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ABSTRACT A variable magnification ratio transmission structure powered by the electric actuators is
proposed to improve the flexibility and portability of the exoskeleton under heavy load carrying condition.
The parameters of connecting rod size and hanging position are optimized to ensure that the output torque
of active joints can fully envelope the demand load area. The control strategy based on intrinsic sensing is
designed to realize the automatic human motion intention prediction and flexible trajectory tracking. The
newly developed split embedded connecting rod can accurately measure the human–robot interaction (HRI)
force applied to the exoskeleton and extract the human motion intention without being affected by the
differences in wearing status. The force tracking control based on the zero-force following is modified by
feedforward compensation with extreme learning machine (ELM), which enhances the response speed to
human motion intention and reduces the HRI force by 70.6%. Based on multi-sensor information, stacked
autoencoder deep neural networks (DNNs) are utilized to realize the automatic locomotion transition and the
corresponding control parameters’ switching. After optimization by a hybrid algorithm of genetic algorithm
and particle swarm optimization (GA_PSO), the identification accuracy is enhanced from 96.2% to 99.7%.
The adaptive neural-fuzzy inference system (ANFIS) is used to analyze the plantar pressure to achieve
flexible switching between the swing phase and the stance phase. The experiments under various gait motion
trajectories assisted by novel weight-bearing exoskeleton are carried out for evaluation, and the performance
of the proposed control strategy based on motion intention prediction, locomotion mode identification, and
gait phase switching is effectively verified.

INDEX TERMS Variable magnification ratio structure, intrinsic sensing, intention prediction, locomotion
state identification, GA_PSO, DNNs, ANFIS, robotic exoskeletons.

I. INTRODUCTION
Weight-bearing lower limb exoskeletons are widely used to
assist the human body to enhance muscular strength for
bearing extra loads, improving body function and reduc-
ing metabolic cost. Recent notable research on enhanc-
ing load-carrying capabilities and related technology have
extended applications to practical areas [1]–[3]. Aiming to
enable super-soldiers for carrying large quantities of military
capital, high-speed marching, and mixed operations on com-
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plex roads, research groups at the University of Califor-
nia successively developed the Berkeley lower extremity
exoskeleton (BLEEX) [4], ExoHiker & ExoClimber and the
human universal load carrier (HULC) [5]. Under the support
of the Exoskeleton for Human Performance Augmentation
(EHPA) project, the company Sarcos has also developed a
series of hydraulically driven full-body exoskeletons that can
perform complex movements such as running, jumping, kick-
ing and push-ups [6]. The power assisting suit (PAS) devel-
oped by the Kanagawa Institute of Technology is powered
by pneumatic actuators arranged in the joints of the shoulder,
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elbow, hip and knee to assist nurses in the daily care and reha-
bilitation of patients [7]. Arranging the actuators in the same
way as the PAS, the active joints of the wearable agri-robot
(WAR) developed by the University of Tokyo are driven by
ultrasonic motors to alleviate the physical burden in the labor
process [8]. The hybrid assistive limb (HAL) developed by
the University of Tsukuba [9] and the HERCULE V3 devel-
oped by RB3D [10] have two sets of electricity-powered
servo actuators placed on the knee and hip joints; these
actuators help reduce the burden on the waist when the upper
limbs are used to lift heavy objects. Despite these efforts,
a number of technological challenges remain in research on
assistance efficiency, energy consumption, lightweight struc-
ture and actuator system maintainability. Although hydraulic
and pneumatic systems can provide larger output torque than
electricity-powered actuators, the system circuits are com-
plicated, the maintenance cost is high, the overall weight is
large, and the energy utilization efficiency is low. In addi-
tion, improvements in portability and weight reduction are
needed. The linear telescopic cylinder as the output device
needs to be arranged outside the rotating joint, and the hinge
hanging points at both ends are respectively arranged on
the thigh and the calf structure. The underlying principle is
to change the length of one side of the triangle to achieve
changes in the joint angle and driving torque [11]. When
the output torque reaches the peak point according to this
arrangement, the required telescopic rod and the occupied
space are larger [12], [13]. The use of servo motors as the
power source increases the accuracy of the torque control
effect, and the system is easier to maintain and adjust. How-
ever, if the active joint is directly driven by the gear pairs
facilitates, although the transmission form and implementa-
tion is easy, the torque transmission for heavy loads requires
large-diameter gears and high-power motors which should be
avoided in compact structure design. In addition, the applied
load torque increases with the joint angle when the joint bends
in the stance phase [14]–[16]. Since the bevel gear transmis-
sion structure can only output a constant torque, resulting in
poor torque availability and guarantee of torque demand at
various positions during the motion trajectory. Therefore, it is
necessary to design a variable magnification ratio structure
actuated by servo motors so that the output torque under
heavy-load-carrying conditions can completely envelope the
load demand area, improve the utilization of the motor rated
torque, minimize the weight of the structure and increase
the mobility and portability of the exoskeleton to the utmost
extent.

As the exoskeleton is a wearable operating system
dominated by human consciousness, the control strategy
needs to incorporate the human body into the control
system and consider interventions caused by behavioral
differences. For precise tracking control, the exoskele-
ton needs to have the ability to perceive the human
motion intention based on large quantities of interac-
tion information in the human-machine coupling system.
The electromyography (EMG) feedback signals and joint

angles are analyzed to establish the mapping relationship
between motor torques and EMG signals [17], [18]. Through
the brain-computer interface, VR technology and mecha-
tronics control technology, the virtual environment exoskele-
ton rehabilitation platform of the Mindwalker is built so
that patients can use electroencephalograph (EEG) signals
to achieve real-time operation of the exoskeleton [19]. The
lower extremity powered exoskeleton (LOPES) [20] and the
HIT-LEX [21] measure the human-robot interaction (HRI)
force transferred on the bundle connectors to predict human
motion intention.

The advantage of the above methods is that they can
directly extract the interaction. However, the main drawback
is mainly manifested in the aspect that since the bundling
components are generally placed at the connection position
with the thigh, the calf and the foot, the measured HRI forces
vary with the wearing status and physical response of the
human body, which will lead to measurement deviations and
decoupling interference of the HRI value. Thus, an adaptive
control strategy based on intrinsic sensing is necessary to
ensure that the extraction of HRI is independent of wearing
status [22]. Since the connecting rod is both a transmission
component and an elastic measuring and sensing unit in the
transmission structure, the arrangement positions of the con-
necting rod determine the size and force characteristics. After
assembly and installation, measurement is directly performed
by the intrinsic sensing, which avoids structural redundancy,
initial deviation and additional calibration due to the bundling
of new wearers. As the transferred HRI extracted from to the
mechanism usually lags behind the actual intention, feedfor-
ward compensation can enhance the response speed of the
control system for precision tracking control [23], [24]. As a
machine learning algorithm with high learning efficiency and
generalization ability, the extreme learning machine (ELM)
is utilized in prediction estimation [25]. Combined with the
tracking differentiator (TD), ELM can predict the multi-order
differential signals with a smaller phase delay compared with
the associated method of Kalman-filter-based forecast and
differential derivation.

In real working situations, it is necessary to know the loco-
motion mode condition and switch the corresponding control
parameters to complete tasks. In addition, an adaptive smooth
locomotion transition can enhance safety and balance to
achieve a more natural gait trajectory. Based on the extracted
signals from the exoskeleton system, an efficient and precise
locomotion state identification method for the locomotion
mode and gait phase is required. In machine learning, it is
difficult to search for a good classification model even if
the what-if space contains good hypotheses, especially when
the data quantity is too large and the feature extraction is
poor. Furthermore, Yuan et al. noted that a good terrain iden-
tification method should meet four requirements, including
high identification accuracy, minimal sensors embedded into
the mechanism, short identification delay, and low computa-
tion load [26]. Although the introduction of kernel principal
component analysis (kPCA) and other methods can reduce
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the data dimension and the computational cost of the algo-
rithm to a certain extent [27], the extraction of the original
data features will be affected, and the improvement of the
identification speed is not obvious. Seeking intelligent feature
extraction methods and improving identification efficiency
are still the focus of machine learning. In deep learning, since
convolutional neural networks (CNNs) uses convolution ker-
nels for feature extraction and feature mapping in selected
regions, images of complex features and high-dimensional
matrices can be effectively identified [28], [29]. However,
as the poorly correlated exoskeleton sensor information
mixed with joint angles, the measured HRI force and other
intrinsic feature signals are arranged into a two-dimensional
matrix as data samples for training, it is difficult to accurately
identify various locomotion modes due to the lower dimen-
sionality. For deep neural networks (DNNs), the weights
obtained from unsupervised learning can be used as the ini-
tial values of the subsequent supervised learning for deeper
training. In the structure of the stacked autoencoder DNNs,
the lower layer neurons are fully connected with all upper
layer neurons, which successfully improves the identification
accuracy significantly [30], [31]. Therefore, DNNs is more
suitable for intelligent feature extraction and high-precision
locomotion mode identification of medium-dimensional data
compared with machine learning and CNNs.

However, the identification accuracy is mainly affected
by the key parameters in the network structure, such as
the weight regularization, sparsity regularization and spar-
sity proportion. To obtain the optimal parameter settings
in the training, several optimization methods such as grid
search [32], genetic algorithm [33], and PSO [34] have been
used with success. If the initial positions in the GA optimiza-
tion process are inappropriate, the optimization result may
fall into a local optimum, which often leads to premature
convergence of the solution and convergence error. Although
the PSO algorithm has high precision, the global convergence
speed is usually slow. To ensure the rapid convergence of the
control system and maintain stability, the GA algorithm is
used tomodify the PSO algorithm, and the GA_PSO is finally
selected to optimize the neural network parameters [35], [36].

Since the kinetic equations of the exoskeleton in the
stance phase and the swing phase are based on different
pedestal points, it is necessary to switch the corresponding
control models and parameters to calculate the joint output
torque during the motion trajectory. The ground reaction
force (GRF) is collected using a wearable plantar pressure
measurement system to judge the phase state of a single leg
based on its numerical change when the exoskeleton contacts
the ground [37]. However, separating the swing phase and the
support phase according to the critical region alonemay cause
oscillation at the time of switching, and the determination of
the critical value has higher requirements for the repeatability
of gait and the stability of pressure values. Therefore, a clas-
sifier with strong generalization ability is necessary for accu-
rate phase switching. A hybrid identificationmethod adaptive
neural-fuzzy inference system (ANFIS) that combines the

adaptive learning ability of a neural network and the inference
analysis of a fuzzy system is used as an automated learning
tool for identification [38], [39]. Instead of depending on the
adequacy of training samples, the identification performance
remains accurate owing to the strong generalization ability.

Therefore, a novel lower limb exoskeleton actuated by a
variable magnification ratio structure is developed in this
paper. With optimization of the hanging points and structure
parameters, the output torque can fully envelop the demand
load area and achieve compactness and a lightweight design
for weight-lifting assistance. An intrinsic sensing predic-
tion control strategy with ELM feedforward compensation
is proposed to perceive the intention trajectory through the
HRI force extracted from the split embedded connecting rod
sensors assembled into the interior transmission structure.
For automatic locomotion identification with multi-sensors,
a hybrid GA_PSO optimized DNNs and ANFIS are sep-
arately utilized to identify the locomotion modes and gait
phase. The corresponding verification experiments prove the
notable performance of the proposed control strategy.

II. VARIABLE MAGNIFICATION RATIO STRUCTURE
DESIGN AND PARAMETER OPTIMIZATION
As shown in Fig. 1, the lower limb exoskeleton is initially
designed based on biological principles which is required
to retain adaptability to the versatility and flexibility of the
lower limbs. Aided by analysis of the enormous Clinical
Gait Analysis (CGA) dataset of human locomotion features,
the active hip joint and knee joint are actuated by screw-
crank-slider units driven by EC servo motors.

FIGURE 1. The principle prototype of the electricity-powered lower limb
exoskeleton.

The active DOFs of the hip and knee joints are arranged
on the sagittal plane, which in turn supports the load in the
direction of gravity. The passive DOFs of the hip joints are
arranged on the frontal plane, allowing free follow-up for
side-swing motion. In contrast to the transmission structure
of the linear telescopic cylinder, the screw-crank-slider units
ensure that the inertia center remains on the stroke plane of
the screw when the active DOF joints move, accompanied by
minor adjustments in a smaller range. The proposed arrange-
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ment reduces the calculation of the dynamic center position
of the connecting rod inertia and the approximation error
caused by the simplified estimation when the dynamic model
is established. Furthermore, the hip joint and knee joint can
flexiblymovewithin the range of−30◦ to 100◦ and 0◦ to 120◦

at large output torquewhenwearer works under the assistance
of exoskeleton as shown in TABLE 1.

TABLE 1. Joint range of motion.

FIGURE 2. The schematic diagram of the variable magnification ratio
transmission structure of the hip joint and knee joint.

As shown in Fig. 2, the motors of hip joint and knee joint
are arranged in the opposite directions. In Fig. 2, lk1, lk2, lk3,
lk4, Lk and lh1, lh2, lh3, lh4, Lh are distance parameters between
hanging points and the rotating joints on the connecting rods.
xk, xh are the available travel range of sliders. α, β are the
joint angles of active knee and hip joints, and φ, ϕ, γ , δ
are parametric angle variables. The size parameters of the
connecting rod directly determine the magnification ratio
of the transmission structure and the joint rotation ranges.
Therefore, the actual demanded driving torque at all target
positions during motion gaits should be satisfied on the basis
of ensuring a lightweight, simplified transmission structure.
According to the working principle of the crank-slider struc-
ture, the parameters of connecting rod size and the position
of the hanging points are optimized.

Due to phase transition and shock buffering during motion
gaits, it is difficult to obtain accurate torque characteristics

directly from rigid body dynamics simulations. After estab-
lishing the human-exoskeleton-environment simulation plat-
form, the co-simulation by Adams/Life-mod can acquire
relatively referable joint torque characteristics when the
exoskeleton bears an approximate maximum load of 55 kg.
Therefore, the characteristics between joint angles and
torques under the motion gaits of walking, squatting, stair
ascent, and stair descent are obtained [14]–[16]. Based on the
above simulated curves, the optimal parameters for the design
of the crank-slider transmission structure are optimized to
ensure that the motors working under rated conditions can
meet the driving requirements during the corresponding gait
motions.

According to the power conservation principle, the variable
magnification ratio kknee and khip of the transmission structure
can be expressed as

kknee = lk2 sinα − lk1 cosα

+
(lk3 + lk1 cosα − lk2 sinα)(lk1sinα + lk2 cosα)√

L2k − [lk3 + lk1 cosα − lk2 sinα]2

khip = lh sin(γ + β)

−
lh cos(γ + β)[lh sin(γ + β)− lh3]√

L2h − [lh sin(γ + β)− lh3]2

(1)

In the optimization process, the constraints are the screw
stroke and the peak position of the magnification ratio. Thus,
the constraint equations can be written as
∂TJknee
∂α

=
2πTMknee

s
·
∂kknee(Lk, lk1, lk2, α)

∂α
|α=115.4o

.
=0

∂TJhip
∂β
=

2πTMhip

s
·
∂khip(Lh, lh, β)

∂β

∣∣
β=87.7o

.
= 0

(2)

where TJknee, TJhip are driving torques transmitted to the
active rotational joints of the exoskeleton, TMknee, TMhip are
output torques provided by the electricity-powered motors,
and s is the screw lead.

Optimizing the structure parameters of the connecting rod
by taking the coverage area of the enveloping curve, the curve
inflection point position and the screw stroke as constraints,
the minimum reduction ratio for the actuator is reduced from
6 to 3.5, which makes the screw stroke retain enough margin
after reducer is added and increases the maximum rotational
speed of the joint and thus greatly improves the maneuver-
ability under weight-bearing working conditions. The gray
curves in Fig. 3 represent the rated output torque of the active
joints through the magnification of the screw-crank-slider
when the motors work under the rated conditions. The black
curves represent the maximum envelope of the output torque
by the transmission structure with optimized parameters. The
colored dotted curves in the middle region represent the out-
put characteristics during the four gait trajectories. Therefore,
although the position of the torque extreme point deviates
from demanded position, the output capacity at a small angle
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FIGURE 3. The output characteristic curves of joint torque during gait
motions under heavy-load-carrying conditions.

range is greatly improved; thus, the output characteristics can
satisfy the actual needs within the angular activity range and
retain a certain margin. Thus, the optimization results have
been effectively verified.

FIGURE 4. The structure of the connecting rod for measuring HRI force.

To obtain the transfer stress on the connecting rod and ana-
lyze the actual strain during gait cycles, finite element analy-
sis based on ANSYS is carried out to arrange the position of
force sensors to determine the range andminimum resolution.
As shown in Fig. 4, the newly developed split embedded
connecting rod is composed of three parts to measure the
corresponding change: the outer support arm, which mainly
bears the transmission torque and drives the screw-slider to

rotate the hip joint and the knee joint freely; the inner strain
beam, which amplifies the strain transferred on the outer
support arm; and the full-bridge strain gauge group, which
converts the strain into the physical quantity of the resistance
value.

Based on the optimization result of the connecting rod
structure, the characteristic length parameters and the hang-
ing points can be obtained. According to the simulation
curves of joint torques under different gait trajectories by
the Adams/Life-mod co-simulation platform, the relationship
between the applied driving force transferred on the con-
necting rod and the joint angle is extracted and then used to
determine the range and resolution of the full-bridge strain
sensor embedded in the connecting rod. Since the two ends of
the connecting rod are bearing hinges and the stress direction
passes through the line connecting the center points of the
hinges at both ends, the connecting rod can be approximately
regarded as a two-force rod. The connecting rod needs to be
calibrated and tested to obtain the stiffness coefficient and
resolution for extracting the HRI force.

According to the torque conservation principle, the torque
calculation is performed on the rotation center of the active
joints Oknee and Ohip respectively. The applied force trans-
ferred from the motor to the connecting rod is solved, and the
mathematical expressions can be written as
Fhip =

TJhip

lh sin[arcsin[
lh sin(γ+β)−lh4

Lh
]+ γ + β − 90o]

Fknee =
TJknee

lk sin(α − ϕ + arcsin[ lk3+lk1 cosα−lk2 sinαLk
])

(3)

FIGURE 5. The applied force transmitted on the connecting rods during
gait motions under load-carrying conditions.

Fig. 5 shows the relationship between the applied force and
the joint angle during the four motion trajectories of walking,
squatting, stair ascent and stair descent. When the exoskele-
ton is in the stance phase, the maximum force mainly appears
in the process of load-carrying and the collision impact with
the ground. The instantaneous acceleration produced by rapid
motion will also increase the HRI value. Therefore, it needs
to reserve sufficient margin over the measurement range. For
the active knee joint when the human motion is in the swing
phase, the angular velocity is larger and the motion range
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is wider than that of the active hip joint, so the flexibility
of the active knee joint is required to be higher. Thus, it is
necessary to appropriately improve the detection resolution of
HRI force of the knee joint, thereby improving the sensitivity
of the joint motion, and quickly responding and tracking the
human intended trajectory. According to the above require-
ments, the connecting rod is assembled and calibrated with
the actual parameters shown in TABLE 2.

TABLE 2. Properties of optimized connecting RODS.

The original signal change of the force sensor on the
connecting rod is amplified through AD8420 chip on the
peripheral circuit and is transferred into the ADC pin of
STM32F103C8T6. The stiffness in the table II represents that
if 1kgf force is applied at both ends of the connecting rod,
the signal change measured in the digital circuit is 18±1.2 for
hip joint and 32±2.3 for knee joint. Full scale of ADC signal
in the chip is 4096 respected to 3.3V in the form of analog
signal. The HRI force in this paper is expressed in the form
of digital signal, which is more convenient compared with
the expression in the form of analog signal, and is easy for
numerical conversion in the following HRI curves.

III. INTRINSIC SENSING PREDICTION CONTROL
STRATEGY WITH FEEDFORWARD
COMPENSATION
A. INTRINSIC SENSING FOR MOTION INTENTION
By introducing the previous system structure, the crank-
connecting rod-screw structure is adopted to realize the power
transmission of the electric actuators. Therefore, the strain
gauge sensor based on the full-bridge circuit embedded on
the connecting rod can directly detect the HRI force driven
to the exoskeleton structure. According to the force analysis
on the transfer process, the resultant driving force on the
connecting rod is decomposed into two parts:

FL = ξ (θ )Fgravity + fHRI (4)

To compensate for the error of the gravity term caused
by model estimation and the dynamic gap, it is necessary
to calibrate the load force generated by the gravity term
Fgravity at each joint angular position during static equilib-
rium. In the subsequent extraction of human-robot interac-
tion, the extracted HRI force can be corrected by a function

expression ξ (θ ), which is the ratio between the actually mea-
sured value and the theoretical analysis value. To describe
the functional relationship between the human body and
exoskeleton, the mathematical expression of HRI is equiv-
alent to a simplified spring model:

fHRI = K (θ̂d − θ ) (5)

where K is the stiffness coefficient of the connecting rod.

FIGURE 6. The intrinsic sensing prediction of human intended motion
trajectory.

The noise filter is designed to smooth the HRI force signal
online, and the demanded autonomous motion trajectory of
the human body can be extracted as shown in Fig. 6. The HRI
force has a fixed phase deviation with the desired trajectory
under actual conditions that remains stable within a certain
amplitude and frequency bandwidth. The HRI is generated
ahead of the actual movement of the exoskeleton, which
allows the system to update the desired gait trajectory. Since
the desired motion trajectory is determined by the human
body’s intention and the HRI model cannot be universally
defined, the parameters need to be adjusted through personal-
ized customization according to comfort and followability in
actual experiments. If a parameter is too small, it will lead to
serious hysteresis of following, making human body exercise
difficult. If a parameter is too large, the systemmovement will
be ahead of the human intention, which will interfere with
human motions and bring obstacles.

B. CONTROL STRATEGY WITH FEEDFORWARD
COMPENSATION
To accurately extract the predictive multi-order differential
signals at the next control cycle, a combination of ELM and
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TD is introduced in the control strategy. The step-varying TD
is superior to the traditional differential calculation method
for extracting multi-order differential signals for discontin-
uous signals with random noise. Based on the filtered sig-
nals and their differentiated signals, the initial signals and
the phase delays produced through TD are compensated by
prediction. Good results can be obtained by the adoption of
step-varying TD and prediction under the condition of the
sampled signal with noise and varying sampling time. The
tracking form θk+1T and derivative form θk+1TD of the original
signal are {

θk+1T = θkT + h · θ
k
TD

θk+1TD = θ
k
TD − δ · sat(g

k , δ)
(6)

where δ = rh, h is the length of the integral step, r defines
the speed of tracking, and sat(gk , δ) is the piecewise function.
If the condition gk ≥ δ is true, the piecewise function is
equivalent to sign(gk ). Otherwise, it equals gk /δ.

The mathematical expression of gk is given as [40]

gk =


θkTD + sign(y

k ) ·

√
8r
∣∣yk ∣∣+ δ2 − δ

2
,
∣∣yk ∣∣ ≥ δh

θkTD +
yk

h
,

∣∣yk ∣∣ < δh

(7)

where yk = θkTD−θ
k
+h ·θkTD represents the tracking error of

TD. A larger r implies faster tracking of θ by θkT . However,
if the noise signal is doped into θ , it will affect the tracking of
θkT . To filter the noise of θ

k
T , choosing a proper h is necessary

as it can filter more noise and compensate the phase loss
between θkT and θ .
ELM is a type of machine learning algorithm designed

for Single Layer Feedforward neuron Network (SLFN). The
main feature is that the hidden layer node parameters can be
random or artificially given and do not need to be adjusted,
and the learning process only needs to calculate the output
weight. ELM has advantages of simple structure, high learn-
ing efficiency, strong generalization ability, and fast calcula-
tion speed and is quite suitable for online real-time prediction
of high sampling frequency data. Supposing that there are
N arbitrary samples (xj, tj), where the input and the output
are respectively xj = [xj1, xj2, . . . , xjn]T ∈ Rn and tj =
[tj1, tj2, . . . , tjm]T ∈ Rm. The learning goal for a single hidden
layer neural network with L nodes is to minimize the output
error

∥∥∥H(ŵi, b̂i) · β̂ − T
∥∥∥ = minw,b,β ‖H(wi, bi) · β − T‖,

which is equivalent to minimizing the loss function [41]

Eloss =
N∑
j=1

∥∥∥∥∥
L∑
i=1

βig(wi · xj + bi)− tj

∥∥∥∥∥
2

2

(8)

where wi, bi, g and βi are the weight, offset, activation
function and output weight of the neuron. Some traditional
algorithms based on gradient descent can be used to solve
such problems, but the basic gradient-based learning algo-
rithm needs to adjust all parameters in an iterative process.

Once the input weight and hidden layer offset are randomly
set, the output matrix of the hidden layer is uniquely deter-
mined. Training a single hidden layer neural network can
be transformed into solving a linear system, and the output
weights can be calculated as β̂ = H+ · T, where H+ is the
Moore-Penrose generalized inverse matrix of H.

According to the negative feedback, feedforward HRI
response and the PD controller, the demanded acceleration
of the joint is

τd = KpK (θ̂d − θ̃ )+ KdK ( ˙̂θd −
˙̃
θ )+ ¨̂θd (9)

where θ̂d is the estimation of the demanded motion trajectory
of the human body extracted by HRI force decomposition;
Kp and Kd are parameters of the PD controller; and K is the
stiffness of HRI spring model.

The basic condition for ultimate stability is that at the next
control cycle the exoskeleton can accurately follow the actual
autonomous intentional trajectory of the human body. Since
hysteresis always exists during the HRI measurement and
the system response, the ultimate prerequisite for achieving
stability is to minimize HRI to the utmost extent. Since the
exoskeleton is a typical robotic system with high coupling
and inherent nonlinearity, we apply adaptive computed torque
control to address this issue. Therefore, considering the real
dynamic model without loss of generality, the control law for
exoskeleton is given as the following:

Te = M (θ̃ )[KpK (θ̂d − θ̃ )+ KdK ( ˙̂θd −
˙̃
θ )+ ¨̂θd]

+C( ˙̃θ, θ̃ ) ˙̂θd + G(θ̃ )+ F(
˙̃
θ )− JTf (10)

whereM (θ̃),C( ˙̃θ, θ̃ ),G(θ̃ ),F( ˙̃θ ) denote the estimations of the
inertial matrix, the centrifugal and Coriolis term, the gravita-
tional matrix, and friction interference, respectively, at each
desired position during the next discrete control moment.

In the control loop without ELM prediction, the k-th mea-
sured gesture information is used to solve the control torque
for the exoskeleton system. The currently measured gesture
signals lead the phase ahead of the expected gesture signals
at the next moment, causing the following motion to over-
take the steady-state position and oscillate within its stable
neighborhood. Consequently, the parameter tuning for dis-
crete input signals becomes longer, and the response time of
the exoskeleton system increases. With the addition of ELM
prediction, it is possible to observe the expected position of
the exoskeleton at the next moment, accurately compensate
the inertia of the system, and improve the dynamic response
of the system to make the driving torque calculated by the
control law tend the practically demanded value.

The dynamic equation of the system at next control
moment can be expressed as

M (θ̃ ) ¨̃θ + C( ˙̃θ, θ̃ ) ˙̃θ + G(θ̃)+ F( ˙̃θ) = τ + JTf (11)

To verify the stability of the control system, the Lyapunov
function is chosen as

V =
1
2
ṡTM (θ̃ )ṡ (12)
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FIGURE 7. The intrinsic sensing prediction control strategy based on zero-force following principle.

where s = θ̃ − θ̂d is the deviation of the expected position of
the exoskeleton and the human intented target trajectory, and
the appropriate parameter matching of matrixK has influence
on the proximity of θ̃ and θ̂d and determines the following
error of exoskeleton system.

The derivative of Lyapunov function is

V̇ =
1
2
ṡTṀ (θ̃ )ṡ+ ṡTM (θ̃)s̈ (13)

According to the diagonal symmetry of the matrix Ṁ2C in
the robotics, ṡTṀ ṡ = 2ṡTCṡ and based on (10) and (11)

V̇ = ṡT
[
M (θ̃ )s̈+ C(θ̃)ṡ

]
= −ṡT

[
M (θ̃)KpK (θ̃ − θ̂d)+M (θ̃ )KdK ( ˙̃θ − ˙̂θd)

]
= −ṡTM (θ̃)KdKṡ− ṡTM (θ̃ )KpKs

= −ṡTM (θ̃)KdKṡ− ṡTw (14)

In (14), Kd, K ,M (θ̃) are positive definite matrices and are
bounded when the exoskeleton moves in the finite motion
range of joint angle. In order to eliminate the approximation
deviation w, robust termWsgn(ṡ) is introduce into the torque
control law [42], W = diag[wV1 ,wV2 , . . . ,wVn ],wVi ≥ |wi|,
so as to ensure V̇ ≤ 0.

Comparative experiments were conducted to control the
exoskeleton to track human motion intention based on
sensitivity amplification control (SAC), intrinsic sensing pre-
diction control (ISPC), and intrinsic sensing prediction con-
trol with feedforward ELM compensation (ISPC_FEC). HRI
force curves of the connecting rods of hip joint and knee
joint are shown in Fig. 8. Due to the introduction of intrinsic
sensing prediction and ELM feedforward compensation, the
exoskeleton can track human intention flexibly and rapidly,
which results in a substantial reduction of HRI and improve-
ment of the system response. The HRI force dropped by
70.6% under the control strategy of ISPC_FEC during the
swing phase trajectory, reducing the burden in the process of
human-robot cooperative motion.

IV. LOCOMOTION STATE IDENTIFICATION
WITH MULTI-SENSORS
A. GA_PSO-DNNS FOR LOCOMOTION MODE CLASSIFIER
To realize flexible follow-up of humanmotion intention under
different terrains and gait motion trajectories, the system
needs to intelligently recognize the locomotion mode of
the current exoskeleton, and the control strategy and model
parameters are effectively switched for the current corre-
sponding motion mode. Based on the analysis and judgment
of the internal sensor signals in the exoskeleton, intelligently
autonomous control of the control system under unmanned
intervention can be realized, thereby greatly improving the
stability and flexibility of the exoskeleton system to adapt to
different gait motion states. Based on the xPC-Target real-
time kernel, the internal signals of sensors were transmitted
from slave nodes to the master station via CANopen com-
munication protocol, shown in the Fig. 9. Absolute encoders
record the angle of each joints and the IMU6050 unit embed-
ded in the back record the posture angles of the exoskele-
ton on itself, while GRF sensors and connecting rod sen-
sors record the interaction force imposed by person on the
exoskeleton.

As the wearable exoskeleton is a complex human-robot
coupling system, the internal signals are generated under
collaborative control and mainly include the angle, velocity
and acceleration of each joint, back postures, IMU signals,
plantar pressures, GRF forces, HRI forces and ZMP signals.
Through filtering processing, extracted signals are stored as
a row vector in a certain order

X = [θA, ξIMU,Fpla,FGRF,FHRI, δZMP] (15)

The joint angles, back postures, plantar pressures and HRI
forces are originally introduced, while the GRF forces are
processed by weighted fusion according to the sensitivity of
pressure region to ensure the response of each force sensor
is easy to be detected, and the ZMP signals are fusioned
through angles, velocity, acceleration of each joint and the
mass property of lower limb exoskeleton. To ensure the iter-
ation can converge quickly, the signals were pre-normalized
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FIGURE 8. The HRI force during the trajectory tracking process.

before introduced into machine learning and deep learning
algorithm. The identification accuracy often depends on suf-
ficient feature extraction and signal stability. Therefore, the
measured internal signals are appropriately filtered, and the
first- and second-order differential forms of the above signals

FIGURE 9. CAN bus based control architecture for the robotic
exoskeleton.

are extracted to supplement the training samples, which are
arranged in a certain order and stored in the form of vector
X ∈ R1×83. By extracting the signals in the past α moments
and predicting the signals in the next γ moments, the internal
sensor signals are packed into the following form:

X̄|α,γ = [XT
k−α, . . . ,X

T
k−1,X

T
k ,X

T
k+1, . . . ,X

T
k+γ ] (16)

A comparison experiment is conducted to analyze the iden-
tification results of the exoskeleton locomotion modes by
machine learning and deep learning, as shown in TABLE 4.
X̄|α,γ=0 ∈ R9887×83 and X̄|α=3,γ=1 ∈ R9887×415 are taken
as the minimum feature samples and the maximum feature
samples respected to sampling time respectively, to com-
pare the identification accuracy, computing efficiency and
the training period. Inside the feature samples, 6 locomotion
modes from the processed data were gathered, including
standing/transition (S/T), upstairs (W-S), downstairs (D-S),
upramp (U-R), downramp (D-R), and walking (W).

For the machine learning algorithm, dimensional process-
ing of the sample data by kernel principal component anal-
ysis (kPCA) is utilized to improve the feature extraction
effect before introduced into the decision tree (DT), dis-
criminant analysis (DA), support vector machine (SVM),
k-nearest neighbor (KNN) and ensemble method (EM) for
classification learning. Selecting an optimal feature set with
the overall contribution rate of 95% by kPCA to reduce the
dimensionality. Labeling the corresponding features set and
training the models with 5-folds cross-validation method to
find the optimal classifiers.

For the deep learning algorithm with strong feature
extraction ability, the original collected data are directly
input into the model for training and verification tests of
deep neural networks (DNNs) and convolutional neural net-
works (CNNs). Reasonable parameter selection is beneficial
to the training efficiency and accuracy of the identification
models. To ensure the computing speed and the identification
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FIGURE 10. The search process of optimizing DNNs with GA_PSO.

accuracy, the dual-autoencoder DNNs model with 10 nodes
on each layer and 4-Convolution-layer CNNs model solved
by stochastic gradient descent with momentum are estab-
lished. 75% of data samples are randomly selected to train
the DNN network, and the remaining 25% of data samples
are selected to verify the identification accuracy.

From the analysis of the results in the table, DA and DT
have a shorter training period than SVM, KNN and EM, but
the structures are relatively simple, and the overall identifi-
cation accuracy is poor. Compared with that of the machine
learning algorithm, the computation time of deep learning
is reduced by at least 20 ms, the efficiency is improved by
nearly 52%, and the data sets do not need to be additionally
extracted by kPCA, which simplifies the complexity of the
identification process and is suitable for the supplementary
training of new signals to realize online updating of the
model parameters. However, since the acquired data are con-
verted into a two-dimensional matrix that has fewer rows and
columns than the conventional image matrix, it is difficult to
utilize the convolution kernel to fully scan the signal features
for CNNs with appropriate parameters. Therefore, DNNs are
proposed to identify the locomotion mode in this paper.

In DNNs, the increase of the levels result in the non-
convex problems of objective optimization functions which
depend on the initial value of the learning parameters, and
the DNNs may be easily underfit with poor initialization.
To avoid this uncertainty, we use the stacked autoencoders
as our DNN model. In contrast to the other feedforward
neural networks, the autoencoder is an unsupervised learning
shallow neural network only focusing on the hidden layer and
is typically utilized in data reduction and feature extraction.
A stacked autoencoder DNN is a deep net combined of
many autoencoders. Good parameters can be obtained with
a stacked autoencoder if greedy-layer-wise training is used.
The hybrid GA_PSO algorithm is introduced for searching
optimal results. The optimization process of network param-
eters and the detailed algorithm of the GA_PSO-DNNs are
shown in Fig. 10 and Table 3.

TABLE 3. GA_PSO optimization algorithm for DNNS.

During iterative optimization process in Table 3, the speed
and population are updated by PSO. Firstly, set the parameters
for particle swarm optimization (PSO) and genetic algo-
rithm (GA), define the boundary of the optimization param-
eters and initialize the particle velocity of the population
to search for the initial global and individual optimal fit-
ness of the chromosome. Then PSO population is transferred
and operated through GA Cross and GA Mutation operation
and finally transferred to PSO process for individual and
global optimal update under the constraint conditions. In the
iterative optimization process, the particle iteration speed is
updated by [43]

V k+1
i,j = w · V k

i,j + c1 · αPSO(P
k
gbest − P

k
i,j)

+ c2 · βPSO(Pkzbest − P
k
i,j) (17)

where V k+1
i,j is the i-th particle’s iteration speed at the

k + 1-th moment, w is the inertial weight for updating the
iteration speed, c1 and c2 represent the searching ability for
local and global optimization, respectively, αPSO and βPSO
are random constant values, and Pkgbest and P

k
zbest are the best

fitness in the current iteration process among all particles.
Then, once the particle swarms have been crossed and

mutated, the population and individual optimal fitness are
updated under the constraint condition to perform the next
iterative update of the optimal parameters. As the key
parameters for raising the identification accuracy of the
DNNs established in MATLAB, L2WeightRegularization,
SparsityRegularization and SparsityProportion [44] for each
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TABLE 4. Comparison of identification classifiers based on machine learning and deep learning.

FIGURE 11. The optimization process of the identification error with
evolution cycle. In the extracted signal form, α and γ are parameters of
the composed sample data. α is the order of the former past moments,
and γ is order of the predicted next moments.

autoencoder layer are optimized through the combination
of GA and PSO. Taking the dual-autoencoder-DNNs with
10 nodes on each layer as an example, the optimization
process of the identification accuracy rate with the evolution
cycles is shown in Fig. 11. Taking the case X̄|α=3,γ=1 ∈
R9887×415 for analysis, the optimization process of the cor-
responding parameters for the DNNs is shown in Fig. 12.

After approximately 6 evolution cycles, the identification
errors reach a minimum and remain approximately 0.2%, and
the parameters of DNNs have searched for the optimal results.
As shown in the Fig. 13, the identification accuracy of DNNs
increases with the neuron nodes on each autoencoder layer,

and the introduction of signals in the past few control cycles
will greatly improve the identification accuracy as the value
of α increases. However, as the network structure becomes
more complex, the training effect and computing efficiency
are greatly reduced. With GA_PSO algorithm optimization,
the identification accuracy of the optimized network shown
in Fig. 13 is generally between 99.2%–99.7%, and thus the
accuracy is not constrained to the composition type of the
sample data and the neuron nodes of the autoencoder layer.
Fewer sample data extracted can also achieve accurate iden-
tification with higher accuracy, which greatly reduces the
computing load and running time of nodes in the network.

The confusion matrix is usually used to visualize the
performance of the learning algorithm on each class. It is
essentially a specific table layout, also called error matrix.
Each row of the matrix represents the instances in a predicted
class, while each column represents the instances in an actual
class. In our research, we aim to classify 6 locomotionmodes,
including S/T, W-S, D-S, U-R, D-R, and W. The confu-
sion matrices before optimization and after optimization are
shown in TABLE 5 and 6.

For example, the first element in row D-S and column S/T
indicates the number of real S/T state test data predicted to be
in the D-S state, and the second element below that indicates
the percentage it takes. The first element in PPV represents
the precision or positive predictive value, which indicates the
percentage of correct predictions among all same predictions.
The first element in TPR represents sensitivity or true positive
rate, which indicates percentage of correct predictions among
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FIGURE 12. The optimization process of the corresponding parameters of DNNs through the combination of GA
and PSO.

FIGURE 13. The DNNs identification accuracy with GA_PSO optimization. In the extracted signal form, α and γ are
parameters of the composed sample data. α is the order of the former past moments, and γ is order of the
predicted next moments.

TABLE 5. Confusion matrix for identification results of the DNNS
classifier without GA_PSO.

all same actual states. The second element in these two classes
indicates loss.

In the dual-autoencoder-DNNs with 10 nodes on each
layer, the input extracted signal vector entering the DNNs

TABLE 6. Confusion matrix for identification results of the GA_PSO-DNNS
classifier.

is X ∈ R1×83and the out identified label vector is Lmode =

[lS/T, lU-S, lD-S, lU-R, lD-R, lW] ∈ R1×6. Identified label for
each locomotion mode is ranged from 0 to 1, and the algebra
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sum of identified labels for 6 locomotionmodes alwaysmain-
tains 1. To reasonably judge the current locomotion mode,
the identified label for U-S, D-S, U-R, D-R and W should
reach above 0.9 in 5 consecutive sampling periods. Otherwise
it is considered to be identified as S/T mode for safety. The
confusion matrix of DNNs with GA_PSO algorithm opti-
mization is analyzed. The overall accuracy rate is improved
from 97.2% to 99.7%, and the accuracy of each classification
label is basically maintained at approximately 99%, thus
realizing accurate identification of each locomotion mode.

B. ANFIS FOR GAIT PHASE CLASSIFIER
The Tagaki-Sugeno fuzzy inference engine supports simpli-
fying the output of rules into a linear combination or constant
value of input variables that is suitable for mathematical
analysis. The neural network can effectively and directly
learn from the samples, providing advantages of distributed
information storage, parallel computing, and high fault toler-
ance. Therefore, ANFIS constructed by the combination of
the above two sections has strong adaptive learning ability.
Therefore, the data fusion and analysis of the plantar pressure
signals are performed by the ANFIS model, and the obtained
identification result is not strictly 0 or 1 but the probability
relative to the two phases in the form of continuous values
between [0, 1]. In addition, the trained model has high identi-
fication accuracy for the data that have not been trained, thus
indicating strong generalization ability.

The antecedent network of the Tagaki-Sugeno ANFIS is
divided into an input layer, fuzzification layer, fuzzy rule
calculation layer and normalization layer. The fuzzy rule
calculation layer in the antecedent network multiplies the
membership value of the fuzzified input variables to obtain
the fitness of each fuzzy rule by

αj = µAj1
(x1) ∧ µAj2

(x2) · · · ∧ µAjn (xn) (18)

The normalization layer has the same number of nodes as
the third layer to normalize the fitness value for the next step
to calculate the output in the consequent network. The conse-
quent network is divided into an input layer and a consequent
rule calculation layer. Each node of the second layer in the
consequent network represents a rule that is the normalized
usage of the fuzzy rules and is multiplied by output nodes in
the antecedent network as the connecting weight to calculate
the weighted summation expressed as

z =
m∑
j=1

ᾱjyj (19)

where ᾱj is the output of j-th node in the antecedent network,
and yj is the normalized usage of the fuzzy rules.
The weighted summation of the four plantar sensor pres-

sures is calculated, and its first-order and second-order differ-
ential signals are also extracted as input samples for import
into the ANFIS. Introducing speed and acceleration can accu-
rately reflect the true force response, contact impact and
gait change frequency in the process of contact between the

FIGURE 14. The simplified structure diagram of ANFIS.

sole and the ground. The domain is divided into three fuzzy
sets of low, medium and high by the initially set trapezoidal
membership function.

The fuzzy-neural network generally takes 1800 sets
of input samples to optimize 63 adjustable parameters
(36 membership function parameters for 3 input nodes &
27 connection weights for each output node) and verify the
classification accuracy. As the training data, 1000 sets of sam-
ples are randomly extracted, and the remaining 800 samples
are used as the post-training validation data. The iteration
is terminated after 3000 learning epochs, during which the
calculation error decreases from 3.7%–8.5% to 0.5%–0.7%,
which is much closer to the initial iteration error η = 1e−6.
The optimized membership functions and the output label of
gait phase for the locomotion modes of W, U-S, D-S, U-R,
and D-R are shown in Fig. 15 and Fig. 16. The predictive
label of the gait phase under certain conditions is not abso-
lutely equal to 0 (swing phase) or 1 (stance phase), and the
identified label value fluctuates in the adjacent domain of
the demanded label value. For untrained sampled occasions,
ANFIS gait phase identification still works properlywith high
precision, thus laying a great foundation for the switching of
the corresponding control strategy during the swing phase and
stance phase.

C. PROTOTYPE AND EXPERIMENT
To evaluate the performance of the proposed control strat-
egy under the corresponding locomotion state identification,
experiments for the gait motions of W, U-S, D-S, U-R, and
D-R were carried out as shown in Fig. 17. Under the pro-
posed strategy based on ISPC and locomotion state identifica-
tion with multi-sensor, the extracted ZMP signals calculated
by (20) of the human-exoskeleton system carrying 30kg-
weighted load are similar to those obtained when the wearer
moves without the exoskeleton. Based on the GA_PSO opti-
mized DNNs and ANFIS, corresponding control parameters
and gait phase classifiers can be switched naturally under
the gait motions of W, U-S, D-S, U-R, and D-R to achieve
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FIGURE 15. The ANFIS membership function curves under W, U-S, D-S, U-R, and D-R.

accurate locomotion mode identification, gait phase switch-
ing, human intention prediction and flexible follow-up.

XZMP =

n∑
i=1

mi(Z̈i + g)Xi −
n∑
i=1

miẌiZi

n∑
i=1

mi(Z̈i + g)

YZMP =

n∑
i=1

mi(Z̈i + g)Yi −
n∑
i=1

miŸiZi

n∑
i=1

mi(Z̈i + g)

(20)

where X , Y , Z, and mi are the positions and mass qual-
ity of each part of the exoskeleton in the base coordinate
system.

ZMP trajectories can evaluate the balance holding capac-
ity of the human-exoskeleton system. It can be seen from
Fig. 18 that ZMP signals can maintain stable in the small

range during 5 gait trajectories, which is much similar to the
ZMP of human without wearing the exoskeleton.

The pressure curves of the GRF sensors inside the shoes
during the process of carrying heavy load with exoskeleton
was extracted and analyzed, as shown in the Fig. 19. Although
the average of GRF sensors during gait motions increases
about 8% due to impact contact with ground, the trend and
range of value curves remain the same and the exoskeleton
can bear the load for human body.

The HRI force signals on hip and knee joint sensors during
5 motion trajectories were extracted for evaluating tracking
effect by

RMSE =

√√√√ N∑
i=1

‖FHRI‖2/N (21)

The tracking effect is evaluated by comparative anal-
ysis on the root mean square error (RMSE) of HRI
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FIGURE 16. The verification of generalization ability for ANFIS under W, U-S, D-S, U-R, and D-R.

FIGURE 17. Experimental research of the human-exoskeleton system under the proposed strategy during W, U-S,
D-S, U-R, and D-R.

TABLE 7. Tracking effect for HIP joint.

force, as shown in the following table 7 and table 8.
The RMSE value collected under load carrying condi-
tion rises only about 12.6%–17.1% than that without load
carrying.

According to [25], to evaluate the conversion efficiency
between locomotion modes, define the identification delay of

TABLE 8. Tracking effect for knee joint.

conversion process

TID =
TI − TC
Tgait

× 100% (22)

where Tgait is the duration of the gait cycle, TC is the critical
time, TI is the moment when the locomotion mode transition
is identified correctly for the first time. Taking gait conversion
from W to U-R and U-R to W as example, the angle curve of
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FIGURE 18. ZMP signals of the exoskeleton system under W, U-S, D-S, U-R, and D-R.

FIGURE 19. GRF sensor signals of the exoskeleton system under W, U-S, D-S, U-R, and D-R.

hip joint and the identification label were drawn in Fig. 20 to
explain the conversion process.

The identification conversion efficiency depends on the
generalization ability for untrained sample cases. In order
to improve the conversion efficiency, the gait transition in
the conversion process and the label categories need to be

refined in the future research work to further enhance the
identification conversion efficiency.

To evaluate the human physiological reaction to the assis-
tance of exoskeleton, heart rate characteristics of consecutive
operation under load carrying during W, U-S, D-S, U-R, and
D-R gait trajectories were recorded. The average heart rate of
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TABLE 9. Conversion time of identification delay.

FIGURE 20. Conversion process from W to U-R and U-R to W.

FIGURE 21. Heart rate signals of the wear under consecutive operation
during W, U-S, D-S, U-R, and D-R.

the wearer is shown in Fig. 21. Compared with NoExo with-
out load, the heart rate of NoExo with load rises about 40.3%
during the five consecutive trajectories, while the heart rate
of Exo with and without load rises only 21.3% and 17.5%,
proving the effective assistance of the proposed exoskeleton
system.

V. CONCLUSION
A novel lower limb exoskeleton actuated by a variable mag-
nification ratio structure is proposed in this paper. With opti-
mized hanging point positions and size parameters, the output
torque of active hip and knee joints can fully envelope the
demand load area under a 55-kg-weight-lifting condition. The
overall weight of the exoskeleton prototype is minimized to
22.5 kg, and the reduction ratio of the actuator is reduced from

6 to 3.5, which greatly improves the flexibility and portabil-
ity of the exoskeleton. A newly developed split embedded
intrinsic sensor can accurately measure the HRI force applied
to the exoskeleton and extract the human motion intention
without being affected by differences inwearing status. Based
on the ISPC with feedforward ELM compensation, the HRI
force drops by 70.6% compared with that of the SAC strategy,
substantially reducing the burden in the process of human-
robot cooperative motion. To choose an efficient identifica-
tion classifier, comparative experiments were carried out to
analyze the identification efficiency and computation load
of machine learning and deep learning. With the optimized
GA_PSO algorithm, the identification accuracy of the DNNs
is enhanced from 97.2% to 99.7%. To flexibly switch between
the stance phase and swing phase, the corresponding ANFIS
model is introduced to classify the gait phase under each
locomotion mode. The predictive label of the gait phase
under untrained occasions fluctuates in the adjacent domain
of the demanded label value 0 (swing phase) and 1 (stance
phase), showing great generalization ability. Experiments
under the gait motions of W, U-S, D-S, U-R, and D-R are
performed, and the performance for human intention tracking
is improved under the proposed control strategy assisted with
the corresponding locomotion state identification.

The novel structure and control strategy proposed in this
paper can well assist wearer, which guarantee the flexibil-
ity and portability of the exoskeleton system under heavy-
load-carrying conditions. Based on the current theoretical
results, we will continue to research the efficient autunomous
control strategy for flexiable tracking. In order to further
improve the prediction of human motion intention, the estab-
lishment of more complex impedance model for HRI force
will be taken into account. For reducing the HRI during
motion tracking process, precise modeling of dynamics of
human-robot coupling systemwill be considered by introduc-
ing the online parametric system identification techniques.
We will analyze and discuss these issues in the future work to
enhance the adaptability of the exoskeleton to various tasks
and conditions.
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