeling ability of GANs, Qi et al. [25] limited the loss
function which is obtained by minimizing the objective func-
tion to a space that satisfies Lipschitz continuous functions.
Both [25] and [27] used the Lipschitz regularity to address
the problem of mode collapse and vanishing gradient. The
difference is that the Lipschitz constraint of [27] comes from
the Kantorovich-Rubinstein duality.

IV. TRICKS FOR TRAINING GANs
The goal of GANs is to achieve Nash equilibrium, but this is
very difficult in the implementation process. This section will
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provide some suggestions for achieving excellent training
performance.

In [31], Salimans et al. proposed several tricks which can
improve the performance, and stabilize the training process.
Firstly, feature matching can make GANs training more sta-
ble by giving the generator a new objective function. In this
way, the generated data will bemore consistent, and generator
can generate more sample information. Secondly, using the
minibatch layer allows the discriminator to reflect the diver-
sity of the sample to avoid the problem of mode collapse.
Thirdly, historical averaging can help the model to converge.
When there is a large difference between the current value
and the average value of the parameter, a term is added to the
generator and discriminator to make a penalty for the current
parameter. Fourthly, one-sided label smoothing is proposed to
set the estimation of the discriminator for the real samples to a
value adjacent to 1, which can smooth the classifier boundary.

By using separate learning rates, [32] proposed a two
time-scale update rule(TTUR) for both generator and dis-
criminator to guarantee that the model can converge to a
stable local Nash equilibrium. In [33], Miyato et al. proposed
a spectral normalization, which is a weight normalization
technique to stabilize the training of the GAN’ s discrim-
inator. Their approach is to add the Lipschitz constant as
a constraint in the discriminator. Different from the weight
clipping and gradient penalty in [27] and [28], they restrict
the spectral norm of each layer to stabilize the training. The
computational cost of this approach is small and there is no
need to tune other hyper-parameters. In [34], Zhang et al.
demonstrated that it is also useful to use spectral normaliza-
tion in the generator.

V. EVALUATION METRICS
Recently, the GANsmodel has been applied to different tasks,
and each task has its own evaluation metric. However, there
is still no universal quantitative evaluation metrics, which
will cause significant confusion about how researchers can
determine evaluation metrics for different tasks. Therefore,
we show several evaluation metrics that are widely used at
present, and discuss their strengths and weaknesses.

A. INCEPTION SCORES (IS)
This metric has been widely used in GANs, and it was pro-
posed by Salimans et al. [31] A higher IS indicates that the
generated model can generate high quality samples, while the
samples are also diverse. However, the IS also has limitations,
if the generative model falls into mode collapse, the IS might
be still pretty, but the real situation is very bad.

B. MODE SCORE (MS)
Based on the IS, Nowozin et al. [22] proposed another eval-
uation metrics named MS, which can reflect the variety and
visual quality of the generated samples at the same time. This
evaluation metric addresses the problem of IS which is not
sensitive to prior distributions over the ground truth labels.

C. FRéCHET INCEPTION DISTANCE (FID)
The FID was proposed by Heusel et al. [32], which is used
to detect the intra-class mode dropping. In this approach,
the generated samples are embedded into the feature space
provided by specific layer of Inception network. Based
on the assumption that the generated samples follow a
multi-dimensional Gaussian, the mean and covariance are
computed between the generated samples and real data.
Then, the Fréchet distance between these two Gaussians is
measured to evaluate the quality of the generated samples.
However, the IS and FID cannot well process the overfitting
problem. To address this problem, the Kernel Inception Dis-
tance (KID) was proposed by Bińkowski et al. [35].

D. MULTI-SCALE STRUCTURAL SIMILARITY FOR
IMAGE QUALITY (MS-SSIM)
Different from single scale SSIM [36] metric, which is
used to measure the similarity between two images, Wang
et al. [37] firstly proposed the MS-SSIM for multiple scales
image quality assessment. It quantitatively evaluates the sim-
ilarity of images by predicting human perception similarity
judgment. Odena et al. [15] and Fedus et al. [38] used this
evaluationmetric to determine the diversity of generated data.
Reference [39] suggested that FID and IS can be used as
the auxiliary evaluation metrics with MS-SSIM for testing
sample diversity.

In addition, the Classifier Two-sample Tests (C2ST) [40] is
another metric based on training a binary classifier. It assess
whether different samples came from the same distribution.
1-Nearest Neighbor classifier (1-NN) [41] is the variant of
C2ST which does not require special training and much
hyper-parameter tuning.

Objective functions can also be used as the metrics to
judge whether the mode is suitable for their problems. The
Wasserstein Critic [27] and Maximum Mean Discrepancy
(MMD) [42] are proposed to measure the distance between
the real sample distributions and the generated sample distri-
butions. Both of them will have a low value if the distribution
between target and output are similar.

How to select an appropriate evaluation metric is still
a difficult problem, [43] presented several measures as
meta-measures to guide researchers to choose quantitative
evaluation metrics. A good evaluation metric should distin-
guish generated samples from real one, verify mode collapse,
mode drop and detect overfitting. We hope that there are
more suitable methods for evaluating the quality of the GANs
model.

VI. APPLICATIONS OF GANs
As a kind of generative model, the most direct application of
GANs is data generation. That is to learn from the distribution
of real samples, and generate samples consistent with the
distribution. This section will introduce selected applications
of GANs, including the applications in the computer vision,
natural language processing, and other fields.
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A. COMPUTER VISION
At present, themost successful applications of GANs are used
in the computer vision areas, including image translation,
image super-resolution, image synthesis and video genera-
tion, etc. The details of these applications are introduced as
follows.

1) IMAGE SUPER-RESOLUTION
To improve the resolution of image, a Super-Resolution
Generative Adversarial Networks (SRGAN) was proposed
by Ledig et al. [44], which takes a low-resolution image
as input, and generates a high-resolution image with 4x
up-scaling. To address the problem that the texture infor-
mation generated by SRGAN is not real enough, and is
often accompanied by some noise, Wang et al. [45] pro-
posed an Enhanced Super-Resolution Generative Adversarial
Networks (ESRGAN). In ESRGAN, the architecture of the
network, the adversarial loss, and the perceptual loss are
improved. Furthermore, a new network unit named Residual-
in-Residual Dense Block (RRDB) based on the relativistic
GAN [46] was introduced. A generated performance compar-
ison is shown in Fig. 6.We can see that the ESRGAN achieves
better performance than SRGAN.

2) IMAGE TRANSLATION
To convert the image content from one domain to another,
an image-to-image translation approach was proposed by
Isola et al. [47] using CGANs, which is named pix2pix.
Experiments have shown that pix2pix can be effective not
only in graphics tasks but also in vision tasks. As a follow-up
to the work, pix2pixHD [48] further improves the quality,
and definition of the generated samples. This approach used
a novel adversarial loss term to generate images with a
resolution of 2048 × 1024. Pix2pix can be used for image
translation problems, but it requires the training space to be
strictly paired in the X and Y Spaces. However, in our daily
life, such paired data is hard to find. Based on this situa-
tion, CycleGAN [49], DiscoGAN [50] andDualGAN [51] all
adopt the idea of cyclic consistency, which can use unpaired
data to train the mapping from X space to Y space. All
these three generators are encoder-decoder framework. The
difference is that different feature representations are used in
the encoders and decoders. Fig. 7 presents the performance
of CycleGAN.

These previous works were about image-to-image transla-
tion in two domains. Choi et al. [52] proposed a StarGAN,
which can solve the problem of image translation among
multi-domains by learning onemodel. In particular, the use of
StarGAN in the tasks of facial expression synthesis and facial
attribute transfer has surprising effects.

3) TEXTURE SYNTHESIS
Texture synthesis is a very classical problem in image
domain. Based on GANs, Li and Wand [53] proposed a
texture synthesis approach, which is named Markovian

Generative Adversarial Networks (MGAN). By capturing
the texture data of Markovian patches, MGAN can generate
stylized images and videos in a very short time, so as to realize
real-time texture synthesis. Jetchev et al. [54] proposed a Spa-
tial GAN(SGAN), which was the first application of GANs
with fully unsupervised learning in texture synthesis. As the
follow-up work of SGAN, Bergmann et al. [55] proposed
a Periodic Spatial GAN (PSGAN), which can learn peri-
odic textures from a single image or complex large dataset.
Besides, it can handle texture information in noise space
flexibly and synthesize high-resolution textures.

4) FACE SYNTHESIS
Face synthesis is also an important direction. How to generate
realistic face samples has always been the problem that needs
people to address. Huang et al. [56] proposed a Two-Pathway
Generative Adversarial Network (TP-GAN) that can consider
both global and local information like humans, and can be
used to synthesize high-resolution frontal face images from a
single side photo. The face image synthesized by this method
can retain the identity feature well, and can process a large
number of photos of different postures and illuminations.

In addition, for image synthesis, Zhang et al. [34] com-
bined the self-attention block with GAN to handle long-range
dependency (SAGAN), thus ensuring that the discriminator
can determine the dependency between two distant features.
This approach further improves the quality of image syn-
thesis. Based on the SAGAN, Brock et al. [57] proposed a
BigGAN to increase the diversity and fidelity of the generated
samples by increasing the batch size and using ‘‘truncation
trick’’. For the latent distribution z, the traditional approach
is to embed z as input into the initial layer of the generator G.
But in BigGAN, z is embedded in multiple layers of the
generator G to affect features of different resolutions and
levels. On ImageNet, the Inception Score (IS) reached to
166.3, while the Frechet Inception Distance (FID) dropped to
9.6. As shown in Fig. 8, the generated samples are realistic,
and the approach achieves state-of-the-art effect. For video
generation, Tulyakov et al. [58] proposed a MoCoGAN to
generate video in an unsupervised manner. For text-to-image
translation, [59] and [60] used the textual description to gen-
erate images.

B. NATURAL LANGUAGE PROCESSING
At present, GANs also has some achievements in the field
of language and speech processing. Yu et al. [61] proposed
a SeqGAN based on the policy gradient to train the gen-
erator. Experiments show that the SeqGAN can outperform
traditional methods in terms of speech, poetry and music
generation. Lin et al. [62] proposed a RankGAN to generate
sentences. They used a ranker instead of the discriminator,
and achieved excellent performances. Li et al. [63] generated
the open-domain dialogue by using the adversarial training
method. This task is used as a reinforcement learning [64]
problem, joint training generator and discriminator. The
result of using the discriminator is used as a reward part of
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FIGURE 6. Image super-resolution generated by different GANs. (a) Ground truth; (b) SRGAN; (c) ESRGAN.

FIGURE 7. Image translation generated by CycleGAN. (a) Original; (b) Vangogh; (c) Monet (d) Cezanne; (e) Ukiyoe;
(f) Satellite to map; (g) Winter to summer; (h) Horse to zebra; (i) Orange to apple.

the reinforcement learning to reward the generator, and the
dialogue generated by the push generator is similar to the
human conversation.

C. OTHER DOMAINS
GANs are also used in other domains. In medicine, Schlegl
et al. [65] proposed an AnoGAN for anomaly detection of
medical images, and learned the characteristics of lesions
by learning the characteristics of health data sets. Killoran
et al. [66] generated the DNA sequence by using GANs to

optimize protein binding. In the security domain, Hu and
Tan [67] used GANs to generate malware. Furthermore, for
private product customization, Hwang et al. [68] utilized
GANs to manufacture medical products.

VII. DISCUSSION
A. THE PROBLEMS OF GANs
The main problem in the development of GANs is that it
always gets into mode collapse. The generated samples of
GANs are always concentrated into a few or even a single
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FIGURE 8. Image synthesis generated by BigGAN.

model, which will result in a lack of diversity in the generated
samples. Therefore, how to increase the diversity of the gen-
erated samples is still a problem that need to be addressed.
One solution is to use batches of samples to increase the
diversity of assessment. In Section 4, mini-batch discrimina-
tor is one of the technologies in this category. In addition,
using multiple generators to get multiple models is another
solution. Reference [69] combined samples generated by dif-
ferent models to address mode collapse. Furthermore, opti-
mizing the objective function can overcome the problem as
well. WGAN [27] and unrolled GAN [21] are representative
of this solution.

The instability in the training process is also a challenge
that researchers must be addressed. GANs needs to reach the
Nash equilibrium during the training, but it is proved difficult
in [27]. In Sections 3 and 4, [27]–[29], [31]–[33] put forward
their own solutions for more stable training. In the future,
more solutions should be proposed to make GAN training
more stable and converge to Nash equilibrium.

Compared with other generative models, the evaluation
problem of GAN is more difficult. Section 5 has given several
evaluation metrics widely used at present and suggestions on
how to select them. Therefore, this is one of the directions
that still need to be addressed in the future.

B. THE FUTURE OF GANs
By improving the architecture of network and algorithms, one
hopes to design a more powerful generative model which can
generate images, audios, videos and texts that are difficult
for humans to distinguish. Especially the use of GANs in
the field of text, there still exist areas for continued develop-
ment in natural language processing (NLP) and information
retrieval (IR).

Moreover, the relationship between GANs and reinforce-
ment learning (RL) is also a promising research direc-
tion in recent years. For instance, [70] embedded GANs
into imitation learning; [61] combined GANs with policy
gradient; [71] described the relationship between GANs and
actor-critic algorithms, etc.

In the security domain, GANs will also have great use.
Aversarial attacks on neural networks are one of the popular
directions which need people to research. If there is slight
perturbation in the input samples, the neural network will
be deceived and make wrong classification and prediction.
Currently, there are already some works of attack on Convo-
lutional Neural Network (CNN) [72]–[74], Recurrent Neural
Networks (RNN) [75] and Deep Reinforcement Learning
(DeepRL) [76], [77] and GANs [78]. At present, the vul-
nerability of deep learning to subtle adversarial perturba-
tions is a common phenomenon [79]. To against adversarial
attacks, [80] and [81] use GANs to make the right defense.
In the future, we hope that GANswill bemore robust in adver-
sarial attacks. Furthermore, in information hiding, Hayes
and Danezis [82] introduced the adversarial technology into
steganography, which provides the novel idea for researchers
to address such problems.

In addition to the research direction proposed above, GAN
is proposed as unsupervised learning, but in practical applica-
tions, adding a certain number of labels can greatly improve
its generating ability. It is difficult to obtain a large number
of data labels, but a small number of labels can be obtained.
Therefore, how to better combine GAN and semi-supervised
learning is also one of the future directions.

VIII. CONCLUSIONS
This paper summarizes the research background of GANs,
expounds its basic principles, and introduces its derived
model and its application in various fields. In addition,
the evaluation metrics and training tricks are also discussed.
Finally, the existing problems of GANs are summarized, and
the future research directions are pointed out.
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