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ABSTRACT Epilepsy is a disease in which patients undergo seizures caused by brain functionality disorder.
Clinically, it is usually diagnosed by experienced clinicians according to continuous electroencephalog-
raphy (cEEG), which is time consuming even for experienced doctors. Meanwhile, amplitude integrated
electroencephalography (aEEG) has shown potential to detect epileptic seizures. Therefore, the paper
proposes a hybrid seizure detection algorithm by combining cEEG-based seizure detection algorithm and
aEEG-based seizure detection algorithm to detect seizures. In cEEG-based seizure detection algorithm,
cEEG signals are divided into 5 s epoch with 4 s overlap and multi-domain features are extracted from each
epoch. Then random forest classification is applied to do seizure detection. In aEEG-based seizure detection
algorithm, morphological filter is applied to do spike detection and determine whether there are seizures
after transforming the cEEG signals into aEEG signals. In order to evaluate the generality of the proposed
method, experiments are performed on two independent datasets, including a publicly available EEG dataset
(CHB-MIT) and an epileptic dataset collected by using the EEG device developed by the Hangzhou Neuro
Science and Technology Co., Ltd. In the CHB-MIT dataset, the accuracy (AC), specificity (SP), sensitivity
based on the event (SE), and false positive ratio based on the event (FPRE) obtained by the hybrid method
are 99.36%, 82.98%, 99.41%, and 0.57 times/h, respectively. In the dataset we collected, the AC, SP, SE,
and FPRE obtained by the hybrid method are 99.23%, 89.47%, 99.23%, and 0.71 times/h, respectively.
The experimental results show that the performance of the proposed method is competitive with state-of-
the-art methods and results. Furthermore, basing on the hybrid method, this paper has developed a portable
automatic seizure detection system, which can reduce the burden of clinicians in processing the large amounts
of cEEG signals by detecting seizure automatically.

INDEX TERMS Seizure detection, multi-domain feature, spike detection, hybrid method.

I. INTRODUCTION

Epilepsy is a disease in which patients undergo seizures
caused by brain functionality disorder [1]. It affects approx-
imately 9 million people in China and more than 65 million
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people worldwide [2]. Even worse, it can begin at any age [3].
In the clinical practice, diagnosing epilepsy is commonly
implemented by continuous electroencephalography (cEEG),
amplitude integrated electroencephalography (aEEG), Neu-
rologic examination, CT scan, MRI, fMRI, PET scan and
etc. [4]. In the aforementioned types of tests for diagnosing
epilepsy, cEEG and aEEG are currently the two main methods
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for detection of epileptic seizures. cEEG is a graphical record
of ongoing electrical activity in term of voltage fluctuations of
the brain through multiple electrodes. It is considered as the
gold standard for evaluating EEG background and detecting
epileptic seizures [5]-[7]. aEEG, a processed, filtered and
time-compressed electroencephalogram that presents ampli-
tude (y-axis) over time (x-axis), has shown potential to detect
epileptic seizures [8], [9]. However, more than 75% of people
living in developing countries do not receive the treatment
they need for their seizures and approximately 1 out of
3 individuals with epilepsy continues to experience fre-
quent seizures despite of treatment of multiple anti-epileptic
drugs [4]. Considering the serious outcome caused by epilep-
tic seizures for the patients and the large population affected
by epileptic seizures, it is necessary to develop rapid, robust
and cost-effective seizure detection system.

Recently, many researchers focused on extracting features
such as wavelet features [10], entropy [11], line length [12],
and fractal dimension [13] from EEG signals for epileptic
seizures detection. These features can then be combined
with various classifiers, such as support vector machine [14],
artificial neural network [15], [16], fuzzy logic model [17],
Markov modeling [18] to identify the occurrence of seizures.
In the CHB-MIT scalp EEG database [19], Samiee et al. [20]
employed a novel feature extraction method which based on
the sparse rational decomposition and the Local Gabor Binary
Patterns (LGBP). The experiment result showed that the pro-
posed technique outperforms other dedicated techniques by
achieving the overall sensitivity of 91.13%. Shanir et al. [21]
proposed a novel morphological feature extraction technique
based on the local binary pattern (LBP) operator, combining
with K-nearest neighbor algorithm to do seizure detection.
As a result, mean accuracy of 99.7% and mean specificity
of 99.8% were obtained. Orosco et al. [22] developed a
patient non-specific strategy for seizure detection based on
Stationary Wavelet Transform of EEG signals, and the mean
values of specificity, sensitivity and false positive rate per
hour parameters of the proposed offline method reached
99.9%, 87.5% and 0.9, respectively.

In parallel, aEEG is increasingly used in seizure diagnosis
since several studies have proved to be useful for seizure
detection [23], [24]. Lommen et al. [23] developed an algo-
rithm for the automatic screening of electrographic neonatal
seizures (ENS) with aEEG signals, the evaluation of the
algorithm was based on 8 different cerebral function monitor
recordings annotated by observer1 and an independent neuro-
physiologist, observer2. Finally, the algorithm showed in five
recordings a sensitivity no less than 90% and approximately 1
false positive ENS per hour and in three recordings much
lower sensitivities. Bourez-Swart et al. [24] compared the
seizure pattern detection rate of single-channel and multi-
channel aEEG, using conventional EEG as a gold standard,
in full-term neonates with hypoxic-ischemic encephalopathy.
The results showed that the detection rate of epileptic pattern
in multi-channel aEEG was slightly better than that in single-
channel aEEG. Multi-channel aEEG identified correctly all
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patients with more than 1 seizure pattern in the small selection
of patients. Clearly, the existing methods mentioned above
are effective in the classification of epileptic seizures on spe-
cific databases. However, the performance may be unsatisfac-
tory when the methods are used on different databases, due
to the complexity of EEG signals and their feature diversity
of different databases. In addition, to the best knowledge of
authors, few studies have combined cEEG signals with aEEG
signals for EEG seizures activity classification, so this paper
integrates them into a unified framework to show their poten-
tial for seizure detection. However, considering the aEEG is
compressed in time to display peak-to-peak amplitude values
of filtered and rectified EEG, the proposed hybrid method
is more suitable for epilepsy in which seizure events last for
more than 10 s.

Basing on the above mentioned observation, this paper
proposes a hybrid seizure detection method by consider-
ing the epileptic features of cEEG and aEEG and eval-
uates the generality of the proposed method by two
independent datasets. For cEEG, the paper employed
a new feature extraction strategy that extracts multi-
domain feature of multi-channel EEG signals combined
with random forest (RF) classifier for seizure detection.
For aEEG, the paper applies morphological filter to do
spike detection and determine whether there are seizures.
Finally, the paper combines cEEG-based seizure detection
algorithm and aEEG-based seizure detection algorithm to
detect seizures jointly. Specifically, firstly, the paper uses the
multi-domain features of cEEG signals with RF classifier for
seizure detection. In parallel, the paper uses morphological
filter to extract separate spike feature of aEEG to perform
seizure detection. Then, if the same epoch is still in the state
of seizure again, the event where the epoch is located is
considered as a seizure.

The remainder of the paper is organized as follows.
In Section II, the datasets used in this study and the proposed
method of seizure detection are described in detail, including
data preprocessing, feature extraction and classification tech-
niques, and then further applications of the proposed system
are discussed. Then in Section III, the evaluation procedure
and the obtained experimental results are presented. Finally,
further discussion and conclusions are included in Section IV
and Section V.

Il. MATERIALS AND METHODS

The paper proposes a hybrid seizure detection method that
based on cEEG and aEEG, following the step of data
preprocessing, feature extraction, RF training, spike detec-
tion, methods merging and implementation of the proposed
method to a server for seizure detection. A detailed flowchart
of proposed system is shown in Figure 1.

A. DATASET DESCRIPTION
To verify the generalization of the proposed method in this

paper, two independent datasets were used, one is pub-
lic dataset (CHB-MIT scalp EEG database), denoted as
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FIGURE 1. Flowchart of hybrid seizure detection system.

dataset A, and the other is EEG data collected by using the
EEG device developed by Hangzhou Neuro Science and
Technology Co., Ltd., which is denoted as dataset B.

The dataset A in this study comes from the CHB-MIT scalp
EEG database which is described in Ali Shoeb’s study [25]
and access to the raw EEG recordings are possible in [19].
This dataset was collected at the Children’s Hospital Boston,
consisting of EEG recordings from pediatric subjects with
intractable seizures. There are 24 patients involved in the
dataset, including 5 males aged from 3 to 22 years old and
18 females aged from 1.5 to 19 years old. For each patient,
long-term EEG data are recorded in continuous segments
of 1 to 4 hour duration. All the signals were recorded
with the sampling rate of 256 Hz and 16-bit resolution.
Most cases contain 23 EEG signals derived from elec-
trodes placed according to International Federation of Clin-
ical Neurophysiology 10-20 placement system. While the
recordings were being made, EEG signals were classified as
epileptic seizures and non-seizures by experienced clinicians.
A detailed description of the dataset A is shown in Table 1.

The dataset B for this study was collected by Depart-
ment of Neurology, Epilepsy Center, Second Affili-
ated Hospital School of Medicine, Zhejiang Univer-
sity. 24 electrodes which included ground electrode and
reference electrodes were placed on the scalp accord-
ing to 10-20 system standard to do EEG collection.
All the signals were recorded with the sampling rate
of 500 Hz and the resolution of 24 bits. As a result,
21 channels were obtained, including ‘EKG’, ‘FP1-Ref’,
‘FP2-Ref’, ‘F7-Ref’, ‘F3-Ref’, ‘FZ-Ref’, ‘F4-Ref’,
‘F8-Ref’, ‘T3-Ref’, ‘C3-Ref’, ‘CZ-Ref’, ‘C4-Ref’,
‘T4-Ref’, “T5-Ref’, ‘P3-Ref’, ‘PZ-Ref’, ‘P4-Ref’, ‘T6-Ref’,
‘O1-Ref’, ‘O2-Ref’, ‘OZ-Ref’ where ‘Ref’ is the reference
electrode. In order to facilitate data processing and subse-
quent model construction, it is necessary to adjust the data
in dataset B to be the same format of selected channels of
EEG in dataset A. For example, we can get ‘F7-T3’ by cal-
culation of ‘F7-Ref’ - ‘T3-Ref’. Finally, the paper collected
EEG data of 5 patients with 291 .edf files. The seizure events
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TABLE 1. CHB-MIT EEG dataset.

Case Gender | Age (year) | Number of event | Duration (hour)
chb01 F 11 7 40
chb02 M 11 3 35
chb03 F 14 7 38
chb04 M 22 4 156
chb05 F 7 5 39
chb06 F 1.5 10 66
chb07 F 14.5 3 67
chb08 M 35 5 20
chb09 F 10 4 67
chbl0 M 3 7 50
chbll F 12 3 34
chbl2 F 2 40 23
chbl3 F 3 12 33
chbl4 F 9 8 26
chbl5 M 16 20 40
chbl6 F 7 10 19
chbl7 F 12 3 21
chbl8 F 18 6 35
chb19 F 19 3 29
chb20 F 6 8 27
chb21 F 13 4 32
chb22 F 9 3 31
chb23 F 6 7 26
chb24 - - 16 21

Gender: Female (F), Male (M)

Duration: approximation of total duration of EEG recordings

Event: a event represents a full epileptic seizures that last for a period of
time

of EEG signals were marked by experienced clinicians.
Table 2 shows the demographic information of dataset B.
Moreover, Figure 2(a) and Figure 2(b) show segments of
seizures and non-seizures, respectively. Clearly, when a
seizure occurs, a group of EEG signals usually show a
dramatic change from the non-seizure states. This will help
to distinguish between seizures and non-seizures.

B. DATA PREPROCESSING

For dataset A, all recordings of subjects are stored in the
files with the suffix .edf, and each case (chbO1, chb02, etc.)
contains 9 to 42 continuous .edf files from a single subject.
In most cases, each .edf file contains about 1 hour of EEG
signals, although those belonging to case chb10 are 2 hours
long, and those belonging to cases chb04, chb06, chb07,
chb09, and chb23 are 4 hours long; occasionally, files in
which seizures are recorded are shorter. This paper selects
the cases of chbOl to chbl7 (TR) for model training and
model tuning, and tests the model with the cases of chb18 to
chb24 (TE). Conceptually, since the electrodes FP1 and
FP2 are distributed near the eyes, they are more susceptible
to interference from eye movements. In order to eliminate
the effects of ocular artifacts on seizure detection, the paper
removes the channels associated with FP1 and FP2, includ-
ing ‘FP1-F7’, ‘FP1-F3’, ‘FP2-F4’ and ‘FP2-F8’. Accord-
ing to international 10-20 system, channels ‘P7-T7’, ‘T7-
FT9’, ‘FT9-FT10’ and ‘FT10-T8’ are removed. Therefore,
this paper selects 14 channels from EEG signals of dataset
A, including ‘F7-T3’, ‘T3-T5’, ‘T5-01°, ‘F8-T4’, ‘T4-T6’,
‘T6-02’, ‘F3-C3’, ‘C3-P3’, ‘P3-O1’, ‘F4-C4’, ‘C4-P4’,
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TABLE 2. Demographic information of dataset B.

Patient_id | Gender | Age Type of seizure Anti-epileptic drug
1d1 F 24 focal seizures Oxcarbazepine, Keppra, Sodium Valproate
1d2 F 37 tonic-clonic Lamotrigine, Keppra
1d3 F 22 unknown type -
1d4 M 37 left limb tonic-clonic Lamictal, Carbamazepine
1d5 F 25 tonic-clonic Keppra, Carbamazepine

I I
P ool A A
Y I :

"M‘

(a)

FIGURE 2. Non-seizure and seizure EEG signals. (a) EEG signals with non-seizure status. (b) EEG signals with seizure status.

‘P4-02’, ‘FZ-CZ’ and ‘CZ-PZ’. In order to get more infor-
mation of EEG signals, another 6 channels (F7-F3’, “T3-C3’,
‘T5-P3’, ‘F4-F8’, ‘C4-T4’ and ‘P4-T6’) are calculated. The
specific calculation method are shown in Eq (1) to Eq (6).

'F7-F3’ = 'FPI-F3’ — 'FP1-F7’ (1)
'T3-C3’ = 'F7-F3’ + 'F3-C3’ — 'F7-T3’ )
"T5-P3’ = 'T5-01" — 'P3-O1’ ?3)
'F4-F8' = 'FP2-F8' — 'FP2-F4’ 4)
'C4-T4’ = 'F4-F§8 — 'F4-C4’ + 'F8-T4’ )
'P4-T6 = 'P4-02° — T6-02’ (©)

Clearly, dataset A is a set of EEG signals containing
20 channels. As continuous seizure onset last for a period of
time, this paper aims to detect seizures that lasts for more
than 10 s [26]. So this paper chooses 5 s long epochs with
80% overlap to detect epileptic seizures per second. However,
after EEG signals are segmented, there will be a distinct data
imbalance problem between epochs with seizure and epochs
without seizure. By using statistical analysis, the duration
of seizures is in the range of 6 s-752 s in dataset A, which
is only a very small part of the monitoring EEG signals.
Figure 3 shows the detailed distribution of seizures duration.
It is easy to find that most seizures last for less than 200 s.
Hence, in order to improve the performance of seizure detec-
tion, the paper removes all epileptic seizures with duration
less than 10 s. In this paper, the number of .edf files with
seizures and non-seizures in the case of chb01 to chb17 were
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FIGURE 3. Distribution of seizures duration.

96 and 398, respectively. The paper selected 96 .edf files
containing seizures as training sets. Further, considering that
the number of seizures is not balanced with the number
of non-seizures in these files after segmented, the dataset
TR is preprocessed using a downsampling method to ensure
the balance of the training dataset. Specifically, 6,620 seizure
epochs were obtained from seizure data according to the
aforementioned segmentation method, and then 6,620 non-
seizure epochs were randomly selected from non-seizure
data. Finally, the paper uses the aforementioned segmenta-
tion method to handle dataset TE, and obtains the number
of seizure epochs and non-seizure epochs are 2,185 and
735,289 in 201 .edf files, respectively.
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TABLE 3. Extracted features.

Category Types Feature parameters Number
Kurtosis, Skewness, Max, Min, Mean 20x 5
Non-zero features of correlation 108
Eigenvalues of correlation matrix between 20 channels 20
Time Max, Min and Mean in the left front area 3
cEEG signals Max, Min and Mean in the left rear area 3
Max, Min and Mean in the right front area 3
Max, Min and Mean in the right rear area 3
Eigenvalues of correlation matrix between 20 channels 20
Frequency | Non-zero features of correlation 108
Amplitude in frequency domain with 1-48 Hz bandpass filter 20 x 48
For dataset B, similarly, we store it as .edf file. Since oo, 0o oo 0o
the entire dataset B is used to test the performance of the 50110 0 0 0 0 O 000 000
. . BT40 0 0 0 000 0 0 0
proposed method, the data preprocessing method is the same 460 00 00 000 0000
. . 0210 0 0 0O OO O OO 00 0
to dataset TE, and obtains the number of seizures epochs and P30 00000 0 00 0 00 0
non-seizure epochs are 2,252 and 1,025,427 in 291 .edf files, O FO O O O N PO
3 F4C4/0 0 0 0 0OOOOOO 000
respectively. P00 00000000 O 000
P402I0 0 0 0 0 0 0 0 0 0 O O 0 00
zZl0 0 0 0 00O OOOOUOU OO
C. SEIZURE DETECTION WITH CEEG r0 9990000000000
F¥F3)0 0 0 0 0 0 0 0O OO OO OOP O 0 00
1) FEATURE EXTRACTION T30 00 0000000000000 000
. . . P30 0O 0O OOOOOOOOOOOOOOOODO
In order to improve the performance of seizure detection B0 0 0 0 0 000000000000 O
using cEEG signals, this paper mainly extracts 2 types of P P O O S S S S S N
features. The first type is to extract features from the time B R A e e S

domain of cEEG signals, and more importantly, according
to the characteristics of seizures, this paper also proposes
a concept of partition for feature extraction. The second
type is to extract features from the frequency domain of
cEEG signals. All of the features extracted from cEEG signals
are summarized as shown in Table 3.

o time domain
The time-domain features extracted include 3 parts. The
first part is the statistical features of each epoch of
each channel, including kurtosis [27], skewness [28],
Max, Min and Mean. Hence, 20 channels have a total
of 100 statistical features in this part. The second part is
the correlation coefficients between any two channels.
Obviously, not all of correlation coefficients between
channels have an effect on seizure detection, especially
those that are far apart. Therefore, the paper introduces
a regional correlation matrix consisting of 0 and 1, with
1 indicating that the two channels are adjacent in spatial
position, and if they are not adjacent, they are repre-
sented by 0. Figure 4 shows the well-defined regional
correlation matrix. In particular, in order to avoid select-
ing duplicate features, all the lower triangular elements
of the regional correlation matrix is set to 0. Then we
multiply the correlation matrix with the regional cor-
relation matrix to obtain the final correlation features.
Moreover, the paper also calculates the eigenvalues of
the correlation matrix and 20 eigenvalues are obtained.
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FIGURE 4. Regional correlation matrix.

FIGURE 5. A schematic diagram of multi-channel partition.

As a result, 128 features are eventually obtained in this
part. In the third part, since the onset of epilepsy usually
originates from a certain part of the brain, including the
left cerebral hemisphere, the right cerebral hemisphere,
the forehead and the posterior lobe. Therefore, the paper
divides it into 4 regions, as shown in Figure 5. Subse-
quently, the paper calculates the Max, Min, and Mean
correlation coefficients of these four regions as part of
the features and obtains 12 features.
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« frequency domain

In order to extract the synchronization character of
EEG signal in frequency domain, the paper filters the
EEG signal with a bandpass filter from 1 Hz to 48 Hz
and applies and Fast Fourier Transform (FFT) algorithm
to do signal transformation of each epoch data and get
the amplitude of all the frequency component. And then
the correlation coefficient of the amplitude in frequency
domain of any two channels will be calculated.

2) CLASSIFICATION BASED ON RF

In proposed method, RF classifier is chosen to be
used since it has shown good performance for seizure
detection [29], [30]. On the one hand, since the dataset used
by each tree in the RF is randomly sampled, it is not sensitive
to the abnormal data; on the other hand, the final predicting
result of the RF classifier is obtained by averaging all the
trees, which is not easy to over-fit. RF classifier proposed
by Breiman [31] contains multiple decision trees and its
output category is determined by the highest number of votes
given by all trees. Through bootstrap resampling technique,
a new training sample set is generated by randomly selecting
k samples repeatedly from the original training sample set N,
and then a RF was generated from k individual decision tree
classifier. The essence of RF classifier is an improvement
of the decision tree algorithm. Multiple decision trees are
merged together, and the establishment of each tree depends
on an independently extracted sample. Each tree in the forest
has the same distribution, and the classification error depends
on each tree’s classification ability and their correlation.

In this paper, the dataset A is divided into training set
(6,620 seizures epochs and 6,620 non-seizure epochs) and
testing set (2,185 seizures epochs and 735,289 non-seizure
epochs in 201 .edf files). Next, input the 1,328 features listed
in Table 3 into the RF classifier. This method of seizure
detection is referred as E1.

D. SEIZURE DETECTION WITH AEEG

1) AMPLITUDE INTEGRATED EEG SIGNALS

In order to further improve the performance of seizure predic-
tion, the paper converts the cEEG signals into aEEG signals
and then detects the seizure by spike detection method. The
processing of original EEG signals are mainly reflected in the
following 3 aspects.

o Quadratic narrow-band asymmetric filtering
aEEG firstly performs a 2-15 Hz quadratic narrow-band
asymmetric filtering on the original cEEG data [32],
filtering out fast waves with very low amplitude and very
low frequency components that are not important for
evaluating brain function, so as to analyze meaningful
frequency ranges.

« Amplitude integration
If the original cEEG signals are compressed directly in
time axis, the very low amplitude component will be
submerged in the high amplitude component and can not
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FIGURE 6. aEEG signal and corresponding lower envelope from chb20
(13.edf) in F7-T3 channel.

be recognized. Therefore, aEEG integrates the ampli-
tude in a semi-logarithmic manner. Specifically, firstly,
take the absolute value of the EEG signals amplitude
to ensure that it is positive. Then, according to [26],
the paper selects 5 uV threshold for amplitude inte-
gration. Hence, the values below 5 ©V on the axis of
ordinate are kept unchanged, and perform logarithm
operation on the values above 5 V.
o Time compression

The time axis of the original cEEG signals are highly
compressed by aEEG to highlight the macro trend.
In this paper, considering that the data sampling rate in
dataset A and dataset B are 256 Hz and 500 Hz respec-
tively, the compression ratio are 256:1 and 500:1 respec-
tively on the time axis, that is, the maximum value
per second of the EEG signal is taken.

Finally, this paper takes a minimum value every 4 s for
the aEEG signals to obtain the lower envelope of the aEEG
signal for subsequent spike detection. Moreover, in order
to visualize the aEEG signal and the lower envelope of the
aEEG signal, Figure 6 show the transformed aEEG sig-
nal and envelope of aEEG signal from chb20 (13.edf) in
F7-T3 channel.

2) SPIKE DETECTION METHOD

Generally, aEEG is extracted from original EEG by compres-
sion in time domain. Epileptic seizure evolves from onset to
end with EEG wave that accentuate the background which
will form spike shape wave in aEEG. The rising edge of the
spike reflects the onset of seizure and the falling edge reflects
the end of seizure. The process of seizure onset to end which
lasts long enough (longer than 10 s) to form spike shape can
be described by spike wave envelope. Hence, after obtained
the lower envelope of the aEEG signals, a spike detection
method [33] based on morphological filter is proposed to
detect seizures in this paper. A morphological filter is a non-
linear filter that uses predefined structural elements to match
signal lines and extract signals whose features are similar to
them. Therefore, the detection of seizures can be regarded as
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FIGURE 7. The flow chart of spike detection.

the detection of spike waves on the lower envelope of the
aEEG signals. However, it can find the seizure lasts longer
than 10 s which is long enough to form spike shape wave
in aEEG. Figure 7 illustrates the method of the spike detection
method.

According to Figure 7, the first step to detect spike waves
in the lower envelope of aEEG signals is selecting a suitable
function as the structural element, which has a great impact
on the signal processing results. In order to remove the tran-
sient components in the lower envelope of aEEG signals and
separate spike wave from background signals, the selected
structural elements should be able to reflect the geometric
characteristics of the lower envelope of aEEG signals, and
its width should be between the spike waves period and
the background signals period. Hence, the paper selects the
triangle as the structural element. According to [34] and [35],
the spikes with sharp peaks and polar upwards are called
negative spikes and downwards are called positive spikes.
Moreover, since the triangle is similar to the spike shape and
its function is simple, only two parameters including width
and height are needed to determine. Therefore, the triangle
structure element g(k) are selected in this paper. The function
is shown in Eq. (7).

G

g(k):A-(l .

>, k=-L,...,0,....,L (7)
where A is the height and L is half of the width.

In this study, the paper uses the average seizure time in
dataset TE as the width of the spike wave, which is 46 s.
Therefore, the value of L is 23 s. Moreover, the minimum
and maximum wave peaks of the lower envelope of aEEG
signals in dataset TE are taken as the range of A which
is [8.5, 10]. In order to suppress the background signal further
on, two set of structural elements are chosen according to
Eq. (7) and the amplitude range of spike as shown in Eq.(8)
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and Eq.(9).
k
g1(k) =8.5- (1—'2—3'>, k=-23, —22,...,23 (8
k
g2(k) =10- <1—|2—3|>, k=-23, —22,...,23 (9)

Next, the cascade open-closing(OC) and close-opening(CO)
operations in mathematical morphology are used to remove
epileptic transient signals in the lower envelope of aEEG sig-
nals. And then an average weighted combination of OC and
CO was utilized to eliminate statistical deflection of ampli-
tude and extract the background signals. In this paper, it is
stated x(n), (n = 0, 1, ..., N — 1) denotes the lower envelope
of aEEG signals and g;(n), i = 1,2;n =0,1,...,M — 1)
is the triangle structure element, N is the length of x(n),
M = 45. Then, the morphological erosion and dilation
operations [36] of x(n) on structural element g;(n), (i = 1, 2)
are defined as Eq. (10) and Eq. (11).

x©gdn) = o IlninzL_]{X(n +m) — gi(m)},
n=0,1,....,.N=M), (=12 (0
(x @ g = o pax {x(n —m) + gi(m)},

=0,1,....M—1
m=M-1,M,...,.N—-1), (=12

(11)

where © and @ represent erosion and dilation operations,

respectively.

Then, the morphological opening operation and closing
operation of x(n) on structural element g;(n), (i = 1,2) are
defined as Eq. (12) and Eq. (13).

(xo g = [(x © &) @ gil(n),
(x o g)n) = [(x D g) O giln),

where o and e represent opining and closing operations
respectively.

As shown in Eq. (10) to Eq. (13), the opening and clos-
ing operations are the combinations of erosion and dilation.
The opening operation can smooth the signal positive pulse
(peak), while the closing operation can smooth the signal
negative pulse (valley). In order to simultaneously remove
the positive and negative pulses in the signals, the paper uses
the method of Maragos [37], [38] to constructs morphological
OC and morphological CO filter. Eq.(14) and Eq.(15) show
the filter calculation method for morphological OC and mor-
phological CO.

OC(x(n)) = x(n)o g1 e g2 (14)
CO(x(n)) = x(n)e g1 08> (15)

The paper assumes that the lower envelope of the aEEG
is x(n) = y(n) + z(n), y(n) is the background signals which
changes slowly, and z(n) is a fast-changing transient signal,
when x(n) after OC operation and CO operation, the paper
can get the background signal y(n) through Eq. (16)

i=1,2 (12
(i=1,2) (13

1
y(n) = 3 [OC(x(n)) + CO(x(n))] (16)
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FIGURE 8. Extraction of spikes from aEEG signals from chb20 (13.edf).

Finally, the spike waves are detected from lower envelope
of aEEG signals by subtracting the background signal from
the original lower envelope signal. Spike signal z(n) can be
extracted by Eq. (17).

z(n) = x(n) — y(n) (17

In order to make the detection results of epilepsy clear and
concise, the paper defines a binary signal w(n) as follow:

1 z(n) > threshold

w(n) =
0 z(n) < threshold

(18)

where threshold = z(n) + o (z(n)), z(n) and o (z(n)) are the
mean and standard deviation of z(n), respectively.

According to the spike detection method in Figure 7,
the peaks detected on the lower envelope of the aEEG signal
are as shown in Figure 8. As can be seen from Figure 8, not
every channel can detect the exact location of the seizure,
and some channels even have a lot of false detection results.
Therefore, the seizures can be detected by the absolute major-
ity voting method, and the result is shown in Figure 10(c).
This seizure detection method is referred as E2.

E. SEIZURE DETECTION WITH CEEG AND AEEG
Typically, cEEG data are always contaminated by artifacts.
Some artifacts are similar to seizures in shape and will result
in false detection of seizures. Although aEEG can help to
reduce the influence of artifacts on seizure detection to a cer-
tain extent, it will also lose a lot of information. For example,
aEEG lacks time resolution and cannot analyze waveforms
and frequency which can be handled by cEEG.

In summary, considering the advantages and disadvantages
of cEEG and aEEG in seizure detection, the paper combines
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FIGURE 10. E3 for seizure detection. 1 represents seizures and

0 represents non-seizures. (a) 2 actual seizure events which are marked
by clinicians occurs at about 1,441 s and 2,498 s, respectively;

(b) 5 seizure events which are detected by E1 algorithm occurs at about
1,460 s, 1,552 s, 1,720 s, 1,890 s and 2,500 s, respectively; (c) 6 seizure
events which are detected by E2 algorithm occurs at about 248 s, 1,452 s,
1,596 s, 2,508 s, 3,136 s, and 3,372 s, respectively; (d) two seizure events
which are detected by E3 algorithm occurs at about 1,452 s and 2,508 s,
respectively.

the advantages of these two methods of seizure detection to
predict the occurrence of seizures. Figure 9 shows the hybrid
framework for seizure detection. Firstly, the paper uses E1 to
detect seizures, and the results are shown in Figure 10(b).
Secondly, the paper uses E2 to perform seizure detection
again, and the results are shown in Figure 10(c). If the same
epoch is detected to be seizure by E1 and E2 simultaneously,
the paper considers it as a seizure event, and the final results
are shown in Figure 10(d). This method of seizure detection
is referred as E3.

Ill. RESULTS

This paper evaluates the performance of the model from the
perspective of machine learning and medical. From a machine
learning perspective, classification accuracy based on epoch
(AC), specificity based on epoch (SP) are calculated. From a
medical perspective, the detection of a complete seizure event
is more suitable for medical scenario application, so sensitiv-
ity based on event (SE) and false positive ratio based on event
(FPRE) are calculated. Hence, this paper uses AC, SP, SE and
FPRE to test the generality of the proposed method in dataset
TE and dataset B. The proposed methods are implemented
using python 3.5 with a workstation: Intel (R) Core (TM)
i5-8400 CPU @ 2.58 GHz and 8 GB of RAM.

A. PERFORMANCE EVALUATION
In order to evaluate the generality of the proposed method,
confusion matrix (CM) will be calculated to show the
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difference between the result given by the proposed method
and the marks of experienced clinicians as shown in Eq. (19).
S;; represents the number of epochs that are marked to be
class i and are classified to be class j. In the CM, seizures
and non-seizures are represented to be class 1, and class 2.

Si1 S 12]

(19)

CM =
[521 S22

According to CM, AC and SP can be calculated to evaluate
the performance of the proposed method as shown in Eq. (20)
and Eq. (21). Among them, the AC represents the percent-
age of correctly classified number of epoch of all testing
epoch. SP is the rate of correctly detected non-seizure epochs
against the actual number of non-seizure epochs detected
by the proposed method. The higher the SP, the higher the
detection rate of non-seizure.

2
Y
AC = —22'=‘2 ! (20)
Zi:l Zj:l Sij
S
sp=_—"2_ 1)
So1 4+ S22

SE is the rate of correctly detected seizure event by the
proposed method against the actual number of seizure event.
Eq.(22) shows its calculation method. FPRE is the number
of false alarms per hour and its calculation method is shown
in Eq. (23).

_ NUM getected

SE = (22)
NUM gcryal

where NUM getected and NUM gerq1 represents the number
of seizure events detected by the proposed method and the
number of actual seizure events, respectively.

FP
FPRE = — (23)
H

where FP represents the total event of false positive and
H is the total duration of EEG recordings. An event represents
the process from seizure onset to seizure end which lasts for
a period of time, so an event may contain multiple epochs.
In this paper, the number of non-seizures epoch is much larger
than that of seizure epoch, so FPRE can better reflect the
performance of the proposed method from actual medical
practice.

B. TESTING AND VALIDATION RESULTS

In the CHB-MIT dataset, the paper implements E1, E2 and
E3 to obtain a intuitive display of the results of seizure
detection as shown in Figure 10. It can be clearly seen that the
effect is not good when the E1 and E2 are used alone. It can be
seen from Figure 10 that E1 detects 5 seizure events includ-
ing 2 actual seizure events and E2 detects 6 seizure events
including 2 actual seizure. When combining the advantage of
E1 and E2, E3 detects only two actual seizure events without
false detection which improves the detection performance
obviously.
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TABLE 4. Performance of different methods for dataset TE with training
dataset TR.

Methods | AC (%) | SP (%) | SE (%) | FPRE (times/h)
El 96.42 96.45 89.36 3.51
E2 98.92 98.94 89.36 0.94
E3 99.36 99.41 82.98 0.57

TABLE 5. Performance of different methods for dataset B with training
dataset TR.

Methods | AC (%) | SP (%) | SE (%) | FPRE (times/h)
El 95.52 95.54 89.47 9.11
E2 98.75 98.75 94.74 1.09
E3 99.23 99.23 89.47 0.71

In order to evaluate the generality of the proposed method,
the paper uses AC, SP, SE and FPRE to evaluate the perfor-
mance of the methods on two independent datasets. Table 4
and Table 5 show the AC, SP, SE and FPRE obtained by
El, E2 and E3 in dataset A and dataset B. It is easy to find
that E3 is competitive with the E1 and E2 in both datasets,
especially on AC, SP and FPRE. In dataset A, for AC and
SP, E3 is about 3% higher than E1 and has a weak advantage
over E2; for FPRE, E3 is much lower than E1 and has a weak
advantage over E2. In dataset B, for AC and SP, E3 is about
4% higher than E1 and has a weak advantage over E2, while in
terms of FPRE, E3 has a distinct advantage over E1. However,
for SE, E3 is lower than E2 on both datasets. It can also be
seen from Table 5 that mainly E1 leads to a decrease in SE,
but significantly improves the AC, SP and FPRE.

Furthermore, in order to analyze the causes of seizures
not detected by the method, the paper lists patient-by-patient
results in Table 6 and Table 7. In Table 6, the case of chb21 has
4 seizures in actual case, but E3 did not detect seizures.
Figure 11(a) describes the variation of EEG from non-seizure
state to seizure state which are separated by a red division
line. By observing EEG in Figure 11(a), it is easy to find that
there is no sharp change in the EEG signal at seizure onset.
The signal cannot be detected by aEEG, so E3 does not detect
it. Likewise, Figure 11(b) describes the variation of EEG from
seizure state to non-seizure state which are separated by a
red division line. As shown in Figure 11(b), EEG signals
in seizure state and non-seizure state show similar features
which causes epileptic seizures in Id3 not detected.

Moreover, in order to better understand the impact of
different window sizes (duration of an epoch) on the perfor-
mance of the proposed method, Figure 12 shows the perfor-
mance of the proposed method with different window sizes
in dataset TE and dataset B. In Figure 12(a), It is can be seen
that AC and SP (which are very close, almost coincidence)
increase slightly with the increase of window sizes and tend
to be flat when the window size is 5 s. Meanwhile, SE also
achieves the optimum size in dataset B when the window size
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TABLE 6. Patient-by-patient results of E3 for dataset TE.
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FP signals of chb21 and 1d3. (a) FP signals of chb21. (b) FP signals of Id3. (c) FP signals of 1d3.

TABLE 8. Performance comparison in dataset A.

Case |AC (%)|SP (%)|SE (%) | FPRE (times/h) | Actual | Detected Methods AC (%) | SP (%) | SE (%) | FPRE (times/h)
chb18 | 98.68 | 98.74 | 66.67 0.79 6 4 Nasehi et al. [39]. (2013). - - | 98.00 0.06
chbl9 | 99.47 | 99.47 100 0.57 3 3 Samiee et al. [20]. (2016) - 99.10 | 91.13 0.35
chb20 | 99.81 | 99.84 | 87.5 0.22 8 7 Orosco et al. [22]. (2016) - 99.9 | 875 0.9
chb21 | 99.78 | 99.95 0 0.06 4 0 Zabihi et al. [40]. (2016). 88.27 | 93.11 | 93.21 -
chb22 | 99.58 | 99.58 100 0.52 3 3 Selvakunmari et al. [41]. (2018)| 96.77 | 97.97 | 95.01 -
chb23 08.97 98.97 100 0.75 7 7 Tsiouris et al. [42] (2018) - - 88.00 8.1
chb24 | 99.30 | 99.33 | 93.75 127 16 15 Kostas et al. [43]. (2018). - - 10.13
Overall| 9936 | 99.41 | 82.98 0.57 47 39 proposed method (E3) 99.36 | 99.41 | 82.98 0.57
Actual : number of actual seizure event
Detected : number of seizure event detected .
It can be observed that the AC calculated by E3 are higher
TABLE 7. Patient-by-patient results of E3 for dataset B. than that of.the same dataset in previous literature. However,
the FPRE in the paper of Nasehi and Pourghassem [39]
. X are much better than proposed method in this paper. By ana-
Patient_id | AC (%) | SP (%) | SE (%) | FPRE (times/h) | Actual | Detected . . .
lyzing the paper of Nasehi and Pourghassem [39], it can be
ldl 98.75 | 98.75 | 100 122 4 4 found that the dataset is divided into training dataset and
1d2 99.25 | 99.25 | 100 0.79 2 2 testing dataset with EEG data of all the patients instead
1d3 99.62 | 99.65 | 75.00 0.30 4 3 of different patients which can not show the performance
Id4 99.61 | 99.64 | 75.00 041 4 3 of seizure detect%on of other patlgnts whose eplle'ptl.c EEG
15 0897 | 9897 | 100 056 s s data are not available before testing. Moreover, it is non-
‘ ' ’ trivial to note that the studies of Samiee et al. [20] and
Overall | 99.23 | 99.23 | 89.47 0.71 19 7 Orosco et al. [22] are not based on the whole CHB-MIT

is 5 s. However, in Figure 12(b), FPRE achieves the optimum
size when the window size is 8 s. Figure 13 shows the runtime
of the proposed method for different window sizes on dataset
TE and dataset B. It can be found that the runtime of the
proposed method is much longer than that of 5 s when the
window size is 8 s. Hence, this paper finally chooses
the window size of 5 s.

Finally, the paper compares the evaluation parameters of
seizure detection methods proposed in this paper with the
results reported in previous literature, and all of them are on
CHB-MIT dataset. As it has been summarized in Table 8.
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dataset, so FPRE and SP may be overestimated. Hence,
E3 also has a significant improvement in the performance
of FPRE. it is nearly 7 times/h lower than the study of
Tsiouris et al. [42], and even 9 times/h lower than the study of
Kostas er al. [43], which has obvious significance in medical
diagnosis. In term of SE, because it is calculated from an
medical perspective in an event-based manner, the result are
lower than in most literature, but more suitable for medical
scenarios.

In summary, the results of this paper indicate that E3 per-
forms better than E1, E2, and other seizure detection meth-
ods in the literature in dataset A with the AC, SP and
FRPE obtained by E3 are 99.36%, 99.41% and 0.57 times/h,
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FIGURE 13. Runtime of proposed method in different window sizes. The
overall length of dataset TE is about 205 hours and the overall length of
dataset B is about 286 hours, so dataset B is above dataset TE.

respectively. Moreover, the proposed method also shows
good performance in dataset B, indicating that the proposed
method behaves strong generalization.

C. APPLICATION OF PROPOSED SYSTEM

Since the proposed method is fully automated and can be
easily implemented as a software application for the clinical
diagnosis, a portable Automatic Seizure Detection System
(ASDS) is developed. ASDS mainly includes 5 modules:
data acquisition, data transmission, data preprocessing, fea-
ture selection and seizure detection. The system schematic
diagram is shown in Figure 14.

In the ASDS, the portable EEG device developed by
Hangzhou Neuro Science and Technology Co., Ltd. is used
to collect EEG data at a sampling rate of 500 Hz. Figure 15
illustrates the method of collecting EEG data. In parallel,
the collected EEG data is synchronized to the mobile APP
via Bluetooth. Then the EEG data will be uploaded to the
EEG cloud platform by through the mobile APP. And then,
the hybrid method mentioned in this paper will be applied to
detect seizures and return the diagnosis results to the mobile
APP for convenience of patients or doctors to take medical
measures. In general, it takes about 10 s for an hour of
EEG data to get the results of seizure detection through the
proposed system shown in Figure 14 but does not include the
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FIGURE 14. Schematics of the proposed system.

FIGURE 15. Demonstration of collecting EEG data.

time required by the data transmission module, as this varies
depending on the network.

The ASDS allows patients to obtain high-quality medical
resources at home without queuing in the hospital, which
will improve patient experience and reduce medical costs.
In addition, patients can get customized services from doctors
and receive the latest medical advice.

IV. DISCUSSION
Various methods have been used to detect seizures [44]-[46],
but most of them focus on feature extraction in cEEG signals.
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In order to improve the performance of seizure detection,
this paper combines cEEG signals with aEEG signals for
EEG seizure detection. The FPRE of the proposed method
reaches 0.57 times/h and 0.71 times/h on two independent
datasets, respectively, indicating that the proposed method
in this paper is an accurate tool in classifying the seizure
epochs. In fact, the proposed feature extraction strategy from
multi-domain based on multi-channel EEG signals can cap-
ture more discrimination information than a single EEG sig-
nal and the hybrid method can integrate the advantages of
cEEG-based seizure detection algorithm with aEEG-based
seizure detection algorithm. Hence, the main contribu-
tion of this study is the feature extraction strategy and
hybrid method. Furthermore, basing on the proposed method,
the paper has developed a portable ASDS, which can reduce
the burden of clinicians in processing large amounts of cEEG
signals through visual observation, and accelerate the diag-
nosis of epilepsy.

However, considering the aEEG is compressed in time to
display peak-to-peak amplitude values of filtered and recti-
fied EEG, the proposed hybrid method works well in condi-
tion that seizure events last for more than 10 s.

Moreover, the study in this paper is mainly focused on
the detection of seizures and non-seizures by separating the
EEG dataset into two classifications without considering
the epileptic focus information. Further research can divide
EEG data into more classifications such as non-seizure, pre-
seizure, seizure and post-seizure. And also, the detection
of epileptic focus information can be included in seizure
detection.

V. CONCLUSIONS

The present study is undertaken to design an automatic
seizure detection system based on cEEG signals and
aEEG signals, and evaluate the generality of the system.
In order to improve AC, SP, SE and FPRE of the pro-
posed method, a new feature extraction strategy and hybrid
method are proposed. Moreover, two independent datasets
have been used to validate the performance of the pro-
posed method. Particularly, the FPRE obtained by E3 reached
0.57 times/h and 0.71 times/h on two independent datasets,
respectively.

VI. ETHICAL STANDARDS

This Study has been approved by the Second Affiliated
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