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ABSTRACT Blind image quality assessment (BIQA) aims to evaluate the quality of an image without
pristine image objectively, which is highly desired in many perception-oriented image processing systems.
Distortions degrade the visual contents and cause image quality degradation. Moreover, the visual contents
of an image suffer from individual degradations by different types and different levels of distortions, which
makes us difficult to analyze the quality degradation. From the perspective of information theory, there is a
decrease in the amount of the visual contents when images are distorted. Therefore, in this paper, the image
quality is assessed through its visual entropy degradation. Researches on the neuroscience indicate that the
simple cells in the local receptive field can be characterized as being spatially localized and oriented, then
the local intensity, gradient, and orientation features are extracted to represent the visual contents of an
image. By deducing the joint entropy equation, the joint entropy is related to the statistical distributions.
Next, in order to measure the visual entropy, the joint statistical distributions of those features are calculated.
Finally, by measuring the degradations on these distributions of distorted images, a novel BIQA method is
proposed. The experimental results on the databases of LIVE, CSIQ, and TID2013 show that the proposed
method has superior performance than other state-of-the-art BIQA methods.

INDEX TERMS Blind image quality assessment (BIQA), local receptive field, joint visual entropy, joint
probability distribution.

I. INTRODUCTION
Digital images are ubiquitous in our daily life. However,
images inevitably suffer from distortions during image
processing [1], [2]. The image quality will decline which
affects people’s subjective perception. Therefore, it is essen-
tial to assess its perceived quality in image communication
and processing. The quality of image assessed by human is
usually time-consuming and expensive [3]. Hence, objective
image quality assessment (IQA) which can automatically
predict image quality consistently with human subjective
perception has attracted a lot of attentions.

In the past two decades, a large amount of IQA
methods have been introduced. Objective IQA meth-
ods are usually divided into three categories: full refer-
ence (FR) models, reduced reference (RR) models, and no
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reference (NR) [4] models. Most of these methods are
FR (e.g., structure similarity [5]) and RR (e.g., orienta-
tion selectivity based visual pattern for RR IQA [6] and
reduced-reference IQA with reference with visual informa-
tion fidelity [7]) models. However, those methods require
full reference images or certain descriptors of the reference
images. In most practical situations, the reference images
are not often available. Thus, no reference (NR) IQA that
requires no information about the primary has became an
active research topic in recent years [8]–[10].

Without the help and guidance of the reference, NR IQA
is a more difficult problem. Early NR methods mainly
used the prior knowledge of the distortion type for
image quality prediction. Those methods are usually called
distortion-specific NR IQA [3], [11]. The distortion-specific
features are extracted for quality prediction in those NR IQA
methods, such as the algorithm in [12] and [13] for blur, that
in [14] for JPEG2000 compressed images, and that in [15] for
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JPEG compressed images. Thesemethods based on distortion
type only work for a certain type of distortion, and have a
limitation in practice.

Recently, in order to assess the quality of images without
the prior knowledge of distortion, the non-distortion-specific
NR IQA methods have been studied gradually [16]–[18].
Most existing algorithms belong to knowledge-driven
methods, such as that relying on human visual sys-
tem (HVS) [19]or Natural Scene Statistical (NSS) [20].
HVS-based methods are also called bottom-up methods,
which achieve the image quality by modeling some char-
acteristics of HVS, or some physiology and psychophysics
experiments. Although thosemethods have been found nearly
universal acceptance, they have a lot of limitations. Actually,
the HVS is a highly non-linear and complex system, but
most existing HVS-based models of BIQA rely on linear or
quasi-linear operators [5].

NSS-basedmodels evaluate image quality based on the sta-
tistical distributions of certain filter responses in several dif-
ferent domains, such as spatial, wavelet, and DCT domains.
Moorthy et al. studied the natural scene statistical of images,
and obtained the image quality by measuring the changes on
the generalized Gaussian distribution (GGD) coefficients in
the wavelet domain, which is called DIIVINE [21]. Assum-
ing that the statistics of the contrast and structure features
extracted in the DCT domain can vary in a predictable way
as the image quality changes, a BIQA model was proposed,
which is called BLIINDS [22]. Moreover, Mittal et al. quan-
tified possible losses of naturalness in the images by using
scene statistic of locally normalized luminance coefficients,
and introduced the BRISQUE for quality assessment [8].
Recently, Zhang et al. [23] proposed the IL-NIQE for BIQA
which combined a series of NSS features in several domains.
Though those methods have made great progress, there still
exists a large gap between the objective method and the
human subjective perception.

Distortions destroy the visual contents of images, and
then degrade the subjective perception of human. More-
over, the visual contents of an image suffer from individ-
ual degradations by different types and different levels of
distortions [24], which makes us difficult to analyze the qual-
ity degradation. However, distortions always degrade certain
visual contents of images. From the perspective of informa-
tion theory, there is a decrease in the amount of the visual
contents when images are distorted. Therefore, the image
quality can be measured by its visual information degrada-
tion. According to Shannon information theory, the amount
of information that the source conveys to the outside can be
defined by the information entropy. In other words, the qual-
ity degradation varies as the visual entropy changes.

In order to analyze and measure visual information,
the representations of the visual contents are required.
Inspired by the researches on the neuroscience, the local
receptive field (LRF) in the primary visual cortex is highly
adaptive to extract the local feature [25]. Moreover, the sim-
ple cells in the LRF can be characterized as being spatially

localized and oriented [25]. In other words, the visual con-
tents of an image can be characterized as the features deliver-
ing the spatial location and orientation of the image. Since
these representations do not appear alone, the joint repre-
sentations are used to describe the visual contents of the
image. Thus, the quality degradation is analyzed as the joint
entropy of degraded features representing visual information
in images.

In this work, the image quality is assessed by measuring
the joint visual entropy of images. Distortions decrease the
visual information, and the amount of visual information in
an image can be measured by information entropy. Moreover,
the researches on the neuroscience indicate that the visual
information of an image can be represented by a series of fea-
tures. Thus, the degraded quality is analyzed as the changes
of visual feature entropy.

The main contributions of our model are as follows: firstly,
the image quality is assessed from a completely new per-
spective, the image quality degradation can be measured
by the degraded visual information. Secondly, by analyz-
ing the degradation of visual information, a novel BIQA
method based on joint entropy degradation is proposed.
Finally, the proposed method has a strong robustness, that is
it achieves good performances in across-dataset evaluation.

The paper is organized as follows: In Section II, we give the
details of joint visual entropy analysis. Section III describes
the application of joint visual entropy in BIQA modeling.
Experimental evaluations of the proposed methods on three
databases compared with other state-of-the-art methods are
presented in Section IV. We conclude the paper in Section V.

II. JOINT VISUAL ENTROPY ANALYSIS
Distortions degrade the visual information of an image, and
cause the image quality degradation. Moreover, the visual
contents of an image suffer from individual degradations
by different types and different levels of distortions, which
makes us difficult to analyze the image quality degradation.
As can be seen in Fig. 1, the less distortions, the more
visual contents contain. In other words, the distortion of
an image can be evaluated by the visual content. From the
perspective of information theory, the amount of visual infor-
mation can be measured by the visual entropy. Recently,
researches on the neuroscience indicate that the visual infor-
mation can be represented by the features that describe the
spatial location and orientation of the image [25]. Since
the representations are expressed together, their joint visual

FIGURE 1. An example of a natural scene distorted by different
distortions.
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entropy can be used to represent the visual information of
an image. Thus, the joint entropy of those visual features
can efficiently represent the visual information degradations,
and the image quality is predicted with its joint entropy
degradation.

Based on the above analysis, the joint entropy degradation
of visual information can be used to measure the image
quality, and the visual information of an image is represented
by a series of features. A hypothesis is that a set of features
can be expressed by X1, X2,. . . , Xn. According to the Shannon
information theory, the joint entropy of these features is
calculated as:

H (X1,X2, . . . ,Hn) =
n∑
i=1

H (Xi|Hi−1, . . . ,H1)

=
1
n

n∑
i=1

H (Xi)

+
1

n(n− 1)

n∑
i=1

n∑
j=1,j6=i

H (Xj|Xi)+ . . .

+
1
n!

n∑
i=1

..

n∑
k=1,k 6=i..q

H (Xk |Xq..Xi) (1)

As mentioned above, the joint visual entropy is related
to single feature entropies and other conditional entropies
(i.e. H (Xi), H (Xj|Xi),. . . , H (Xk |Xq, . . . ,Xj,Xi)). Moreover,
according to the Shannon entropy equation, the entropy only
relies on statistical distribution, which is shown in Eq. 2,

H (X ) = −
∑
i

p(xi)logp(xi). (2)

Thus, H (Xi) ∝ p(Xi) (which also stands for the other
parts, i.e., H (Xj|Xi) ∝ p(Xj|Xi),. . . , H (Xk |Xq, . . . ,Xj,Xi) ∝
p(Xk |Xq, . . . ,Xj,Xi )). In other words, the statistical distri-
butions of the image will change when an image is dis-
torted, which results in entropy degradation. Thus, the image
quality varies with the changes on each statistical distri-
butions (p(Xi), p(Xj|Xi),. . . ,p(Xk |Xq, . . . ,Xj,Xi)). Therefore,
in order to assess the image quality with the visual infor-
mation degradation, the statistical distributions of those fea-
tures which represent the visual information of an image are
required.

III. BIQA MODELING
In this section, the extraction of those features that represent
the visual information of an image is presented firstly. Then,
the statistical distributions of features are obtained. Finally,
the degradations on statistical distributions of features are
analyzed for BIQA modeling.

A. FEATURE EXTRACTION
Distortions degrade the visual information of an image.
Moreover, different types and different levels of distortions
generate individual degradations on visual contents. From
the perspective of information theory, the amount of visual

information that an image contains can be measured by the
visual information entropy. In order to measure and ana-
lyze the visual information, the representations of the visual
information of an image are required. Although there are
many pixels in a discrete natural image, each pixel is highly
correlated to its surrounding [24]. In other words, there a
large amount of redundancies when the distribution of each
pixel is calculated for visual entropy measurement directly.
Inspired by the researches on the neuroscience, the LRF in
the primary visual cortex is highly adaptive to extract the
local feature for visual perception, and the simple cells in
the LRF can be characterized as being spatially localized
and oriented. In other words, the LRF is extremely sensitive
to the changes of intensity and orientation [25], [26]. Thus,
the visual information of an image can be represented by the
local features such as local intensity, local orientation and
local gradient of the image.

1) LOCAL INTENSITY EXTRACTION
As mentioned above, the simple cells in the LRF are
extremely sensitive to the changes on intensity [25], [26]. The
pixel values in an image change directly when an image is
distorted. Thus, the intensity of images can partially rep-
resent the visual information of images. There are a large
amount of redundancies when we calculate the distribution
of each pixel, and each pixel in an image is highly correlated
to its surrounding. Moreover, researches on natural scene
statistical indicate that a local non-linear normalization to
the luminance has efficient decorrelation function [8], [27].
Thus, a local non-linear normalization is adopted to represent
the intensity of an image. For a given image I , the local lumi-
nance is normalized via local mean subtraction and divisive
normalization. Such an operation is applied to a intensity
image I (i, j) to produce:

Î (i, j) =
I (i, j)− µ(i, j)
σ (i, j)+ C

, (3)

where, i ∈ 1, 2, . . . ,M , j ∈ 1, 2, . . . ,N are spatial indices,
andM , N are the height and width of an image, respectively.
C = 1 is a constant that prevents instabilities from occurring
when the σ (i, j) tends to zero. And the µ(i, j) and σ (i, j) are
defined as:

µ(i, j) =
K∑

k=−K

L∑
l=−L

wk,lIk,l(i, j), (4)

σ (i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Ik,l(i, j)− µ(i, j))2, (5)

where w = {wk,l |k = −K , . . . ,K , l = −L, . . . ,L}
is a 2D circularly-symmetric Gaussian weighting function
(i.e. G(x, y|σ ) = 1

2πσ 2
exp(− x2+y2

2σ 2
) ) sampled out to 3 stan-

dard deviations and rescaled to unit volume. Since the
smaller window size the better performance [8], we set the
K = L = 3 in this implementation.
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2) LOCAL GRADIENT EXTRACTION
According to the researches on neuroscience, the simple cells
in the LRF are highly adapted to extract orientation features.
Gradient is a better way to show the changes on the orienta-
tion. Thus, the gradient of an image is adopted to represent the
visual information of an image partially. For a digital image,
the gradient is usually computed by convolving an imagewith
a linear filter such as the classic Roberts, Sobel, and Pre-
witt filters or some task-specific ones [28], [29]. Moreover,
the gradient magnitude is defined as the root mean square of
image directional gradients along two orthogonal directions.
In this work, we adopt a Gaussian difference filter pair along
the horizontal and vertical directions to calculate the gradient
of an image in two orthogonal directions [30]. The horizontal
direction filter operator hx(x, y|σ ) is defined as:

hx(x, y|σ ) =
∂

∂x
g(x, y|σ )

= −
1

2πσ 2

x
σ 2 exp(−

x2 + y2

2σ 2 ), (6)

and the vertical direction filter operator hy(x, y|σ ) is
defined as:

hy(x, y|σ ) =
∂

∂y
g(x, y|σ )

= −
1

2πσ 2

y
σ 2 exp(−

x2 + y2

2σ 2 ), (7)

where, the g(x, y|σ ) = 1
2πσ 2

exp(− x2+y2

2σ 2
) is isotropic Gaus-

sian function, σ is the scale parameter. In this work, we define
the scale parameter σ = 5

6 , and the size of windows is 5 ∗ 5.
Thus, the gradient of an image is calculated as:

G =
√
(I ∗ hx)2 + (I ∗ hy)2, (8)

3) LOCAL ORIENTATION SELECTIVITY EXTRACTION
Researches on the neuroscience indicate the simple cells in
the LRF are highly sensitive to orientation and location. And
orientation selectivity arises from the spatial arrangement
of intracortical responses in a LRF of the primary visual
cortex [31], [32]. When an image is perceived, the individual
arrangements of excitatory/inhibitory interactions for differ-
ent local receptive fields are excited. In other words, different
kinds of orientation selectivity based visual patterns (OSVP)
are generated for image understanding [33]–[35]. Therefore,
the OSVP features are extracted for visual information pre-
sentation by imitating this orientation selectivity mechanism.
In [34], the research indicates that the orientation selectivity
is directly related to the arrangement of the interaction among
cortical neurons in a LRF. Inspired by this mechanism and
the arrangement of the correlations among neighbor pixels,
the OSVP can be computed.

The OSVP of the pixel x ∈ I in an image is defined as:

Pv(x|χ ) = A(I(x|χ )) = A(I(x|x1, x2, . . . , xn)), (9)

where χ = {x1, x2, . . . , xn} is the arrangement of the spa-
tial correlations with its circularly symmetric neighborhood,

A(·) is the arrangement of spatial correlations, and I(x|χ ) is
the spatial correlations between x and xi in X . The OSVP
feature of an pixel depends on the arrangement of intracor-
tical responses (i.e.,excitatory and inhibitory interactions).
According to these researches that neighbor neurons with
similar preferred orientations always present excitatory inter-
actions and these dissimilar ones present inhibitory interac-
tions, the description of the pattern Pv can be simplified as
the arrangement of interactions between the central pixel x
and its local neighbors χ = {x1, x2, . . . , xn}. Thus, the Eq. 9
can be recognized as:

Pv(x|χ ) ≈ A(I(x|x1), I(x|x2), . . . , I(x|xn)), (10)

where I(x|xi), i ∈ 1, 2, . . . , n, denotes the interaction
between x and xi.

There are two types of interactions in imitating the ori-
entation selectivity mechanism, excitation and inhibition,
which play distinct roles, one for excitatory neurons connect-
ing to neurons that are well correlated in activity, and the
other inhibitory neurons connecting to neurons that are anti-
correlated. Moreover, the interaction type in the orientation
selectivity mechanism is depended on the orientation simi-
larity, which is defined as:

I(x|xi) = f (2(x),2(xi)), (11)

Since the interaction type depends on their preferred orienta-
tions, the orientation similarity between x and xi is computed
to represent I(x|xi). In order to obtain the orientation similar-
ity, the gradient direction θ of a pixel x ∈ I is defined as its
orientation:

θ (x) = arctan
Gv(x)
Gh(x)

, (12)

where Gh and Gv are the horizontal and vertical gradient
magnitudes, respectively, which can be calculated as:

Gh = I ∗ fh,Gv = I ∗ fv, (13)

where fh is the horizontal Prewitt filter, fv is the vertical
Prewitt filter, and the convolutional operation is denoted as ∗.
The Prewitt filters are defined as:

fh=
1
3

1 0 −1
1 0 −1
1 0 −1

, fv=
1
3

 1 1 1
0 0 0
−1 −1 −1

, (14)

According to the orientation similarity between two pixels,
the Eq. 11 is rewritten as:

I(x|xi) =
{
1, if |θ (x)− θ (xi)| < T
0, otherwise,

(15)

where excitatory interaction is represented as ′1′, ′0′ repre-
sents inhibitory interaction, and the similarity threshold is
defined as T . In order to obtain the similarity threshold,
the subjective viewing test on visual masking effect [36] has
been investigated. The researches indicate that the masking
effects among nearby gratings are strong if they possess the
same orientation. Themasking effect becomesmarginal when
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the orientation difference is larger than the threshold. Thus,
in this paper, we set T = 6◦.
According to Eq. 15, the OSVP form of a pixel is rep-

resented by the arrangement of ′0′ and ′1′ within its circu-
larly symmetric neighborhood. In this work, the orientation
similarity of the 8-neighborhood X centered on x organized
counterclockwise to obtain the local orientation information
of x, which is defined as B,

B(x) = (I(x|x1), I(x|x2), . . . , I(x|x8)), (16)

Moreover, going through each pixel in the image and obtain-
ing its local orientation information, the orientational infor-
mation of the whole image is obtained, which is defined as:

O(I ) =


B(1, 1) B(1, 2) . . . B(1,N )
B(2, 1) B(2, 2) . . . B(2,N )
. . . . . . . . . . . .

B(M , 1) B(M , 2) . . . B(M ,N )

 (17)

where,M , N are the height and width of an image.

B. FEATURE DISTRIBUTION CALCULATION
Distortions degrade the visual information of an image and
lead to the image quality degradation. The amount of visual
information in an image can be measured with informa-
tion entropy. Researches on neuroscience indicate that the
visual information can be represented by a series of features.
As mentioned above, three features are extracted to represent
the visual information of an image. Thus, according to the
Eq. 1, the visual information entropy can be rewritten as:

H (X1,X2,X3) =
3∑
i=1

H (Xi|Hi−1, . . . ,H1)

=
1
3

3∑
i=1

H (Xi)+
1
6

3∑
i=1

3∑
j=1,j6=i

H (Xj|Xi)

+
1
6

3∑
i=1

3∑
j=1,j6=i

3∑
k=1,k 6=i,j

H (Xk |Xj,Xi). (18)

According to the shannon theory, the event entropy is related
to the statistical distribution of the event. According to the
Eq. 2, theH (X1,X2,X3) depends on the statistical distribution
of each event (i.e., p(Xi), p(Xj|Xi), p(Xk |Xj,Xi)).
For analyzing the statistical distribution of each event,

the distribution probabilities are required. With the Eq. 3,
the intensity of an image is obtained. Since the intensity of an
image is continuous, the values of the normalized luminance
are discretized and divided intoM evenly spaced bins. In this
work, we set M = 23 by considering the accuracy and the
complexity of computation. Moreover, the values of the nor-
malized luminance are specified in 1, 2, . . . ..,M based on the
principle of rounding. Then, the statistical probabilities of the
normalized luminance feature are acquired based on counting
the number of each bin, e.g., {p(X1) = m|m = 1, 2, . . . , 23}.
Similar to the values of the normalized luminance, the values
of the gradient in an image based on Eq. 8 are continuous.

Thus, the values are discretized and divided into N evenly
spaced bins based on same mode, and the N = 23 is set. The
statistical probabilities of gradient are obtained by counting
the number of each bin, i.e.,{p(X2 = n)|n = 1, 2, . . . , 23}.
Different from the above two types of values, the values of
OSVP are discrete. Even so, there are too many types of
OSVPs resulting in computational complexity. Considering
the characteristic of rotation invariant, there are only 36 fun-
damental types of patterns are reserved. Finally, by counting
the number of every value, the statistical probabilities of
OSVP are acquired, i.e., {p(X3 = k)|k = 1, 2, . . . , 36}.
According to the above operations, the representations of
visual information on images are discretized and the statis-
tical probabilities of visual features are obtained.

Moreover, the joint statistical distribution of the features is
also counted. For each pixel in an image, the local intensity
and the local gradient are calculated according to the Eq. 3
and Eq. 8. Then, the local intensity and the local gradient of
the whole image are obtained, which is define as IG(I ) ,

Î (1, 1),G(1, 1) . . . Î (1,N ),G(1,N )
Î (2, 1),G(2, 1) . . . Î (2,N ),G(2,N )

. . . . . .

Î (M , 1),G(M , 1) . . . Î (M ,N ),G(M ,N )

 , (19)

where, M , N are the height and width of an image. Dis-
creting each element in the matrix based on the above prin-
ciple, the Î and G are joint normalized into 1, 2, . . . , 23.
By counting the number of each bin, a probability matrix
is acquired, i.e., {p(X1 = m,X2 = n),m = 1, 2, . . . , 23;
n = 1, 2, . . . , 23}. Then, the conditional probability p(X1 =
m|X2 = n) can be derived as:

p(X1 = m|X2 = n) =
p(X1 = m,X2 = n)

p(X2 = n)
, (20)

Similarly, the other conditional probabilities (i.e., p(X1 =
m|X3 = k), p(X2 = n|X1 = m), p(X2 = n|X3 = k),
p(X3 = k|X1 = m), p(X3 = k|X2 = n)) are also counted.
Generally speaking, the statistical distribution of each feature
(i.e., p(X1) = m,m = 1, 2, . . . , 23) is far greater than the
corresponding conditional probability (i.e., {p(X1 = m|X2 =
n),m = 1, 2, . . . , 23; n = 1, 2, . . . , 23}). Thus, the measure-
ment of the image quality degradation depends on the statis-
tical distribution of each feature. Moreover, there are a large
number of the conditional probabilities which increases the
dimension of the statistical features. To tackle these problems,
the overall conditional probability p(X1 = m|X2) is used to
replace the conditional probability p(X1 = m|X2 = n), and
the overall conditional probability is calculated as:

p(X1 = m|X2) =
N∑
n=1

p(X1 = m|X2 = n)

=

N∑
n=1

p(X1 = m|X2 = n)
p(X2 = n)

. (21)

As shown in Eq. 18, the conditional probability (i.e., p(X1 =
m|X2 = n,X3 = k), p(X2 = n|X1 = m,X3 = k),
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FIGURE 2. Illustration of the proposed method configurations for BIQA.

p(X3 = k|X1 = m,X2 = n)) should be taken into
account. However, the conditional probabilities of any one
event occurs under the other two events are far less than the
conditional probability of one event. Therefore, in this work,
we take the statistical distribution of each feature and the
conditional probability of two features into account to assess
the image quality.

C. QUALITY DEGRADATION ASSESSMENT
Distortions decrease the visual contents of an image result-
ing in the image quality decreases. From the perspective of
information theory, distortions degrade the amount of the
visual information which can be measured by the visual
information entropy. Inspired by the researches on the neu-
roscience, the visual contents are represented by a series of
features. In this work, the local intensity, local gradient and
local orientation selectivity of an image are extracted for
visual information representation. Thus, the image quality
is assessed based on joint feature entropy. By deducing the
joint feature entropy, the joint visual entropy of images is
directly related to the statistical distribution and the overall
conditional probability. And thus, the six overall conditional
probabilities (i.e., p(X1 = m|X2), p(X1 = m|X3), p(X2 =
n|X1), p(X2 = n|X3), p(X3 = k|X2), p(X3 = k|X1)) and
the statistical distributions (i.e., p(X1), p(X2), p(X3)) are com-
bined and a feature set (F={p(X1 = m|X2), p(X1 = m|X3),
p(X2 = n|X1), p(X2 = n|X3), p(X3 = k|X2), p(X3 =
k|X1), p(X1), p(X2), p(X3) }) is obtained for image quality
assessment.

In order to assess the image quality, a mapping function is
learned between the vector spaceF and the subjective quality
scores Q (i.e., MOS, DMOS) by using a regression module.
In this work, a classical support vector regression (SVR) is
adopted to image quality assessment for regression [37]–[39].

R = SVRlearn(F ,Q). (22)

The quality of a distorted image Id can be predicted when the
mapping function is determined,

Q̂(Id ) = SVRpredict (F(Id ),R), (23)

whereF(Id ) represents the feature of the distorted image Id ,
and Q̂(Id ) represents its predicted quality score. The Fig. 2
shows the proposed method’s architecture.

IV. EXPERIMENTS
In this section, the databases and evaluation criteria that used
in the experiment are firstly given. Secondly, the experimental
setup is explained. Then, the performances of the proposed
method are displayed by comparing to the other existing state-
of-the-art BIQA and FR-IQA methods. Next, the robustness
of the proposed method is proved through cross-validation
experiments on different databases. Finally, the efficiency of
the proposed method is illustrated.

A. DATABASE AND EVALUATION CRITERIA
In this work, the proposed method is evaluated on three
quality-annotated IQA databases, including LIVE [40],
CSIQ [41], and TID2013 [42]. The LIVE database was
the first successful quality-annotated image database, and
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TABLE 1. Performance evaluation for different databases, and the best performance BIQA method is emphasized with bold.

used widely. The LIVE contains 779 distorted images based
on 29 source reference images subject to 5 different types of
distortions at different levels. The CSIQ database contains
886 images generated by 30 reference images degraded by
6 types of distortions under 5 levels. The TID2013 image
quality database includes 3000 distorted images which is the
largest quality-annotated database. This database was gen-
erated by 25 source references with 24 different distortion
types, and each distortion has 5 distortion levels.

In order to measure the performances of the proposed
method, three evaluation criteria are adopted, which are
SRCC (the Spearman rank order correlation coefficient),
PLCC (the Pearson linear coefficient), and RMSE (the root
mean squared error) [43]. In those criteria, the relationship
of the predicted qualities (the quality scores evaluated from
the proposed method) and the ground truth scores (MOS or
DMOS) are analyzed. Those criteria display the prediction
monotonicity, the prediction consistency and the prediction
accuracy of the proposed method, respectively. Moreover,
a better IQAmethodwill have a larger SRCCvalue and PLCC
value. Conversely, a better IQA method will have a smaller
RMSE value.

B. EXPERIMENTAL SETUP
In order to verify the effectiveness of the proposed method,
the proposed method is evaluated on the three databases men-
tioned above.When using SVR for quality prediction, a train-
ing procedure is required in the regression module. Similar
to the most of the SVR based quality prediction [50], [51],
an 80% − 20% training-testing procedure is used. In each
database, 80% original scenes are randomly selected, and
their corresponding distorted images are used for training,
the left distorted images for testing. Moreover, in order to
eliminate the bias caused by the data separation, the training-
testing procedure is repeated for 1000 times, and the median
performance is used for the final results.

C. PERFORMANCE EVALUATION
In this section, the performances of the proposed method
are illustrated. Though the databases consist of different dis-
tortion types, there exist four types of common distortions.

Thus, we choose those four common types of distortions
for comparison. In order to demonstrate the performance,
the proposed method is compared with some outstanding
BIQA methods and two classical FR IQA methods. The
results of three databases are listed in Table 1. As shown
in Table 1, the PSNR and MS-SSIM are the most common
FR IQA methods, and the rest are NR IQA methods. More-
over, the DIQA and BIECOM are the NR IQA methods
based on convolutional neural networks. The Table 1 indi-
cates that the proposedmethod obtains superior performances
on TID2013 in terms of PLCC, SRCC, RMSE. However,
the performances are slightly worse than the DIQA on LIVE.
Although the performance ofMS-SSIM is slightly better than
the proposed method on CSIQ, the proposed method is the
best among the existing BIQA methods.

There exist four types of common distortions in those
databases, which are JP2K, JPEG,WN,Gblur. Thus, the com-
parisons of those four common types of distortions are imple-
mented in this work. The performances of these IQAmethods
on those databases are also verified by three metrics directly.
The performances on LIVE database are shown in Table 2,
it is apparent that the proposed method performs highly
consistent with the subjective perception. Moreover, the pro-
posed method performs the best on three types of distortions
(i.e., JP2K, JPEG, WN) among those BIQA methods, and
slightly worse on Gblur. The performances of the proposed
method on CSIQ database are shown in Table 3, and the
results achieve 3 of 12 (3 criteria × 4 distortion type) best
performances among these BIQA methods. In other perfor-
mances, the experimental results of the proposed method
are very similar to other BIQA methods. The performances
on TID2013 database are listed in Table 4. It is apparent
that the proposed method performs the best on three types
of distortions (i.e., JP2K, JPEG, Gblur) when compared to
other BIQA methods, and slightly worse on the WN. In sum-
mary, the proposed method gains 22 of 36 (3 database ×
3 criteria × 4 distortion type) best performances among
those BIQA methods. In additional, the MEON [48] has
obtained the best performance on individual distortion type
among the existing methods based on Convolutional Neural
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TABLE 2. Performance comparison on individual distortion type of LIVE database, and the best performance BIQA method is emphasized with bold.

TABLE 3. Performance comparison on individual distortion type of CSIQ database, and the best performance BIQA method is emphasized with bold.

TABLE 4. Performance comparison on individual distortion type of TID2013 database, and the best performance BIQA method is emphasized with bold.

Network (CNN). We can not achieve the performances in
the replication experiment. Thus, the existing results in the
experiments of the MEON are adopted as the comparison in
this work. Unfortunately, they did not provide the results on
LIVE database which lead to the methods compared with the
proposed approach are different on different databases.

D. CROSS-DATABASE EVALUATION
The performances of the proposed method on each database
have been shown in the former subsection. In order to
reflect the generalization capability of the proposed method,
the cross-validation among the three databases is adopted.
Although the numbers and types of distortions for the three
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TABLE 5. Performance comparison on TID2013 and CSIQ when trained on LIVE.

TABLE 6. Performance comparison on TID2013 and LIVE when trained on CSIQ.

TABLE 7. Performance comparison on LIVE and CSIQ when trained on TID2013.

databases are different, they contain four common distortion
types. Thus, in order to demonstrate the robustness of the
proposed method, the cross-database evaluation is applied
to the four types distortion. In other words, for the three
databases, one of them is chosen for training, and the rest two
for testing.

The Table 5 lists the performances on CSIQ and
TID2013 databases when training on LIVE database. As can
be seen, the proposed method performs best in terms of
other BIQA methods in four types of distortions. More-
over, the results that training on CSIQ database and testing
on LIVE and TID2013 databases are shown in Table 6.
From the Table 6, we can see that the performances on
LIVE and TID2013 databases are optimal in all crite-
ria. Lastly, the Table 7 shows the results that training on
TID2013 database and testing on LIVE and CSIQ databases.
The performances of the proposed method on CSIQ out-
perform other methods apparently, and the performances on
LIVE database are a slightly worse than the best one (NIQE)
as shown in Table 7.
E. EXPERIMENTAL ANALYSIS
In this work, we propose a new BIQA method to assess
the image quality. When the image is distorted, the visual
contents of image will degrade. From the perspective of the

information theory, the amount of the visual information can
be measured by the visual information entropy. In order to
measure and analyze the visual information, the represen-
tations of the visual information of an image are required.
Inspired by researches on the neuroscience, the visual infor-
mation can be represented by the local features (i.e., local
intensity, local orientation selectivity, local gradient). More-
over, according to the shannon information theory, the joint
visual feature entropy is related to the statistical distribution
or the conditional probability of the visual features. In order
to assess the image quality by the degradation of the sta-
tistical distribution, the statistics of the visual information
in the natural scene without distortion should follow some
kind of statistical distribution. To reveal the characteristic,
we give an example that displays the statistical distribution
(i.e., p(X1), p(X3|X1)) on three images. The characteristic
is shown in Fig. 3, the (a), (b), (c) represent the different
original images, and (d) shows the statistical distributions of
these images. As can be seen, the statistical distributions of
different original images have same statistical nature which
provides a possibility to predict the image quality by measur-
ing the visual information entropy.

Different levels of distortions produce individual degrada-
tions on visual contents, and distortions will generate changes
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FIGURE 3. An illustration about statistical distributions of different
original images. (a) Hats. (b) Plane. (c) Birds. (d) Statistical distribution.

FIGURE 4. An illustration about statistical distributions of different levels
of distortions on a same image. (a) Level 1. (b) Level 2. (c) Level 3.
(d) Different level.

on these statistical distributions. As shown in Fig. 4, the orig-
inal hat scene is degraded by different levels of JPEG dis-
tortions, the (a), (b), (c) distorted by the distortion of JPEG
gradually, and (d) displays the statistical distributions of these
images. As can be seen, different levels of distortions gener-
ate different changes on statistical distributions (i.e., p(X1),
p(X3|X1) ), which proves that these statistical probabilities
can efficiently represent the quality degradation on different
levels of distortions.

Moreover, the different types of distortions generate indi-
vidual degradation on visual information, and different types
of distortions will degrade the statistical distributions dis-
similarly. In the Fig. 5, (a), (b), (c), (d) are distorted by
JPEG, WN, BLUR, and JP2K, and (e) displays the different
statistical distributions of a same image distorted by different
distortions. As can be seen, it proves that these statistical
probabilities (i.e., p(X1), p(X3|X1) ) can efficiently represent
the quality degradation on different types of distortions.

Since the image quality predicted by the statistical
distributions of three local features, it is meaningful to
understand the contribution of each feature to the whole
prediction performance. In our experiments, we test the

FIGURE 5. An illustration about statistical distributions of different types
of distortions on a same image. (a) JPEG. (b) WN. (c) BLUR. (d) JP2K.
(e) Different noise.

statistical distributions of different features on LIVE database
by using 80%− 20% training-testing procedure. The Table 8
lists the PLCC, SRCC and RMSE results on the LIVE
database. In this table, I, G and O represent the feature of
the local intensity, the local gradient and the local orientation
selectivity about an image. As can be seen, each individual
feature contributes to the experimental results. And compared
to the other statistical distributions, the proposed method
based on the statistical distribution of all the features performs
best. It also proves the rationality of the proposed method.

TABLE 8. Performance evaluation on LIVE database with different
statistical distributions.

In this work, we obtain the experimental results by the
regression approach SVR. In order to eliminate the bias
caused by the regression algorithm, other common regres-
sion algorithms (i.e. random forest regression (RFR), back
propagation neural network regression (BPNNR), adaptive
boosting regression (ABR), decision tree regression (DTR))
are adopted to compare with SVR. Experiments are carried
out on LIVE database by using 80% − 20% training-testing
procedure. The Table 9 lists the PLCC, SRCC and RMSE
results produced by different regression algorithms. As can
be seen, for the performances regressed by the RFR and
ABR algorithms, there is no significant difference between
them and the performances generated by SVR. The perfor-
mances of the BPNNR algorithm are slightly worse than SVR
algorithm. However, the performances of DTR algorithm are
worse than the SVR algorithm obviously. Although the pro-
posedmethod dose not obtain the best results on all regression
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TABLE 9. Perforamce evaluation on LIVE database with different
regression approaches.

algorithms, the proposed method has a good performance in
most of these algorithms. Thus, we can draw the conclusion
that the performances of the proposed method do not depend
on a particular regression algorithm, and it also corroborates
the efficacy and the efficiency of the proposed method.

V. CONCLUSION
In this work, a novel BIQAmethod based on the joint entropy
degradation is proposed. Distortions degrade the visual infor-
mation of an image. Moreover, the visual contents of an
image suffer from individual degradations by different types
and different levels of distortions, which makes it difficult
to measure the quality degradation. From the perspective of
information theory, the amount of visual information that
an image contains can be measured by the visual informa-
tion entropy. Inspired by researches on the neuroscience,
the visual information can be represented by a series of
features. Thus, we have proposed tomeasure the degradations
of the visual feature entropy for image quality.

By deducing the visual feature entropy, the amount of
visual information is related to the statistical probabilities and
conditional probabilities of the visual features. Then, the rela-
tionship between the visual information and the distribution
probabilities of features are analyzed. Finally, the quality of
an image is predicted by measuring the changes on the distri-
bution probabilities of the visual features. The experimental
results show that the proposed method outperforms other
state-of-the-art BIQAmethods, and has a good generalization
capability on cross-database evaluation.
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