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ABSTRACT Node localization in wireless sensor networks (WSNs) has received a considerable amount
of attention. In this paper, using the natural low-rank properties of the Euclidean distance matrix (EDM),
we formulate the node location finding problem from only a small fraction of random entries of the EDM as
a low-rank matrix recovery problem. A Bayesian-learning-based method is utilized to recover the original
EDM, based on which the relative positions of all the sensor nodes in WSNs are accurately estimated by
applying classical multi-dimensional scaling (MDS). In addition, with the location knowledge of anchor
nodes, we transform the relative positions into absolute positions. The simulation results illustrate that our
proposed approach leads to superior performance over various other methods.

INDEX TERMS Localization, Euclidean distance matrix completion, Bayesian learning, Wireless sensor
networks.

I. INTRODUCTION
Wireless sensor networks (WSNs), which are composed of a
large number of inexpensive and energy-constrained sensor
nodes (SNs), have found important applications in many
fields such as environmental monitoring, habitat monitoring,
the prediction and detection of natural calamities, medical
monitoring and structural health monitoring [1]. To respond
to the monitoring data, the location information of sensor
nodes should be available at the fusion center (FC), where
the actions of WSNs, such as fire alarm, energy transfer,
and emergency request, are made. As such, an approach to
identify the location information of all nodes at the FC is of
crucial importance [2]. Due to the network cost, deployment
conditions and node energy constraints, only a few nodes,
named anchor nodes, can obtain their global positions by
equipping GPS devices. The positions of other unknown
nodes are determined using localization algorithms based on
the anchor nodes and inter-node range measurements. Most
localization algorithms for WSNs can be classified into two
categories: range-based and range-free algorithms [3], [4].
Range-based techniques use distance or angle estimates for
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location estimation, while range-free techniques only use
connectivity information between unknown nodes and anchor
nodes. In this paper, we focus on range-based localization
techniques, as they have high levels of localization accuracy.

Recently, the research in [5] has shown that the underlying
geometric structure of the Euclidean distance matrix (EDM),
a matrix of the squared distances between points, can be
extracted to reconstruct the network topology. The theoretical
guarantees have been proven for multi-dimensional scaling
(MDS) [6], which can find the best point set representation
for a given set of distances. Therefore, in the case where the
EDM is complete known, we can simply apply MDS to accu-
rately estimate the relative positions of all the sensor nodes.
In WSNs, the EDM can be obtained based on certain mea-
surements, including time of arrival (TOA), time difference
of arrival (TDOA), angle of arrival (AOA) and received signal
strength (RSS) [7]. However, obtaining the complete range
information of the EDM leads to communication-intensive
operations by the WSN, as it needs the measurements among
all nodes [8]. In addition, due to, e.g., energy constraints and
limited communication ranges, not all sensors can commu-
nicate with each other. These inevitable factors cause the
incompleteness of EDM and thus increase the difficulty of
localization implementation.
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In light of this challenge, matrix completion (MC) [9],
derived from the famous compressive sensing (CS) the-
ory [10], has attracted significant attention in the signal
processing community [11]–[13]. Because the EDM is a
low-rank matrix, it can be recovered from an incomplete
EDM with a reasonable number of measured entries not far
from the information theoretic limit [14]. Recently, various
EDM completion approaches have been proposed [15]–[19].
In [15], fixed point continuation with approximation (FPCA)
was introduced as an efficient nuclear-norm-based regular-
ized least-squares method. Keshavan et al. [16] developed
a method called OptSpace based on optimization over the
Grasmann manifold, with a theoretical performance guaran-
tee for the noiseless case. In [17], a greedy approach that
uses greedy projection to identify a set of rank-one matrices
that best represents the original matrix was proposed. The
singular value thresholding (SVT) proposed in [18] has been
successfully used in many MC problems; the core of this
algorithm lies in the fact that the singular values below a
threshold are discarded at each iteration, which may cause a
low convergence rate and poor completion performance. The
accelerated proximal gradient (APG) method in [19] is pro-
posed to address the bottlenecks of SVT; however, the APG
is an iterative method that depends heavily on the choice
of relevant parameters and achieves suboptimal completion
accuracy.

Several sensor network localization techniques have also
been developed based on EDM completion. In [20], a con-
nectivity graph together with the shortest path were exploited
for the EDM completion. However, the graph should be well
connected to obtain a high localization accuracy, that is to
say, each sensor node is required to have a distance measur-
ing ability in its vicinity. Thus, a large number of measure-
ments are still necessary, especially for large-scale networks.
In [21], localization from an incomplete EDM was formu-
lated as a low-rank matrix recovery problem. Because of the
non-convexity of the rank minimization function, the authors
applied the nuclear norm as a convex surrogate. This may not
be a good approximation because the nuclear norm adds the
singular values together and treats them differently, whereas
in the rank minimization function, non-zero singular values
have equal contributions. In [8] and [22], semi-definite pro-
gramming (SDP) relaxation and solvers for the same problem
have also been proposed, which can achieve high accuracy
in estimating the sensor locations. However, as the size of
the SDP problem increases, the dimension of the matrix cone
increases and the number of variables increases quadratically,
the resulting high arithmetic operation complexity indicates
that these techniques can only address small-scale node local-
ization problems. Therefore, a special effort has to be made
to develop accurate and robust approaches to localize sensor
nodes from incomplete EDMs in WSNs.

Motivated by the discussion above, in this paper, we focus
on the node localization problem from only a small fraction
of random entries of the EDM. Based on the low-rank fac-
torization of the EDM and sparse Bayesian learning (SBL)

principles, we propose an EDM completion algorithm. Then,
the MDS and Procrustes analysis technique [5] are utilized to
localize all the nodes. The main contributions of this paper
are outlined as follows:

(1) We propose a novel node localization framework for
WSNs. The key idea is to formulate the node localization
problem from an incomplete EDM as a low-rank matrix
recovery problem subject to a set of linear equality con-
straints.

(2) Using low-rank matrix factorization, a new Bayesian-
learning-based matrix completion (BLMC) method, which
favors low-rank solutions, is proposed to recover the
original EDM.

(3) Based on the recovered EDM, the relative positions of
all nodes in the WSN are accurately estimated by applying
classical MDS and then transformed into absolute positions
with the location knowledge of the anchor nodes.

The remainder of this paper is organized as follows. The
problem formulation is given in Section II. In Section III,
our proposed localization approach is described, including
the EDM completion algorithm using Bayesian learning and
MDS together with the Procrustes analysis technique utilized
to localize the nodes. Then, the performance of the proposed
algorithm in terms of localization accuracy is demonstrated
in Section IV. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION
Consider a typical localization scenario in WSNs, where a
large number of sensor nodes are randomly deployed in an
area; each sensor node measures the distance information of
adjacent nodes and then sends this information to the FC.
Node localization proceeds by constructing the topology of
the sensor nodes, i.e., estimating the relative positions of the
sensors. Among the N sensor nodes in total, M (M � N )
are anchor nodes, whose positions are known, and the other
N − M nodes, called source nodes, are position-unknown
nodes. We define {uj}Mj=1 ∈ Rd and {xi}Ni=M+1 ∈ Rd as the
locations of M anchor nodes and those of the N −M source
nodes in a d-dimensional Euclidean space, respectively.

Here, we ignore the distinction between any anchor node
and the source node, and we identify uj with xj. Let

P = [p1, · · · , pN ] = [u1, · · · ,uM , xM+1, · · · , xN ] (1)

denote the locations of all the sensor nodes. Then, the squared
distance between pi and pj is given as

Di,j =‖ pi − pj‖
2 (2)

where ‖ · ‖ denotes the Euclidean norm. By noting that

Di,j = (pi − pj)(pi − pj)T = pi
T pi − 2pi

T pj + pj
T pj (3)

the EDM D = [Di,j] can be written as

D , 1diag(PTP)T − 2PTP+ diag(PTP)1T (4)

where 1 ∈ RN is a column vector of all ones and diag(·) is a
column vector of the diagonal entries.
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If the matrix D is fully known, by applying the MDS
method, the relative positions of all nodes in the WSN can
be estimated accurately. Then, the relative positions can be
transformed into absolute positions with the knowledge of at
least d + 1 anchor nodes [23].
Unfortunately, because of noisy environments, energy con-

straints, and limits on the communication range, the measure-
ment of distance data is incomplete, that is to say, only a small
fraction of noisy distance information can be transmitted to
the FC. Thus, the EDM D tends to only be partially known;
moreover, it is corrupted by noise. In the following, we denote
the noisy and incomplete EDM as D̃ = {D̃ij}, which is
generated according to

D̃ = 0�(D+ N) (5)

where N is the dense error matrix with elements Nij; � is
the set of all known indices of D̃, where the cardinality
of the set � is λN 2, with λ ≤ 1, defined as the sparsity
level; and 0�(·) is the projection operation, which keeps the
known entries unchanged and sets all the unknown entries to
zeros, i.e.,

0�(D) =

{
Di,j if (i, j) ∈ �
0 if (i, j) /∈ �

(6)

Because the rank of P is at most d (i.e., it has d rows),
the rank of PTP is also at most d . The remaining two sum-
mands in (4) are of rank one. By rank inequalities, the rank of
a sum of matrices cannot exceed the sum of the ranks of the
summands. Hence, for the 2-D case, the rank of D is at most
4 [5], which is substantially smaller than its dimension N .
In other words, D is a low-rank matrix, which can be esti-
mated from D̃ via the rank minimization problem below

min rank (D)

s.t. ||D̃− 0�(D)||2F ≤ ε (7)

where rank(·) denotes the rank operator and the estimate ofD,
‖·‖F denotes the Frobenius norm, and ε is an estimate of the
noise level.

In general, we call (7) the EDM completion problem. Note
that it is a non-convex and NP-hard problem; therefore, some
researchers have resorted to approximation or relaxation to
make the problem feasible. A related problem has been stud-
ied in [24], where the authors have shown that the rank
minimization problem can be approximately solved using the
Nuclear norm:

min ‖D‖∗
s.t. ||D̃− 0�(D)||2F ≤ ε (8)

where ‖·‖∗ is equal to the sum of the singular values of D.

III. PROPOSED NODE LOCALIZATION APPROACH
A. PROPOSED IDEA
With the above system and datamodel, in this section, we pro-
pose to solve the node localization problem in three steps,
as shown in Fig. 1.

FIGURE 1. The flow chart of the proposed node localization approach.

(1) Acquire an EDM matrix that is in general incomplete
and may contain some unknown elements.

(2) Using the low-rank properties of the EDM, a Bayesian-
learning-based algorithm is utilized to recover the orig-
inal EDM from incomplete and noisy distance mea-
surements.

(3) Based on the reconstructed EDM, the MDS and Pro-
crustes analysis technique are applied to determine the
absolute positions of all nodes.

B. EDM COMPLETION USING BAYESIAN LEARNING
We can decompose any matrix of rank r by singular value
decomposition (SVD) [18]

D = USVT
= (US

1
2 ) (S

1
2VT ) (9)

where U and V are N × r matrices with orthogonal columns
and S is an r × r diagonal matrix of the non-zero singular
values. Thus, D can be rewritten as

D = ABT (10)

whereA andB areN×r matrices such that rank(D) = r ≤ N .
Now, the (N 2

− λN 2) unknown elements in D need to be
filled and reduce to (2Nr − λN 2), where usually λ << 1;
thus, the number of unknown elements to be filled is approx-
imately 2r/N of the original’s, which will greatly reduce
the complexity of the matrix completion. To be equivalent
to optimization problem (8), as shown in [25], the matrices
A and B can then be estimated using

min ‖A‖2F + ‖B‖
2
F

s.t. ||D̃− 0�(D)||2F ≤ ε (11)

In the following, we solve the problem in (11) using
the Bayesian methodology. To obtain low-rank solutions,
we employ independent sparsity priors on the individ-
ual factors with a common sparsity profile, and we
model other elements in the problems using a hierarchical
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Bayesian framework. From (10), it is clear that D is the sum
of the outer products of the columns of A and B, that is,

D =
k∑
i=1

a�ibT�i (12)

where k ≥ r and a�i and ai� are used to denote the ith
column and row of A, respectively. Obviously, each outer
product increases the rank of D by at most one. To seek a
low-rank estimate of D, a column sparsity in A and B should
be achieved, which means that most columns in A and B are
set equal to zero. To enforce this constraint, the columns of
A and B are associated with Gaussian priors of the precisions
(inverse variances) γi, that is,

p(A|γ ) =
k∏
i=1

N(a�i|0, γ−1i IN ) (13)

p(B|γ ) =
k∏
i=1

N(b�i|0, γ−1i IN ) (14)

where IN denotes the N × N identity matrix. Therefore,
the columns of A and B have the same sparsity profile
enforced by the common precisions γi. Because many of
the precisions γi will assume very large values during infer-
ence, the corresponding outer products fromD are effectively
removed, which reduces the rank of the estimate.

In addition to (13) and (14), the conjugate Gamma hyper-
prior is incorporated on the precisions γi

p(γi) = Gamma(a, 1/b) ∝ γ a−1i exp(−bγi) (15)

To obtain broad hyperpriors, the parameters a and b are
treated as deterministic constants with small values.

Based onmodel (5) and the standard assumption, we incor-
porate white Gaussian noise in the observations D̃ such that

p(D̃|A,B, β) =
∏

(i,j)∈�

N(D̃i,j|Di,j, β−1) (16)

where β = 1/ε is the noise precision, which is assigned the
non-informative Jeffrey’s prior [26]

p(β) = β−1 (17)

Therefore, the joint distribution is

p(D̃,A,B, γ , β) = p(D̃|A,B, β)p(A|γ )p(B|γ )p(γ )p(β)

(18)

Because an exact full-Bayesian inference for A,B, γ ,
and β using joint distributions as (18) is intractable, we resort
to the variational Bayesian inference methodology. For each
hidden variable, we compute posterior distribution approx-
imations by minimizing the Kullback-Leibler (KL) diver-
gence in an alternating manner [27]. Using the notation
z = (A,B, γ , β), which is the vector of all hidden variables,
the posterior approximation q(zk) of each hidden variable
zk ∈ z is found using

log q(zk ) = 〈log p(D̃, z)〉z\zk + const (19)

where z\zk denotes the set z with zk removed, 〈·〉 denotes the
mathematical expectation, and the distribution p(D̃, z) is the
joint probability distribution given in (18).

With this mean field approximation and the posterior fac-
torization q(z) =

∏
q(zk ), we estimate the posterior distri-

bution of each hidden variable by holding the other hidden
variables fixed using their most recent distributions [28].
The update rules resulting from this inference scheme are
presented as follows.

1) ESTIMATION OF FACTORS A AND B
According to (19), with some algebra, the approximation to
the posterior distributions of A and B decomposes as inde-
pendent distributions of their rows. Based on the prior in (13)
and the observation model in (16), the posterior density of the
ith row ai� of A is found as

q(ai�) = N(ai�|〈ai�〉, 6a
i ) (20)

with mean and covariance

〈ai�〉T = 〈β〉6a
i 〈Bi〉

T d̃
T
i� (21)

6a
i = (〈β〉〈BTi Bi〉 + 〈 diag(γ1, · · · , γk )〉)

−1 (22)

where Bi contains only the jth rows of B for which (i, j) ∈ �
such that

〈BTi Bi〉 =
∑

j:(i,j)∈�

〈bTj�bj�〉=
∑

j:(i,j)∈�

(〈bTj�〉〈bj�〉+6
b
j ) (23)

where 6b
j is the posterior covariance of the jth row of B.

In addition, the row vector d̃ i� denotes the ith row of D̃.
Similarly, based on the prior in (14) and the observation
model in (16), the posterior density of bj�, the jth row of B,
is found as a normal distribution

q(bj�) = N(bj�|〈bj�〉, 6b
j ) (24)

with parameters

〈bj�〉T = 〈β〉6b
j 〈Aj〉

T d̃ �j (25)

6b
j = (〈β〉〈AT

j Aj〉 + 〈diag(γ1, · · · , γk )〉)−1 (26)

where Aj contains the ith rows of A, for which (i, j) ∈ �, and
the vector d̃ �j denotes the jth column of D̃.

2) ESTIMATION OF HYPERPARAMETERS γ

By combining (13), (14) and (15), the posterior density of γi
becomes a Gamma distribution

q(γi) = γ
(a−1+N )
i exp(−γi

2b+ 〈aT�ia�i〉 + 〈b
T
�ib�i〉

2
) (27)

with mean

〈γi〉 =
2(a+ N )

2b+ 〈aT�ia�i〉 + 〈b
T
�ib�i〉

) (28)

The required expectations are given by

〈aT�ia�i〉 = 〈a�i〉
T
〈a�i〉 +

∑
j

(6a
j )ii (29)

〈bT�ib�i〉 = 〈b�i〉
T
〈b�i〉 +

∑
j

(6b
j )ii (30)
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3) ESTIMATION OF NOISE PRECISION β

We can also use the Bayesian methodology to estimate the
noise precision. From (19), the posterior approximation is
assumed to be a Gamma distribution with mean

〈β〉 =
λN 2

〈

∥∥∥D̃− 0�(ABT )∥∥∥2
F
〉

(31)

In summary, the EDMcompletion algorithm consists of the
successive update the estimation of the rows ofA andB using
(21) and (25), respectively, followed by the estimation of the
precisions γi using (28) and the noise precision β using (31).

C. LOCATING THE NODES BY MDS
With the reconstructed EDM above, all the pairwise distances
in the network are available. According to the classical MDS
method, the reconstructed D̂ is first double centered as

W = −
1
2
JD̂J (32)

where J = I − 1
N 1 × 1T , I is the N × N identity matrix,

and 1 is a column vector of all ones. Here,W is symmetric and
positive semidefinite; given the SVD of W as W = L3LT ,
we obtain the relative positions of each node as follows:

R 1
= Ld3

1/2
d (33)

where R = [r1, r2, · · · , rN ], Ld denotes the N × d left
singular matrix corresponding to the d largest singular values,
and3d denotes the d × d diagonal matrix, with the d largest
singular values in the diagonal.

Next, position alignment is conducted based on the anchor
nodes. Clearly, ri can be mapped to pi by scaling, rotating and
shifting the relative positions, also called Procrustes analysis
techniques [29]. Because nodes {uj}Mj=1 (M ≥ d + 1) are
anchor nodes, we have

Q =
[u2 − u1,u3 − u1, · · · ,uM − u1]
[r2 − r1, r3 − r1, · · · , rM − r1]

(34)

where Q is the coordinate-transform matrix. Applying the
transformation to all the unknown nodes, we can easily obtain
their absolute coordinates as

xi = Q(ri − r1)+u1, i=M + 1,M + 2, · · · ,N (35)

IV. PERFORMANCE EVOLUTION
In this section, we demonstrate the effectiveness and prop-
erties of our proposed localization approach by simulation
usingMatlab2015b. In our experiment, we generate theWSN
shown as Fig. 2, with 100 sensor nodes, whose positions
are randomly drawn from a uniform distribution on [0, 1],
among which 4 anchor nodes are placed at the four corners
for position alignment. We assume that the communication
range between the nodes is limited; thus, the EDM obtained
in FC might be incomplete. In addition, the EDM’s entries
might be corrupted by additive zero-mean Gaussian noise
with variance σ 2. For simplicity, the incomplete EDM D̃ is
constructed by randomly choosing the entries from D with

FIGURE 2. Geometry of a wireless sensor network for numerical
evaluation.

the sparsity level λ. To investigate the completion accuracy of
the reconstructed EDM, the average completion error (ACE)
is defined as

ACE = E{||D− D̂||F/||D||F } (36)

where E{·} is the expectation operator and D̂ represents
the reconstructed EDM. To compare the localization perfor-
mance of the proposed algorithm, we use the average local-
ization error (ALE) to calculate the localization accuracy,
which is evaluated by

ALE = E{
1
N
||P− P̂||F } (37)

where P is the actual position of the sensor nodes and P̂
is their estimated global position. All the simulations are
repeated 100 times to obtain faithful results.

Fig. 3 shows the ACE of the reconstructed EDM based on
the proposed Bayesian learning methodology with respect to

FIGURE 3. ACE versus the sparsity level.
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the sparsity level λ (the proportion of entries that are known
in D) without noise. We also compare the proposed scheme
with traditional FPCA [15], OptSpace [16], SVT [18], and
robust rank-k matrix completion (RRMC) [30]. It is demon-
strated that all the ACE decline with increasing λ. For FPCA,
RRMC and our proposed scheme, only 20% of entries of the
EDM are necessary to achieve an accurate reconstruction.
Under the same number of measurements (fewer than 20%),
the ACE of the proposed scheme is the smallest, therein
outperforming the other completion methods.

FIGURE 4. ACE versus noise variance.

When the known entries are corrupted by noise, we plot the
ACE curves of different algorithms versus the noise variance,
where λ = 0.2. As shown in Fig. 4, all the ACE increase with
increasing noise variance, whereas the FPCA achieves the
worst completion performance with σ 2 > 0.001. Compared
with OptSpace, the completion accuracy has been improved
by at least 5% using our proposed scheme. In conclusion, our
proposed Bayesian learning scheme is an accurate and effi-
cient completion method, thereby supporting the arguments
in Section III.

Fig. 5 shows the ACE curves of the proposed completion
scheme under different network sizes, where σ 2

= 0.002. It is
demonstrated that the proposed Bayesian learning scheme
achieves a superior performance in terms of both ACE and
the reduced number of entries, especially when the scale
of the network is large. For example, an ACE of 10% is
obtained for small-scale networks with N = 100 when the
proportion of entries reaches 20%, while only 8% is needed
for a slightly larger network with N = 250. This means
that fewer communication operations are necessary between
sensors, and the energy consumption will be reduced for the
whole network.

Based on the Bayesian learning EDM completion
approach, we plot the overall performance of our proposed
localization approach in terms of the ALE with respect to
the communication range r under different noise variances
in Fig. 6, where N = 100. It is shown that the ALE of

FIGURE 5. ACE versus the sparsity level for different network sizes.

FIGURE 6. ALE versus communication range for different noise variances.

FIGURE 7. An intuitive node localization result.

our proposed localization approach decreases sharply with
increasing communication range. This is because for large r ,
more entries in D are known, and the EDM completion
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becomes more accurate. The ALE also declines with decreas-
ing noise variance; an ALE of 0.002 is obtained for
σ 2
= 0.001. In addition, the ALE presents no obvious change

when r > 0.5.
Fig. 7 shows an intuitive node localization result of the

WSN shown as Fig. 2 provided by the proposed localiza-
tion approach. The communication range is set to 0.5, and
σ 2
= 0.001. The asterisks are the actual positions of these

100 nodes, while squares represent the estimated locations.
As illustrated in the figure, most nodes are accurately local-
ized, therein demonstrating the effectiveness of our proposed
location estimation scheme.

V. CONCLUSION
This paper proposed a novel node localization algorithm for
WSNs based on EDMcompletion. Using the unique low-rank
feature of the EDM, a new Bayesian-learning-based method
is first used to recover the original EDM from incomplete
and noisy range measurements. Then, the relative positions
of the nodes are obtained by applying the classical MDS
method. Next, based on the anchor node location knowledge,
the translation, rotation and reflection of the relative positions
are used to determine the absolute positions of the unknown
nodes. The simulation results show that, compared with other
algorithms, our proposed algorithm improves the localization
accuracy under the same number of range measurements, and
the network energy consumption can be reduced, especially
for large-scale WSNs.
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