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ABSTRACT Naked eye augmented reality technology has the capability of satisfying the immersion feeling.
Therefore, light field three-dimensional (3-D) display technology has received considerable attention.
In this paper, a novel pose estimation method in light field 3D display based on H∞ optimal control
is proposed. Compared with the current pure hardware platform method, the proposed method releases
hardware resources such as the graphic processing unit and avoids numerous parameter adjustments. The
proposed method comprises three key parts. First, we calculate the normal of the rigid objects and apply it to
obtain the normal estimation. Second, we calculate H∞ of the normal estimation result on the Hardy space,
which is the maximum singular value of the rational function matrix parsed in the right half plane of the
complex plane. Finally, we use the optimal result of H∞ for pose estimation and transformation. The
experiments are carried out on the virtual and real classical datasets acquired by Kinect, Mian, and Clutter.
The experiments show that the proposed method can be used to obtain high-quality display effects with low
cost and high efficiency.

INDEX TERMS H∞, pose estimation, light field 3D display.

I. INTRODUCTION
Naked eye three-dimensional (3D) augmented reality
technology is widely used in various fields, such as
demonstration-teaching, exhibition displays, media videos,
and medical treatments. Different from traditional display
technology, the naked-eye true 3D augmented reality tech-
nology has unique characteristics that do not require viewers
to wear glasses or helmets to watch the 3D effects. Its realistic
depth of field and 3D sense greatly enhances the visual impact
and immersion of the audience during the viewing expe-
rience. Consequently, naked-eye 3D technology is the best
choice of display product for promotion, publicity, and video
playback. Nowadays, 3D display technologies are mainly
classified as binocular, integrated imaging, volumetric,
holographic, and light field.

Previously, the holographic 3D display method was
thought to be the only one. However, with the improvement
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of high-definition pixels, high modulation rates of various
light modulators, and rapid developments in computer image
graphics technology; the 3D display of a light field of direc-
tional light reconstructed by a geometric optical orientation
screen and projection technology, has gradually emerged.
Compared with the traditional holographic display, the 3D
display of the light field can produce a high-quality and high-
resolution color dynamic 3D display [1]. It also displays
complex textures and lighting shadows [2]–[5]. Therefore,
the study of the 3D display of the light field has recently
received considerable attention. Zhan et al. [6] proposed a
novel light field display system by implementing liquid crys-
tal Pancharatnam-Berry phase lenses to relieve the discomfort
from the convergence-accommodation conflict.

Since the development of light field 3D display technology,
the 3D display of the light field methods mainly imple-
ment real-time updating and dynamic processing of the 3D
object from acquisition to display, according to the hardware
adjustment. This includes the data compression algorithm
and parallel operation of the graphic processing unit (GPU).
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A multiple viewpoint rendering (MVR) algorithm is pre-
sented in [7] that produces the track and texture mapped
scene renderings, well-suited for hardware acceleration.
Hou et al. [8] made use of the NVIDIA Geforce-7800-GT
graphics card chip, which for GPU rendering, represents each
triangle on the simplified mesh as a simple multi-perspective
camera. The aim of the method was to pre-process the corre-
spondence between the original surfaces for a dense sample
of 3D locations and to store the result within the joint texture
map. Nevertheless if the culling is in the 3D viewing frus-
tum, then the problem would be much more complicated for
efficient GPU implementation. Reference [9] also used GPU
vertex shaders for the multiple center of projection (MCOP).
This is a hardware algorithm to view the light field display
rendering, and the hardware DVI output of the graphics card
was the NVIDIA GeForce 8800 and an FPGA-based image
decoder. Notwithstanding, such hardware platforms are not
practical, due to their age. Although the core graphics and
image projection components decrease in price, the capabil-
ities do not increase. The image processing chips with more
advanced capabilities already exist, but their prices are more
expensive.

In recent years, the accuracy and interactive ability of
the 3D light field display has gradually improved [10]–[13].
Hand gesture recognition [14], identification of pedestri-
ans [15], face recognition, and other artificial intelligence
functions are quickly combined. Some new algorithms have
also emerged in this field [16]–[20]. However, hardware
equipment costs and complexity have also increased. Navarro
and Buades [13] proposed a new matching method, which
computes the disparity maps between specific pairs of views
for estimating the depth from a light field image. Notwith-
standing, inaccurate registrations led to an increase in the
resolution of light field images. Ferreira and Gonçalves [18]
introduced a novel algorithm similar to RANSAC that gener-
ates a coarse depth map with one depth from the 3D point
cloud, to two depths, and a surface fitting per micro-lens
with different focal-lengths. The paper [21] designed a point
cloud coding solution for the geometry of static point clouds
using octree- and graph-based transforms, which led to the
application scenarios addressing lower to medium rates, and
a coding solution with a better performance. A new light
field depth estimation method is presented in [19], which
locates the optimal orientation of an epipolar plane image
and local linear embedding. Nevertheless, this approach is
applicable only for a light field with a small number of views.
Anisimov and Stricker [22] presented an algorithm for the
depth estimation from light field images in a relatively small
amount of time, using only a single thread on the CPU that
combines stereo matching and line fitting approaches. To the
best of our knowledge, this is the first time that a method has
been developed that contains no 3D light field display algo-
rithm implemented by GPU. With the increasing popularity
of virtual reality and augmented reality technology, 3D light
field display technology combined with computer vision and
machine learning, can provide a viable path for producing

low-cost, high-quality VR and AR content [23]. Incidentally,
the paper [24] presented a comprehensive overview regarding
the research of light field technology over the last 20 years.

In this paper, we present an innovative method for obtain-
ing the vertex position coordinates by theH∞ optimal control
of the robust pose estimation of rigid objects during 3D
light field image processing. The advantages of the proposed
method include convenience, efficiency, a low cost, and less
error. The proposed method is based on mathematics and
can be implemented only using a single-threaded CPU. This
releases hardware resources such as GPU and avoids manual
error adjustments of the parameters, ultimately improving the
efficiency and accuracy.

The remainder of the paper is organized as follows.
Section 2 describes the proposed method in detail. Section 3
presents the experimental results and Section 4 provides the
conclusion.

A block diagram of the whole light field acquisition-
display data processing based on the proposed method,
is illustrated in Fig. 1. The proposed strategies are denoted
in purple. First, there is downsampling, followed by the nor-
mal and feature estimations. The mathematical core of the
H∞ optimal control is then performed, which includes the
maximum singular value as obtained by the Jordan singular
value decomposition (SVD). Then, the rotation matrix and
translation vector are used to align the point cloud. Finally,
we obtain the accuracy vertex position coordinates and robust
pose estimation of rigid objects in the light field 3D imaging.
Table 1 describes the detailed algorithm of the H∞ optimal
control based robust pose estimation of rigid objects in the
light field 3D display.

II. APPROACHES
A. NORMAL ESTIMATION
The normal vector reflects the first-order differential proper-
ties of the surface of the object, which can more accurately
describe the surface features represented by the point cloud.
Therefore, we first find the normal vector estimation based on
this. In point-based graphics, the point-based precision and
high-quality rendering mainly depend on the normal vector
information, andmany surface reconstruction algorithms also
require the use of the normal vector to obtain reliable recon-
struction results. For reconstruction algorithms that require
normal vector aggregation, the detection and recovery of
sharp features relies entirely on reliable and accurate normal
vectors. If the correct normal vector can be calculated, even
geometric features of point clouds with severe defects can be
perceived.

The local neighborhood fitting method was firstly pro-
posed by Hoppe et al. [25]. In the tangent plane, the point
p is obtained by the least square fitting of the k nearest
neighbor of the point p, and the principal component analysis
(PCA) is used to solve the covariance matrix of the neighbor-
hood point. The eigenvector corresponding to the minimum
eigenvalue of the covariance matrix is the normal vector of
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FIGURE 1. Block diagram of the whole light field acquisition-display data processing based on the proposed method.

TABLE 1. Algorithm for the H∞ optimal control based robust pose estimation of rigid objects.

the plane, and is also the normal of the point p, as shown
in Fig. 2. The PCA normal estimation method is used for the
normal estimation in this paper.

FIGURE 2. Schematic diagram of the point cloud local covariance
analysis. (a) K nearest neighbors selection. (b) Covariance analysis.

The point cloud is a set of P = {p1, p2, . . . , pn} and n is the
total point cloud number. The nearest k neighbor of point pi
is denoted by Nb(pi), where Nb represents the neighborhood.
The representation of the least square plane fitted to its k
neighbors for any point pi is given by

Pl(n, d) = argmin
∑
pi∈Nb

(npi − d)2 (1)

where n is the normal vector of the plane of Pl, n must
satisfy ‖n‖2 = 1; d is the distance from the neighborhood
point to the fit plane. The equation (1) is transformed into
an eigenvalue decomposition for the semi-positive covari-
ance matrix C in equation (2), in which the eigenvector of
the minimum eigenvalue of C is used as the normal vector
of pi. Fig. 3 shows the virtual and realistic dataset applica-
tion results for the normal estimation. As shown in Fig. 3,
the effect and versatility of the normal vector estimation in
this paper presented good results for various scenes.

C =


p− p1
p− p2
...

p− pk


T 

p− p1
p− p2
...

p− pk

 (2)

B. H∞

The H∞ is vital in this paper, which is the principle of pose
estimation. In this paper the signal space for light field imag-
ing is Lp[0,∞), 1 ≤ p ≤ ∞, and its extended point cloud
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FIGURE 3. Virtual and realistic dataset application results for the normal
estimation.

signal space is Lp,e [0,∞) ∈ RN , 1 ≤ p ≤ ∞, which is the
3D (N = 3) vector signal, including the scalar signal. To sim-
plify, Lp(Lp,e ) is represented by Lp[0,∞)(Lp,e [0,∞)).
The signal boost of the signal, f (t), is the mapping; Wτ :

Lp,e [0,∞)→ lLp[0,τ ),

f̂ = Wτ f ,

f̂l(t) = f (τ i+ t), 0 ≤ t ≤ τ, i = 0, 1, 2 . . . (3)

The boosting operator Wτ is regarded as cutting the contin-
uous signal f (t) into sampling signals, f̂ (t), which are con-
nected to each other by the sampling time τ . This sequence,{
f̂ (t)

}
, is also a discrete signal, except that each element f̂ (t)

is in the function space Lp[0, τ ) value.
AsWτ is a one-to-onemapping linear operator on the linear

space Lp,e [0,∞), W−1τ is also a linear operator.

f = W−1τ g,

f (t) = gl(t − τ i), τ i ≤ t ≤ τ (i+ 1) (4)

It is an important characteristic of the boosting that Wτ is
an equidistant operator, for which the norm of the signal is
equal before and after the boosting. Fig. 4 indicates that the
boosting of a generalized object is the promoted output y,
in which the input is the inverse transform W−1τ , and the
boost signal {ûk} is transformed into a continuous signal u,
so that when the generalized object is promoted backwards
and forwards, the input and output signals are the boosting
signals.

FIGURE 4. Elevated system, Ĝ.

Because Ĝ is a linear operator, Wτ and W−1τ are isometric
operators, so ‖G‖ = ‖Ĝ‖, which is the norm of the general-
ized object, is equal for both backward and forward boosting.
Combining this with Fig. 4, the state equation of G is as
follows

ẋ(t) = Ax(t)+ Bu(t)

y(t) = Cx(t)+ Du(t) t ∈ (0,∞) (5)

The state space of the generalized object G is implemented
by

G =
[
A B
C D

]
. (6)

The state space of the boosting object Ĝ operator is imple-
mented by

Ĝ =
[
Â B̂
Ĉ D̂

]
, (7)

where

Â : Rx
→ Rx

B̂ : Lp[0, τ )→ Rx

Ĉ : Rx
→ Lp[0, τ )

D̂ : Lp[0, τ )→ Lp[0, τ ). (8)

ForRx , x refers to the dimension, which is three in this paper.
The discrete state space equivalent to the norm of the sampled
generalized object G̃ is implemented as follows [26],

G̃ =
[
G̃11 G̃12

G̃21 G̃22

]
=

 Â B̂1 B̂2
C̃1 D̃11 D̃12

C̃2 0 0


=

 eAτ eA(τ−s)B1 9(τ )B2
C1eAt Ĉ1eA(t−s)l(t−s)B1 C19(t)B2 + D12
C2 0 0

,
(9)
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where

G̃11 : lLp[0,τ )→ lLp[0,τ )

G̃12 : lRu → lLp[0,τ )

G̃21 : lLp[0,τ )→ lRy

G̃22 : lRu → lRy , (10)

and u and y are the continuous signals.
H∞ discretization is the process of the generalized object

promotion and equivalent discretization, and the final object
is the discretized object of finite dimension equivalent to
H∞ [27]. The discretization process is divided into two
steps. The first step involves the use of the loop shifting
method [28] to remove the pass-through term operator D̂11
from the generalized object G̃ in the above equation, to obtain
an equivalent Ḡ.

Ḡ =

 Ā B̄1 B̄2
C̄1 0 D̄12
C̄2 0 0

. (11)

Ḡ is satisfied when ‖F(Ḡ,Kd )‖ < 1 ⇐⇒ ‖F(G̃,Kd )‖ < 1,
and F(G,K ) is the mapping between the closed-loop general-
ized objects from the external inputs to the regulated outputs.
The second step involves the transformation of Ḡ into a finite-
dimensional discretized object, which is obtained according
to the following theorem [26]. If Ḡ is equivalent to the fol-
lowing discrete object Gd and ‖F(Gd ,Kd )‖ = ‖F(Ḡ,Kd )‖,
then

Gd =

 Ad B1d B2d
C1d 0 D12d
C2d 0 0


and Bld := T ∗B

[∑1/2
b
0

]
,

[
C1d D12d

]
:=

[∑1/2
cd 0

]
TC

Ad := Â+ B̂1D̂∗11(I − D̂11D̂∗11)
−1Ĉ1

B2d := B̂1D̂∗11(I − D̂11D̂∗11)
−1D̃12 + B̃2

C2d := C2. (12)

TB and TCD are obtained according to the SVD. In fact, in H∞
control theory, the generalized object, H∞, is the peak of the

maximum singular value curve in the Bode plot [29]–[32].

B̄l B̄∗l = T ∗B

[∑
b 0

0 0

]
TB[

C̄∗1
D̄∗12

] [
C̄1 D̄12

]
= T ∗CD

[∑
cd 0
0 0

]
TCD (13)

C. POSE ESTIMATION AND TRANSFORMATION
A pose transformation occurs when the coordinates of the
geometric object are transformed in 3D space, which is also
known as rigid object motion. The rigid object motion keeps
the inner product and metric of the geometric information
unchanged. The rotation in the corresponding coordinate
transformation is the orthogonal matrix of the determinant
one. Conversely, the rigid transformation does not have to
take into account the scale factor between the set of points
added during the scale transformation, compared with the
isotropic or heterogeneous scale transformations that are in
non-rigid transformations.

1) ROTATION MATRIX
The rotation transformation of the 3D coordinate of the point
cloud is such that X , Y , and Z are the rotation axes, with
corresponding rotation angles α, β and γ , respectively. The
representation of the rotation matrix R is as (14) shown at the
bottom of this page.

Similarly, the translation vector is set to zero, and the cor-
respondence between the target point cloud A and reference
point cloud B is as (15) shown at the bottom of this page.

The target point cloud A is rotated only with the reference
point cloud B, as shown in Fig. 5(a). B firstly rotates by
angle α along the X -axis direction, then rotates by angle β
along the Y -axis direction, and finally rotates by angle γ
along the Z -axis direction. The rotation transformation is
orderly and cannot be reversed at random.

2) TRANSLATION VECTOR
It is assumed that the 3D coordinate point cloud only needs
to perform a translation transformation, when moving from
left to right along the X -axis direction, translating back and
forth along the Y -axis direction, and translating up-to-down
along the Z -axis direction. The rotation matrix can then be
represented by a matrix with main diagonal elements of one,

R =

1 0 0
0 cosα sinα
0 −sinα cosα

 cosβ 0 sinβ
0 1 0
−sinβ 0 cosβ

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1


=

 cosβcosγ cosβsinγ sinβ
−cosαsinγ − sinαsinβcosγ cosαcosγ − sinαsinβsinγ sinαcosβ
sinαsinγ − cosαsinβcosγ −sinαcosγ − cosαsinβsinγ cosαcosβ

. (14)

B =


cosβcosγ cosβsinγ sinβ 0

−cosαsinγ − sinαsinβcosγ cosαcosγ − sinαsinβsinγ sinαcosβ 0
sinαsinγ − cosαsinβcosγ −sinαcosγ − cosαsinβsinγ cosαcosβ 0

0 0 0 1



xA
yA
zA
1

. (15)

33272 VOLUME 7, 2019



Z. Wang et al.: H∞ Optimal Control-Based Robust Pose Estimation in Light Field 3-D Display

FIGURE 5. Rigid object transformation. (a) Rotation transformation.
(b) Translation transformation.

with all other elements zero, which is expressed by:

R =

1 0 0
0 1 0
0 0 1

 . (16)

The correspondence between the target point cloud A and
reference point cloud B can then be expressed as:

B =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

[xA yA zA 1
]T

=
[
xA + dx yA + dy zA + dz 1

]
. (17)

If the target point cloud A only translates with the reference
point cloud B, then Fig.5(b) indicates that B passes firstly to
the left and then upwards, and finally the backwardmovement
coincides with A.

III. EXPERIMENTAL RESULTS
For the experiment, the proposed method was implemented
on the Visual Studio 2013 platform, in the Point Cloud
Library (PCL) [33]. The programming language was C++.
The Kinect, Mian [34], and Clutter [35] datasets were used.
The detailed configuration project parameters of the H∞
optimal control in the C++ project are given in Table 2.
The functional description of the various parameters are also
described. There are only a few PCL configuration parame-
ters because the exact value is automatically obtained by H∞
and Jordan SVD. The first experiment is based on the Kinect
dataset as shown in Fig. 6, which is the source scene pictures.
As shown in Fig. 6, after the posture estimation, the shape
of the milk box is unchanged, position is accurate, outline of

TABLE 2. Project parameters of the H∞ optimal control.

FIGURE 6. Kinect dataset results. (a)Source scene. (b) Result scene
using H∞.

the edge of the box is moderate, and thickness is uniform.
Therefore, the effect of the proposed method is satisfactory.

The second experiment was based on the Mian dataset.
There are five models and fifty scenes in this dataset.
As before, the pose estimation is the vertex position coordi-
nates of the model estimation, which is the display correction
of the model. The model and scene were used simultane-
ously to correct the experiment to avoid confusing the same
model as both input and output. Moreover, by performing
simultaneous operations of the model and scene, the vertex
position coordinates can be obtained more accurately. Since
the principle of H∞ optimal control is based on themaximum
singular value of the rational function matrix parsed in the
right half plane, the first step is to calculate the right singular
vector. Fig. 7 presents the sequential matrix value plots of five
models for the right vector of fifty scenes in the Mian dataset.
There are twenty-five in each row, and two rows represent
a model. The names of the models are chef, chicken_high,
parasaurolophus_high, rhino, and T-rex_high. Fig. 8 shows
the comparison of the maximum singular value to and fro of
the H∞ optimal control. According to the definition of H∞,
the maximum singular value is the best result. This can be
observed in Fig. 8 in which without H∞ optimal control,
the maximum singular value is random and not sufficiently
accurate. Figs. 9(a) and 9(b) show the results with andwithout
H∞ control, respectively. As shown in Fig. 9(a), the incor-
porating and matching effects between the model and scene
are good. The hat of the chef fits well, and the coordinates

FIGURE 7. Experimental results of the right singular vector for the Mian
dataset.
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FIGURE 8. Comparison experimental results of the Mian dataset.

FIGURE 9. Experimental rendering of the Mian dataset. (a) H∞ optimal
control results. (b) Results without H∞.

and matching of his face, especially the ear, and his body
position are also accurate, therefore the position estimation
of a rigid object had a robustness effect, as shown in the
pictures. However, Fig. 9(b), which is the picture without
H∞ control and was performed under the current hardware
platform, reveals that the pose estimation of the object was
inaccurate, and therefore, subsequent manual adjustments are
required. In short, after comparison, the proposed method is
an effective approach for pose correction.

The third experiment was based on the Clutter dataset.
There are eighteen models and thirty scenes in this dataset.
Fig. 10 shows the matrix value plot of eighteen models for the
right vector of thirty scenes in the clutter dataset. There are
thirty in each row, and one row represents amodel. The names
of the models were 409Bottle, BakingSodaBox, Banana,
BlueBowl, CascadeBottle, GreenBrush, GreenPear, HootBot,
JiffyBox, LBlock, MetalMug, MongoDBMug, PaperCup,
RectCup, StrawBowl, TikiCup, TriangleBox, and Yellow-
Pepper. Fig. 11 shows the comparison of the maximum sin-
gular value to and fro of the H∞ optimal control. As shown
in Fig. 11, the results of the proposed method are better than
those of the method without using H∞. This reflects the
superiority of the propsed method. Figs. 12(a) and 12(b) also
show the results with and without H∞ control, respectively.
As shown in Fig. 12, Fig. 12(a) demonstrates the robust-
ness of the pose estimation through the model and scene.

FIGURE 10. Experimental results of the right singular vector for the
Clutter dataset.

FIGURE 11. Comparison experimental results of the Clutter dataset.

From Fig. 12(b), the pose estimation deviated without H∞
control under the current hardware platform. Overall, after
the comparison, the proposed approach is still an effective
method.
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FIGURE 12. Experimental rendering of the Clutter dataset. (a) H∞ optimal
control results. (b) Results without H ∞.

IV. CONCLUSION
At present, the popular light field 3D display technology is
a better solution for naked eye 3D displays. In this paper,
we proposed a novel H∞ method that does not require the
addition of hardware or software, which from a mathematical
point of view, is to bring about the position correction. The
experimental results showed that the proposed approach is
robust.

In summary, we proposed the H∞ optimal control method
in the light field of a 3D display. In addition, we performed
many experimental and theoretical studies of the new model.
The experimental results support the validity of the proposed
approach, with a high accuracy of the maximum singular
value and a robust pose correction, compared with the current
pure hardware platform method.

In the future, we carry on to add the Gaussian mapping and
K-means clustering in the normal estimation module, which
is a new innovation of the preprocessing stage before the
H∞ method in the 3D light field imaging.
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