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ABSTRACT Convolutional neural networks (CNNs) have achieved excellent performance improvement
in image processing and other machine learning tasks. However, tremendous computation and memory
consumption for most classical CNN models pose a great challenge to the deployment in portable and
power-limited devices. In this paper, by analyzing the sensitivity of the rank in each layer of the network
accuracy, we propose a sensitivity-oriented layer-wise low-rank approximation algorithm. With specific
compression and acceleration requirement, the convolutional layer with higher sensitivity keeps more kernels
than that with lower sensitivity. In addition, we also demonstrated that global optimization can obtain a better
classification performance than layer-wise fine-tuning. The experimental results show that the proposed
method can achieve 20% acceleration ratio gaining compared with the traditional rank-reducing methods.
When deployed on the VGGNet-16 model, the proposed method can achieve 2.7× compression/acceleration
ratio on convolutional layers and 10.9× compression/acceleration ratio on fully connected (FC) layers with
0.05% top-1 accuracy loss and 0.01% top-5 accuracy loss.

INDEX TERMS CNN, layer-wise sensitivity, compression, acceleration.

I. INTRODUCTION
Convolutional neural networks(CNNs) have been the most
striking approach inmanymachine learning tasks, e.g., image
classification and detection, with extraordinary accuracy and
generalization ability compared to traditional algorithm, like
SVM [1]. In 2012, the famous AlexNet CNN model [2]
was proposed which improved classification accuracy by
nearly 10 percent. Furthermore, classification performance
continues to improve in recent years. From 2014 to 2016,
93.2%, 96.3% and 96.9% top-5 accuracy was achieved by
VGGNet [3], ResNet [4] and Inception-v4 [5] respectively.

Compared to traditional algorithm, CNNs possess pow-
erful ability of feature extraction and combination. Various
levels of features can be extracted by multiple convolu-
tional layers. CNNs also have high generalization abil-
ity to handle different oriented task, while the traditional
algorithms can only mange some specific task under spe-
cific circumstances. Therefore, CNNs have been widely
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used in many applications, such as image classification,
detection [6]–[8], semantic segmentation [9], [10], speech
emotion recognition [11], [13], feature learning and face
recognition [14], and image assessment [12], [15].

At the same time, CNNs introduce tremendous computa-
tional complexity and memory requirement. Generally, the
convolution is the most complex operation in CNNs which
takes up much of computation resource. For one convolu-
tional layer with input image of m × L × L (m, input chan-
nel size) and kernels of m × l × l × n (n, output channel
size), the convolutional operation will carry out m × l2 ×
L2 × n float additions and multiplications in total. In addi-
tion, most of parameters exist in Fully-Connected (FC) layer,
which dominate the whole network size. As an example,
VGGNet-16 (16 parametric layers) consists of 138 million
parameters with 124 million fully-connected parameters and
15.6 GFLOPS with 15.5 convolutional GFLOPS during one
single-image forward processing. Computations involved in
forward process and parameters of several classical network
are shown in Table 1, whereM indicates million while B indi-
cates Billion.
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TABLE 1. Computations and parameters of several classical networks.

Due to high computational complexity and memory stor-
age, power consumption is alsomuch exorbitant. Statistically,
the average power consumption is 180W during running
VGGNet-16 by Caffe [35] in GPU platform. Things becomes
much worse when it comes to portable devices where power
and computation resources are very limited. In some embed-
ded system, in order to reduce power consumption when
processing forward computation in CNNs, computation per
second was limited at a very low level.

Our experiments revealed that, the sensitivity of the rank
of kernel matrix to the network accuracy is a layer-wise
variable. In some networks, the final classification accuracy
varies greatly when certain amount of kernels are removed in
each convolutional layer. In consequence, the rank of kernel
matrices can be further reduced for accuracy insensitive layer.
In addition, fine-tuning network is necessary to restore the
ability of feature extraction. In our experiment, layer-wise
optimization shows that different convolutional layer has dif-
ferent restoration ability after fine-tuning. According to this
observation, we first fine-tune the layer with least restoration
ability, then the layer with stronger restoration ability. The
proposed method is evaluated on several classical models
(e.g., AlexNet [2], VGGNet-16/19 [3], OverFeat [32]) on
ImageNet.

The rest of this paper is organized as follows. Related
works are briefly summarized in Sec. II. The proposed sensi-
tivity oriented compression method is introduced in Sec. III.
Sec. IV presents experiment results. Finally, conclusion is
drawn in Sec. V.

II. RELATED WORKS
In the literature, many studies on accelerating and downsizing
CNNs have been done. These methods can be divided into
two groups: network pruning and low-rank approximation.
Network pruning [18]–[21] remove connections or neurons
with small values which are supposed to have no distinct
effects to the whole network performance. By this way, up
to 95.4% parameters in convolutional and FC layers can be
reduced with about 1% top-5 error increasing. This method
is effective in reducing memory requirement for large CNN
model. For example, the model size of VGGNet-16 can be
reduced by 92%, with 10× acceleration ratio on FC lay-
ers [19]. Furthermore, weights in all connections are grouped
into harsh buckets, which can also greatly reduce storage
overhead [21].

On the other hand, Low-rank approximation has been suc-
cessfully applied to many tasks, like dimensionality reduc-
tion [22], image restoration [23]. Reference [23] exploits
low-dimensional structure in images with high-dimensional
data. While, for CNNs, low-rank characteristics for convolu-
tional kernels were exploited to reduce redundancies among

convolutional kernels [24]–[27]. In many networks, convolu-
tional kernels in the same layer often extract similar features
of inputs. Algorithms based on low-rank aim to remove the
redundancy between similar kernels. In these papers, original
convolutional kernels was approximated with fewer uncor-
related basis which was obtained by principle component
analysis or iterative method. Normally, different from net-
work pruning, the ratio of computation reduction is directly
proportional to ratio of parameter compression in low-rank
approximation. The whole network can still operate with
high parallelism, which makes it friendly to VLSI accelerator
design [28]–[30]. However, the compression ratio of low rank
approximation is inferior to network pruning. For example,
the compression ratio in literature [19] is about 2×, while
top-5 error would increase about 0.9%.

Besides the above works, there are some other algorithms
were also proposed to compress and accelerate CNN. Refer-
ence [31] replaced the original convolutional kernels with a
perforated one, in which connections with small weights were
masked. During computation, the proposed method can skip
the evaluation in these spatial positions. As a result, AlexNet
and VGGNet-16 can be accelerate by a factor of 2× ∼ 4×.

III. ALGORITHM
A. LOW-RANK CHARACTERISTIC REVIEW
According to [33], CNN models are overparameterized and
contain redundancies in convolutional kernels and FC neu-
rons. Taking VGGNet-16 as an example, output feature maps
in 1th convolutional layer only consists of background fea-
tures for input image extracted by some convolutional ker-
nels, which are barely useful to final classification, as shown
in Fig. 1(a), and what we truly need is the information of
foreground, like cat features in image.

On the other side, as shown in Fig. 1(b), there are strong
resemblance among output feature maps corresponding to
kernels in one convolutional layer, and features extracted
by each convolutional kernels are similar, such as eyes and
other edge information. This similarity indicates the closely
correlation among convolutional kernels.

The following is a method to evaluate the correlation
between two output feature maps p and q:

corr(p, q) =

∑
i,j(fpi,j − f̄p)(fqi,j − f̄q)√∑

i,j(fpi,j − f̄p)2
∑

i,j(fqi,j − f̄q)2
, (1)

where fp and fq indicate the feature maps in the same convolu-
tional layer, f̄p and f̄q are the average of fp and fq respectively,
i and j are pixel indexes.

Fig. 1(c) shows the correlation statistics from the output
feature maps in the 1st layer of VGGNet-16. It can be seen
that the ratio of feature maps with corr > 0.8 is larger
than 60%. For one convolutional layer, suppose there are n
convolutional kernels with dimension m× l × l. m indicates
channels for input feature map and l indicates kernel size.
Then, two-dimensional kernel matrix K is constructed by
expanding m × l × l into one column vector, and matrix
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FIGURE 1. From the left are (a) the feature map only contains background information, (b) the similar feature maps, and
(c) the correlation among convolutional kernels. The result is obtained by using 1th convolutional layer of VGGNet-16.

FIGURE 2. Importance for convolutional kernel of 2th convolutional (a) and importance for fully-connected neurons
of FC6 (b) in VGGNet-16. We can see that both convolutional kernels and fully-connected neurons have much
redundancies.

columns indicate the number of output channels. The metric
importance for kernels is calculated as Eq. (2):

K = U × S × V T , (2)

and together as Eq. (3) :

φ(j) =
S(j, j)∑
i S(i, i)

, (3)

where, S indicates variance of principal component for ker-
nel matrix K in row-wise. φ(j) is the quantitative impor-
tance for jth component. The similar operation can be
applied to FC layer to obtain importance for connection
neurons.

As show in Fig. 2(a), we can observe that just fewer
important convolutional kernels can extract requisite features
for final classification in 2th convolutional layer, and original
output feature maps can be combined with these principal
components due to high correlation among original kernels.
The importance curve for neurons contained in FC6 layer
for VGGNet-16 is shown in Fig. 2(b). We can see that there
are a few essential neurons predominate in FC layer. Orig-
inal neural outputs can be similarly reconstructed with lin-
ear combination of these essential neurons as convolutional
layer.

B. NETWORK DECOMPOSITION AND RECONSTRUCTION
Based on the low-rank property elaborated above, the CNNs
can be decomposed into kernels/neurons with low ranks,
and can be reconstructed with linear combination of these
‘‘basis’’, which can speed up network significantly. This
procedure can be expressed as following Eq. (4):

8orig = C ×8basis, (4)

where 8orig is original convolutional kernels in convolu-
tional layer or original neurons in FC layer, 8basis is prin-
cipal kernels in convolutional layer and principal neurons
in FC layer, and C is coefficient for linear combination.
For VGGNet-16, up to 85% computation time is consumed
on convolutional layer, and FC layer dominates the model
size (about 90%). So, decomposition to convolutional layer
and FC layer can notably speed up and compress the whole
network respectively.

1) KERNEL DECOMPOSITION AND RECONSTRUCTION
The convolutional layer is the most important component of
CNNs, which consists of small quantity of kernel parameters,
but majority of computations on the contrary. It is necessary
to exploit the potential of low-rank property to speed up
CNNs. Normally, the weight of convolutional kernel is a
4-D tensor Kl,l,m,n, where l is kernel size, m is the number of
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input channel, and n is the number of output channel. We first
expand kernel matrix on one output channel into column
vector k. Correspondingly, original 4-D tensor Kl,l,m,n is
converted to a 2-D matrixW = (k1, k2, ...kn).
Then we decompose W according to Eq. (2), where we

consider U as principal kernel matrix, in which different
column vector is a basis kernel with different importance. So,
we can approximate original W by removing less important
‘‘basis’’ as follows:

W̃ = U:,1:p × S1:p,1:p × V T
:,1:p. (5)

In Eq. 5, W̃ is an approximated form ofW and p is the number
of reserved convolutional kernels. Furthermore, we slightly
modify this equation as in Eq. (6):

W̃ = (U:,1:p ×
√
S1:p,1:p)× (

√
S1:p,1:p × V T

:,1:p)

= P× QT . (6)

The original convolutional operation with matrix production
I × W will be transformed into I × P × QT approxi-
mately. And the ratio of computation complexity reduction
is nl2m/(pl2m + pn). The whole convolutional layer will be
accelerated significantly if p� n.

FIGURE 3. Illustration for the convolutional layer decomposition. I and Q
are input and output feature maps, while P and Q are corresponding to
kernels of first and second decomposed layers.

Problems will occur if we further do optimization to W̃ ,
like fine-tuning. Since it is possible that W̃ can revive its
original formW after fine-tuning. Thus, we decompose single
original convolutional layer L into two new convolutional
layerLP andLQ , parameterized with P andQ respectively.
The P is a matrix with size of l2m × p and Q is a matrix
with size of p × n. Therefore, the convolutional layer LP
consists of p filters and each filter has the size of l×l×m (i.e.,
the same size as that of the original filters of W ), while the
convolutional layer LQ consist of n filters and each filter has
the size of 1×1×p. As shown in Fig. 3, after decomposition,
LP produces a feature map with p channels. And then LQ
performs 1×1 convolution on basis of the output feature map
and produces a feature map with n channel.
Furthermore, we can apply optimization to LP and LQ

without concerned problemmentioned above. Since the com-
bination of fine-tuned layer LP and LQ still have the low-
rank characteristic compared to original layer L .

2) NEURON DECOMPOSITION AND RECONSTRUCTION
Most CNNs are designed to be a compact form with as many
parameters as possible to represent probability distribution

of input image, nevertheless, most connection weights are
marginally useful or highly correlated. Therefore, neurons
and connections in FC layer also have many redundancies
in most classical networks, like VGGNet. Since most of the
model parameters exist in FC layer, it is important to reduce
network model by exploiting the redundancy of neurons in
FC layer.

FIGURE 4. Illustration for the FC layer decomposition. I and O are input
and output data, while P and Q are responding to the matrix for first
and second decomposed layers.

The weight matrix in fully-connected layer is a 2-D dimen-
sional matrix, represented byW . Each column vector l ofW ,
represents a connected neuron. Similarly, W can also be
decomposed according to Eq. (6), and here, we consider U
as principal neurons, in which different column vector is a
basis neuron with different importance. Inner production in
current layer will be changed from I × W to I × P × QT .
The ratio of parameter reduction is mn/(mp + pn), and it
will dramatically reduce the model size if p � n. Similarly,
current FC layer L is decomposed into two new layer LP
and LQ . As shown in Fig. 4, the first layer LP has p output
neurons without bias term, the second layer LQ is also a
FC layer with n output neurons corresponding to original
bias of current layer. Compared to network pruning method,
which remove inessential connections (normally connection
weights with small value), redundant neurons are removed in
this manner. Though the ratio of model parameter reduction
in this design cannot be comparable with method in network
pruning, parallel computation can be easier to realize in low-
rank design. In network pruning method, index of weights
must be stored for indexing and computation, which is not
necessary in low-rank design.

C. SENSITIVITY-ORIENTED RANK DECISION
It is unwise to roughly determine rank for convolutional layer
and FC layer according to importance curve, since we cannot
discriminate the relative redundancy among different layers
only by importance curve. Furthermore, we should decide
the tradeoffs between accuracy and computation complexity
(convolutional layer), as well asmodel size (FC layer) accord-
ing to redundancy of different layers. We should be careful
that the degree of redundancy varies from different layers.
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FIGURE 5. Sensitivity curve for conv2_2 (blue line) and conv4_1 (red line)
layer in VGGNet-16. The dash line is the original classification accuracy as
a benchmark.

In this paper, we propose a sensitivity metric ζ to explore
the relationship between the rank p and the network perfor-
mance. To define sensitivity ζ , accuracy-rank curve is used to
explore the relationship between the ratio σ of the reserved
kernels and classification accuracy φ in one convolutional
layer. Fig. 5 shows the relationship between classification
accuracy and the number of reserved kernels for conv2_2 and
conv4_1 layers in VGGNet-16. From the result, the clas-
sification accuracy degrading of conv2_2 is much bigger
than that of conv4_1, when the same proportion of kernels
are removed. Therefore, conv2_2 is definitely more sensitive
than conv4_1 in the sense of accuracy loss. To improve com-
pression/acceleration performance, we should reserve more
kernels in conv2_2 than that in conv4_1 layer.

To better describe convolutional layer sensitivity, ζ for ith
layer is defined as:

ζi =
1∫ 1

0 φi(σ )dσ
, (7)

where φi(σ ) is the classification accuracy and σ is the ratio
of reserved kernels/neurons. Since ζ cannot be analytically
resolved, we transform it into numerical form as:

ζ̃i =
1∑

j φi(σj)1σ
. (8)

When sensitivity ζ̃i has been solved, the average sensitivity
ζ̄ over network layers is then calculated. And normalization
will be applied to ζ̃i according to ζ̄ . If the required accelera-
tion ratio is η× (η > 1) times as original, the rank p for each
layer is decided as follows:

p =
ζ̃

ηζ̄i
ni, (9)

where ni is the number of original kernels for ith layer.

D. GLOBAL NETWORK OPTIMIZATION
Themain problem of low-rank approximation is that it may be
not able to represent features of principal kernels and to com-
bine features of principal FC neurons efficiently. Hence, it is

necessary to drive the convolutional kernels and FC neurons
to improve feature representation and combination ability.
Network optimization has been studied by many researches,
such as [24] and [25]. These researches mainly tried to min-
imize reconstructed error of output channels layer by layer,
while high correlation of convolutional kernel or FC neu-
rons among layers were not taken into consideration. Global
networks optimization was tried in [26]. However, due to
the inserted layers involved in the fine-tuning, the gradient
explosion issue makes the training trapped in ill-conditions.
Different from the method in [26], only two new layers are
introduced for each layer during the optimization process.
And as a result, the kernels and neurons in different layers are
able to be optimized jointly. Benefiting from our proposed
method, the overall network optimization can then be suc-
cessfully carried out.

IV. EXPERIMENTS
This section experimentally shows the practicability of
the proposed method, as well as comparison with other
acceleration/compression algorithms. Four network models
with relatively large amount of parameters and computations
are chosen in these experiments which are AlexNet, Over-
Feat, VGGNet-16, VGGNet-19 respectively. These networks
are suitable for compressing and accelerating due to their high
redundancy.

We employ top-1 and top-5 error as comparison met-
ric based on the dataset of ImageNet [34]. As the refer-
ence, the original classification top-1 accuracy for AlexNet,
OverFeat, VGGNet-16, VGGNet-19, on the single-view of
test dataset with 50000 image is 58%, 60.02%, 68.28%,
68.47% respectively. The framework we used for training
and testing is Caffe [35] and Torch [36] toolkit. Detailed
codes are published in Github (https://github.com/Yue-
Niu/CNN.CompAcc).

Layer-wise performance analysis is implemented first to
evaluate the feasibility for algorithms on a single layer. Then,
the proposed method is applied on the whole network based
on the sensitivity of each layer, and the performance is com-
pared with other algorithms.

A. LAYER-WISE PERFORMANCE
Layer-wise performance analysis shows influences after
decomposing a single layer (convolutional layer or FC layer).
We first decompose and reconstruct networks directly by
removing specified number of kernels or neurons according
to Sec. III-B, and fine-tune the whole reconstructed net.
By analyzing the single-layer fine-tuning, we would like
to know: how much performance of feature extraction can
be restored after decomposing single layer? and how does
the distribution of weights change after fine-tuning a single
layer?

Wefine-tune each specific single layer-cluster (i.e., all con-
volutional layers in same stage) of conv1 (C1), conv2 (C2),
conv3 (C3), conv4 (C4), and conv5 (C5) on VGGNet-16
and VGGNet-19. We evaluate the performance with certain
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FIGURE 6. Layer-wise fine-tuning for VGGNet-16 and VGGNet-19. The blue bars and lines indicate classification
accuracy and loss before fine-tuning respectively, and the pink indicates accuracy and loss after fine-tuning. Before
fine-tuning, classification capability degrades little in 2× and 3×, while in 4×, the capability downgrades
drastically. However, after fine-tuning, classification capability can be restored in all these three situations. We can
see that both classification accuracy and loss are almost the same as the original model.

quantity of kernels and reserve half, third, and quarter
principal kernels for each single convolutional respectively,
i.e., with the ideal acceleration ratio as 2×, 3×, and 4×. The
results are depicted in Fig. 6. In the Fig. 6, the blue bar and
purple bar indicate the classification accuracy before fine-
tuning (BF) and after fine-tuning (AF) respectively, while
the blue line and purple line indicate the loss before fine-
tuning (BF) and after-tuning (AF) respectively. As shown
in Fig. 6, the classification accuracy can be significantly
improved after fine-tuning. Different layer varies obviously
in classification improvement due to different redundancy.
Classification capability can be restored significantly in each
of the three situations. One interesting fact is that the capa-
bility of high level layers (such as C5) is more difficult to
be restored than that of the low lever layers (such as C1).
An interesting thing is that capability of high level (such
as C5) is a little more difficult to be restored than the low
level (such as C1. Since the kernels in low level layers mainly
extracts general features of input images, which are more
robust during compression, while kernels in high level layers
extracts high level features, which are likely more sensitive to
compression. In addition, for most layers in VGGNet-16 and
VGGNet-19, more than half kernels in convolutional layers
and up to 90% neurons in FC layers can be removed without
obvious accuracy decline after fine-tuning.

By comparing the distribution of network before and after
global fine-tuning and partial fine-tuning (i.e., only fine-
tuning the current decomposed layer), we can obtain the
distribution difference curve. Fig. 7 shows the distribution
difference of weights after global fine-tuning (Global Opt.)
and partial fine-tuning (Partial Opt.) for FC6 in VGGNet-16.
We can see that the distribution of weights after global fine-
tuning changes slightly in current decomposed layer, mean-
while, the classification performance is better after global

TABLE 2. Different acceleration/compression configurations for
VGGNet-16. ζ indicates sensitivity for each layer.

fine-tuning. The reason for significant accuracy improvement
is that the other layers were optimized jointly during fine-
tuning. Therefore, the kernels and neurons in all layers can
be optimized. However, in paper [26], optimization is just
applied on single layer without considering joint optimization
on all layers. The other layers in VGGNet-16/19 share similar
characteristics, as well as other network models.

B. WHOLE NETWORK PERFORMANCE
The whole network performance analysis is carried out
on VGGNet-16, VGGNet-19 models. The Fig. 8 (a) and
Fig. 8 (b) show the sensitivity curves for VGGNet-16 and
VGGNet-19 respectively. We focus on the reduction factors
with 2×, 2.5× and 3×. The number of reserved kernels are
obtained according to Eq. (9), and results are summarized
in Table 2. Since there are great amount of redundancies in
FC layers, we only keep 256 principal neurons for FC6 and
FC7 layers.
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FIGURE 7. (a) Weight distribution after globa and partial fine-tuning. (b) Weight distribution difference. The red line is
the weight distribution difference of the global fine-tuning, while the blue one is weight distribution difference of the
partial fine-tuning.

FIGURE 8. From the left to the right are sensitivity curves for VGGNet-16, VGGNet-19, and OverFeat respectively. Due to
large size of kernel in conv1 and conv2, they are more sensitive when certain ratio of kernels were removed.

TABLE 3. The compression and acceleration on AlexNet with different
parameter reserved ratio (PR) and acceleration ratio (AR) configuration.

During the experiments, we observed that the performance
by fine-tuning multiple layers in one layer-cluster is better
that of fine-tuning each single layer. And as shown in Fig. 6,
the conv5 layers has the worst restoration ability, while
the conv1 and conv2 layers have the best restoration abil-
ity. Therefore, we perform layer decomposition fine-tuning
progressively as follows: we first decompose FC6 layer and
keep the left layers as same as that of the original model,
reconstruct network model as discussed in Sec. III, and per-
form fine-tuning on the new reconstructed model; we then
repeat the same procedure on the layer-clusters (e.g. conv5
and conv4) successively until we reach the top layer-cluster

TABLE 4. The compression and acceleration on VGGNet-16 with different
parameter reserved ratio (PR) and acceleration ratio (AR) configuration.

conv1; we finally perform decomposition and reconstruction
on FC7 layer. The top-1 accuracy and corresponding loss
obtained after fine-tuning each FC layer and layer-cluster
are shown in Fig. 9. As indicated in Fig. 9, we can achieve
about 3× time speed-up without obvious accuracy decreas-
ing or loss increasing. Furthermore, the proposed method
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FIGURE 9. The top-1 accuracy and corresponding loss after fine-tuning each FC layer and layer-cluster.
From the left to right are results obtained from the original model (orig), and after fine-tuning
FC6 (fc6), conv5, conv4, conv3, conv2, conv1, and FC7 (fc7) respectively. The dash line indicates the
accuracy and loss curve of proposed method, while the solid line indicates the results obtained by
roughly selecting principle components. (a) Accuracy curve. (b) Loss curve.

TABLE 5. Acceleration/compression configuration for OverFeat.

is able to improve the accuracy with 0.34%, 0.15%,
and 0.20% according to 2×, 2.5× and 3× configuration. The
experiment on VGGNet-19model shows similar result as that
of VGGNet-16 model.

C. COMPARISONS WITH OTHER WORKS
In this section, we compare the our proposed method with
the methods proposed in [19] and [26]. The compression and
acceleration results obtained onAlexNet model with different
parameter reserved ratio (PR) and acceleration ratio (AR) are
summarized in Table 3. As shown in Table 3, only FC layer
can be accelerated by [19]. And as for FC6 layer, the com-
pression ratio is 11, but the acceleration ratio is only 2.
However, our proposed method can achieve 5× compression
and acceleration ratios. The method proposed in [26] employ
the global optimization on the whole network model rather
than one single layer, and it is effective for small network
models. While our proposed method is able to perform com-
press and accelerate more efficiently on large scale networks
model, such as VGGNet and AlexNet. The compression and
acceleration results obtained on VGGNet-16 by our proposed
method and [19] are shown in Table 4. It can be seen that 2.7×
compression and acceleration ratio can be achieved by our
proposed method on convolutional layers for large network
models.

Our proposed method is similar as that in [25]. However,
our proposed method use different strategy to decide rank for
each layer. In order to perform fair comparison with [25],
we evaluate performance on OverFeat [32]network model,
and only perform decomposition and reconstruction on con-
volutional layers. We compare the classification accuracy on

the basis of top-5 error. According to sensitivity curve as
shown in Fig. 8 (c), reserved rank for each convolutional layer
is summarized as Table 5 for each layer. After decomposi-
tion and fine-tuning with 2× acceleration and compression
configuration, our proposed method increase top-5 error only
with 0.2%, while [25] increase top-5 error with about 0.9%.

V. CONCLUSION
In this paper, we proposed a sensitivity-oriented layer-wise
acceleration and compression method for CNN, which is
able to facilitate network model deployment on portable
devices. On the one hand, we analyze the sensitivity of the
rank in each layer to the network accuracy; on the other
hand, we remove the kernels with lower sensitivity than that
with higher sensitivity. Furthermore, we show that our global
optimization method can achieve better performance than
layer-wise optimization. Experimental results demonstrate
that, the proposed method is able to reduce 91% model size
and speed up 2.7 times inference computation with 0.05%
accuracy loss for VGGNet-16/19.
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