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ABSTRACT Myocardial infarction (MI) is one of the major causes of death. Thus, understanding the
underlying mechanisms of MI and its clinical features, especially its relationship with common electro-
cardiography measurements, is important. Heart modeling provides a possible method to simulate certain
heart conditions. In this paper, a refined MI torso-heart model was proposed to explore the effect of inferior
MI on simulated electrocardiograms. This model simulated the electrical activity of a normal heart and an
inferior MI heart at three sites (basal, middle, and apical) with three MI sizes (small, moderate, and large),
aiming to investigate the effect of inferior MI on the simulated electrocardiograms. Simulated body surface
potential maps were compared with clinical body surface potential maps to verify the efficiency of the model.
A newmeasure, namely, the normalized variation coefficient, was proposed for result evaluation. The results
showed that the augmented unipolar left lower limb lead was the best choice for inferior MI diagnoses and it
showed the most obvious electrocardiography signal differences between normal and inferior MI hearts. The
simulation results corresponded well with commonly used clinical diagnostic criteria. Thus, the proposed
refined MI torso-heart model provides a finite element simulation method for quantifying the effects of
inferior MI on a torso-heart model-based electrocardiogram and has good potential for use in optimizing
electrocardiogram detection.

INDEX TERMS Biomedical engineering, biomedical signal processing, computational modeling, computer
simulation, electrocardiography, finite element methods, signal analysis, signal processing.

I. INTRODUCTION
Cardiovascular disease remains a leading cause of death
worldwide, accounting for 17.5 million deaths every year [1].
The prevalence of cardiovascular disease in China is on the
rise: approximately 3 million deaths are caused by cardio-
vascular disease annually [2]. Among fatal heart diseases,
myocardial infarction (MI) may cause acute death without
any prior signs or symptoms [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

A standard 12-lead electrocardiogram (ECG) is a common
method forMI diagnosis, but differentMI conditionswill lead
to different changes in 12-lead ECGs. To investigate certain
leads that can better reflect different MIs, a body surface
potential map (BSPM) is introduced to provide enhanced spa-
tial resolution [4]. Because the leads are placed on the entire
body surface, BSPMs advantageously provide omnidirec-
tional scanning. However, the complexity of the BSPMacqui-
sition process and the difficulty in processing simultaneous
signals for numerous channel ECGs limit routine application
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to patients with acute MI [5]. However, due to the develop-
ment of cardiac modeling and simulation [6], the technical
complexity of mapping procedures can be avoided by model-
ing on realistic geometries and using mathematical models.

Several models have been established to investigate the
electrical activity and conduction of the heart under normal
and abnormal conditions [7]–[9]. These models were con-
structed using coupling quasi-anatomical geometries (derived
from MRI/CT data) [7], [8] and mathematical models of
different heart organs (detected from real heart ionic chan-
nels) [10], [11]. One representative work, proposed by
Sovilj et al. [12], was the torso-heart model using an anatom-
ically realistic three-dimensional model geometry and mod-
ified FitzHugh-Nagumo equations to simulate whole-heart
electrical activity. However, the use of detailed and high-
resolution anatomically accurate geometry requires dedicated
software and extensive computation times for solving bio-
physically mathematical models. Therefore, Sovilj et al. [13]
also presented a simplified three-dimensional cardiac bido-
main model to optimize the computational load and model
complexity and offered a replicable tool for investigating
the effects of MI on a standard 12-lead ECG morphology.
Although this model can obtain observable changes between
normal and MI ECGs, there remain two limitations: (1) the
imposed MI regions are qualitative and cover almost one-
third of the ventricle; and (2) the exaggeratedMI regions were
inconsistent with clinical observations. These two challenges
limited the application of this heart-modeling method on
refined MI region cases. Therefore, it is extremely impor-
tant to develop a MI-region-refined model based on clin-
ical observations to investigate detailed changes in MI on
simulated ECGs. In this paper, we proposed a refined MI
torso-heart model by modifying the heart with detailed MI
regions and different sites to study imperceptible changes of
quasi-life-size MI on a standard 12-lead ECG morphology.
Additionally, up to 308 measuring points were applied on the
proposed model to obtain BSPMs. The amplitude changes of
five characteristic waves (Q wave, R wave, S wave, ST seg-
ment and T wave) were calculated to evaluate the effects of
inferior MI (IMI) on simulated ECGs. The results showed
that the lead aVF was the most obvious lead that reflected
the influence of IMI on body surface ECGs.

II. METHODOLOGY
A. ORIGINAL TORSO-HEART MODEL
The original model is a simplified three-dimensional bido-
main torso-heart model, consisting of a torso, lungs and an
entire heart (Fig. 1 (a1)), which can simulate 12-lead ECGs
under normal and pathological heart states. In this model,
the torso, lungs and blood chambers were defined as passive
volume conductor regions. The governing equation for the
electric potential (V ) in the passive volume conductor was
given by the Laplace formulation of Maxwell’s equations as
follows [13]:

∇ · (−σo∇V ) = 0 (1)

FIGURE 1. A simplified three-dimensional torso-heart model. (a1) The
geometry of the original torso-heart model and electrode positions
of 12-lead ECGs [13], (a2) the exaggerated IMI region defined in the
original model showed on a quasi-real heart [13], (a3) the front view and
top view of ventricle in original model [13], (b1) the geometry of the
modified MI-region-refined torso-heart model and the 308 additional
measuring points containing the electrode positions of 12-lead ECGs,
(b2) the refined IMI regions defined in the modified MI-region-refined
torso-heart model showed on a quasi-real heart, (b3) the front view and
top view of ventricle in modified MI-region-refined torso-heart model.

where σo is the electrical conductivity of passive volume con-
ductor, with values given in TABLE 1. All exterior boundaries
of the torso were set to be electrically insulating, and all inte-
rior boundaries in contact with the heart were set to V = V e,
where Ve is the extracellular voltage in the myocardial walls.

The limb leads of the standard 12-lead ECGswere obtained
by setting the right and left arms and legs at the corners of the
model. The V1-V6 electrodes were located at the anatomical
positions of the model. The RL was defined as ground refer-
ence. The heart region was divided into seven subdomains
according to the anatomical structure of the heart: sinoa-
trial node, atria, atrioventricular node, His bundle, bundle
branches, Purkinje fibers and ventricular myocardium. The
mathematical model of the heart tissue was the bidomain
model, whichwas based on the followingmodified FitzHugh-
Nagumo equations [12], [13]:

∂Ve
∂t
−
∂Vi
∂t
+∇ · (−σe∇Ve) = iion (2)
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TABLE 1. Model parameters and initial values in different regions.

∂Vi
∂t
−
∂Ve
∂t
+∇ · (−σi∇Vi) = −iion (3)

∂u
∂t
= ke

[
Vm − B
A
− du− b

]
(4)

where Ve represents the extracellular potential, Vi represents
the intracellular potential, and u is a recovery variable gov-
erning cellular refractoriness. σe and σi are the extracellular
and intracellular conductivities, respectively, Vm = Vi − Ve,
and a, b, c1, c2, d , e, k , A, and B are parameters given in
TABLE 1, and iion is defined as (5) within the sinoatrial node
and (6) within the atria, ventricles, atrioventricular node, His
bundle, bundle branches and Purkinje fibres.

iion = kc1 (Vm − B)
[
a−

Vm − B
A

] [
1−

Vm − B
A

]
+ kc2u

(5)

iion = kc1 (Vm − B)
[
a−

Vm − B
A

] [
1−

Vm − B
A

]
+ kc2u (Vm − B) (6)

The boundary conditions for boundaries contacting the
passive volume conductor were zero flux for Vi, and equal
to the outward current density from the passive volume con-
ductor for Ve. Additionally, the initial values of Vi, Ve and
u are given in TABLE 1. In this model, two kinds of MI
were simulated by imposing MI regions at the anterior and
inferior walls of the left ventricle (Fig. 1 (a1, a2, a3)) by
setting the intracellular conductivity σiand k to zero in the
infarcted regions and the initial values to -60 mV and -20 mV
forVi andVe, respectively. However, the distributions of these
two cases did not correspond to standardized myocardial
segmentation principles (Fig. 2) [3]. Their MI sizes almost
covered the entire lower left ventricle, indicating that the
anterior MI covered parts of the apex segment (17), apical
lateral segment (16) and apical anterior segment (13), and the
IMI covered parts of the apex segment (17), apical lateral
segment (16) and apical inferior segment (15). Therefore,
based on the standardizedmyocardial segmentation principle,

FIGURE 2. The standardized 17 myocardial segments displayed on a
circumferential polar plot. The red segments marked the refined IMI sites
simulated in this paper [3].

the MI regions imposed in this model did not fit the definition
of anterior MI and IMI.

B. MI-REGION-REFINED TORSO-HEART MODEL
Because the aim of this paper was to investigate the effects
of MI sizes and sites on simulated ECGs, we did not change
the settings of the original MI except for sizes and sites. It is
worth noting that single MI is a dominant ischaemia that
may cause death, accounting for 79% of visible infarcts in
the Rancho/USC database [14]. Therefore, the IMI regions
were refined to study the effects of single IMI sizes and sites
on ECG morphology (Fig. 1 (b1, b2)). The distribution rule
of the single IMI sites followed the standardized myocardial
segmentation principle, and the IMI regions (4, 10, 15) were
marked as red as shown in Fig. 1 (b2). Each IMI region
examined in this paper was located at the center of each
segment and had the same parameter settings as in the original
model. According to an anatomical study, the size of a single
MI in different regions of the left ventricle was divided into
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FIGURE 3. The distribution rule of 308 leads on the body surface.

three types: small, moderate and large [15]. In this study,
to simplify the geometry of the model, the ventricular wall
was divided into three parts, representing the epicardium,
the midmyocardium and the endocardium (Fig. 1 (b3)). In the
model, an approximate frustum region was used to repre-
sent the infarcted myocardium (Fig. 1 (b2)). Small infarcts
were only located in the endocardium, whereas moderate
infarcts covered the endocardium and midmyocardium, and
large infarcts were transmural, spanning the endocardium,
midmyocardium and epicardium. The average sizes of the
infracted myocardium for small, moderate and large sizes
were 100.74 mm3, 325.43 mm3 and 490.9 mm3, respectively.
To investigate the BSPMs of the model, 308 leads were
added on the surface of the torso. The 308 leads included
11 rows and 28 columns, which were distributed evenly on
the surface of the torso (Fig. 1 (b1)). As shown by a red line
in Fig. 3, the left anterior ellipse was divided into 7 columns
so that V2-V6 could be included in the columns. Therefore,
the whole ellipse was separated into 28 columns. Similarly,
the whole ellipse was evenly separated into 11 rows. In Fig. 3,
blue lines indicate the 11 rows, and a green dotted line is the
center of the ellipse. Then, the 12-lead ECGs can be directly
derived from the BSPMs. To ensure the results of our MI-
region-refined model were comparable to the original model,
the model settings (geometry and governing equations) and
the electrode positions of the standard 12-lead ECGs were
kept consistent with the original model (Fig. 1 (a1 and b1)).

C. VALIDATION USING THE CLINICAL SURFACE ECGS
The modified refined MI torso-heart model was simulated
to obtain body surface potentials, and the standard 12-lead
ECGs were calculated. Ten torso-heart models were simu-
lated, including one normal torso-heart model and nine IMI
torso-heart models. The normal torso-heart was implemented
by defining a refined MI torso-heart model without an MI
region. The nine IMI torso-heart models were modeled by
changing the sites and sizes as defined above. Numerical
solutions of the body surface potentials were calculated using
finite element methods. The simulation processes were car-
ried out in a multi-physical simulation software (COMSOL,
Switzerland [16]) with default settings, simulating real physi-
cal phenomena by solving partial differential equations based
on finite element methods. A simulation of a one-second

FIGURE 4. Typical BSPMs of two datasets. (a1) and (a2) BSPMs from the
clinical data around the heart; (b1) and (b2 BSPMs from the simulated
results. The ‘∗’ were the electrode positions of the irregular body surface
ECG.

cardiac activity required approximately 5 hours at a resolution
of 1 ms (Intel Core i7-7700 CPU, @3.6 GHz, 8G RAM). The
average finite element mesh was 38,472 tetrahedral elements
with 84,000 degrees of freedom under default settings, which
was the same setting in the original model.

After the body surface potentials were obtained,
the BSPMs at different instants were calculated. Then,
the standard 12-lead ECGs were extracted, and the fea-
tures of the QRS complex and ST segment in the ECG
signals were classified for MI evaluation. The rule-based
method for morphological classification was based on our
previous work [17]. To verify the validation of the model,
the BSPMs calculated from the 308 measuring points were
compared with the BSPMs derived from a clinical dataset.
The clinical dataset was the case 4 data from the 2007 Phy-
sioNet/Computers in Cardiology Challenge [18]. The data
was measured from an MI patient comprising 352-lead body
surface potentials (derived from 120 electrode recordings).
From the provided clinical interpretation, the MI locations
of the patient included 6 segments: basal anterior (1), mid
inferoseptal (9), mid inferior (10), mid inferolateral (10),
apical inferior (15) and apex (17), and the centroid segment
was apical inferior (15). Then, the BSPMs from case 4 were
compared with those from the large apical IMI data. Because
the original clinical BSPMs included the neck, shoulders, and
lower abdomen regions, a rectangular subfigure containing
the same regions in the simulated BSPMs was obtained from
the original maps. An irregular body surface ECG calculated
from two leads outside the standard 12-lead system was also
compared between the two datasets. The first leadwas located
at the lower left back (blue ‘∗’ in Fig. 4 (a1), (b1)); the sec-
ond lead was selected from the right upper thorax (red ‘∗’
in Fig. 4 (a1), (b1)). To observe differences in the simulated
body surface ECGs between the normal heart model and the
MI heart models, the 0.5 s lead II signals from different heart
status were compared.

D. EFFECTS OF MI SIZES AND SITES ON
THE SIMULATED ECGs
To quantify the effects of infarct sizes and sites on ECG mor-
phology, several characteristic points were considered [19].
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The ST segment was included because it is a commonly used
feature to evaluate the degree of cardiac ischaemia [20]. The
amplitude changes in the QRS complex were also compared
with normal ECGs. Although several QRS scoring systems
exist, including several assessment parameters for locating
infarcts and quantifying infarct size [21], [22], these systems
are too complex for clinicians to understand. Therefore, only
three characteristic points of the QRS complex were adopted:
Q wave peak, R wave peak and S wave peak. The T wave was
also included.

To identify the optimal leads that reflect the effects of
MIs on simulated ECGs according to different characteristic
points, derived standard 12-lead ECGs of these models were
processed. Before data procession, the dataset of normalized
variation coefficient (NVC) was constructed by equalizing
between 0 and 1 (as shown in (7)), and the amplitude ranges
(Rangenormal) of simulated normal ECGs in each lead were
calculated (8). The NVCs are parameters defined to evaluate
the influence of different types of MI on simulated ECGs.
First, the amplitude changes (ACs) of MI ECGs against nor-
mal ECGs were calculated in (9). The ACs include 9 data
types: 3 sizes at 3 sites, each consisting of 12 results, cal-
culated from standard 12-lead ECGs. Then, the absolute
amplitude change ratios (AACRs) of each lead was obtained
by calculating the absolute value of the quotient of AC
divided by Rangenormal in (10). This process ensured that
all AACR changes from the same lead were consistent, and
AACR changes from different leads were similar. Thereafter,
the AACRs of each lead were sorted in descending order,
and each AACR was matched to an NVC by mapping to the
approximate value from theNVCs. To illustrate the evaluation
results, the NVCs were mapped to a 3×3 color matrix, repre-
senting the 3 sizes and 3 sites ofMIs. Each color was different
shades of grey betweenwhite and black according to the value
of NVC. This colour map can represent the degree of effect
of different MIs on ECG morphology in a certain lead. Here,
the NVCs of five parameters were abbreviated as NVC_Q,
NVC_R, NVC_S, NVC_ST and NVC_T, respectively. The
average value of each parameter in each lead were ANVC_Q,
ANVC_R, ANVC_S, ANVC_ST and ANVC_T, respectively.

NVCs = linspace (0, 1, 12) (7)

Rangenormal = Amplitudemax − Amplitudemin (8)

ACs = AmplitudeMI − AmplitudeNormal (9)

AACRs = abs(ACs/Rangenormal) (10)

E. COMPARISON BETWEEN CLINICAL AND MODEL DATA
To quantify the similarities between two BSPMs at the same
instant, the structural similarity (SSIM) index was introduced.
Based on the assumption that the human visual system is
highly adapted for extracting structural information, the SSIM
can provide a good approximation for perceived image qual-
ity from three aspects between two non-negative signals x and
y: luminance l(x,y), contrast c(x,y), and structures(x,y). These

indices were defined as follows:

l (x, y) = (2µxµy + C1)/
(
µ2
x + µ

2
y + C1

)
(11)

c (x, y) = (2σxσy + C2)/
(
σ 2
x + σ

2
y + C2

)
(12)

s (x, y) = (σxy + C3)/
(
σxσy + C3

)
(13)

where µx and µy represent the means of the original and
coded images; σx and σy represent the standard deviations of
each of the signals; σxy is the covariance of the two photos;
C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2 are small
constants; L is the dynamic range of the pixel values, i.e.,
L = 28 = 256 for an 8-bit greyscale image, and K1 � 1 and
K2 � 1 are scalar constants with default values 0.01 and 0.03,
respectively. The constants C1, C2, and C3 ensure stability
when the denominator approaches zero. Combining the three
terms, the common form of SSIM is as follows:

SSIM (x, y) = [l (x, y)] [c (x, y)] [s (x, y)] (14)

The metric of this formulation ensures that SSIM(x,y)≤1
and a unique maximum SSIM(x,y)=1 if and only if x=y.
Finally, the mean SSIM (MSSIM) index was used to evaluate
the overall image quality as follows:

MSSIM (X ,Y ) =
1
M

M∑
i=1

SSIM (xi, yi) (15)

whereX and Y are the reference and distorted images, respec-
tively; xi and yi are the image contents at the ith local window;
and M is the number of local windows of the image.

III. EXPERIMENTS AND RESULTS
A. ECG COMPARISON BETWEEN CLINICAL
AND MODEL DATA
Fig. 4 shows instantaneous potential maps during the cardiac
cycle from clinical data and simulated results. Fig. 4 (a1) and
(b1) are the BSPMs representing the instant at the end of atrial
depolarization. In clinical BSPMs (Fig. 4 (a1)), the potential
minimum was found near the left mammary area, whereas
the potential maximum was at the lower region of torso.
Similarly, the potential minimum was located at the right
sternal area in simulated maps, and the potential maximum
occurred at the lower part of left thoracic wall (Fig. 4 (b1)).
At the onset of ventricular repolarization (Fig. 4 (a2), (b2)),
the potential maximum was observed at the left thoracic wall
in two maps, and the location of the potential minimum was
concentrated on the left lateral wall of the torso. The BSPMs
all showed a clear bipolar distribution, whereas the clinical
BSPMs were somewhat chaotic compared with the simulated
BSPMs. This may be due to the presence of multiple infarcted
regions in the ventricular wall. However, the simulated maps
remained relatively similar to the clinical maps. The potential
values of the simulated maps were ten times greater than
those of the clinical maps because the simulated potentials
were potential values relative to VGND, whereas the clinical
potentials were relative to ground. As a result, the distribution
of simulated potential was denser than that of the clinical
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potential, and the simulated potential values were greater than
the clinical potential values. However, the MSSIMs between
the clinical and simulated BSPMs at two instants shown in
Fig. 4 were 0.739 and 0.712, respectively, indicating the sim-
ulated potential differences were similar to clinical potential
differences, and the distribution tendency was consistent.

To further validate the model, we defined the difference of
the potential at the red ‘∗’ and the potential at the blue ‘∗’ in
Fig. 4 as irECG and compared the irECGs between simulated
results and clinical data at different instants of a cardiac cycle
(Fig. 5). Overall, the amplitude of the simulated T wave was
smaller than that of the clinical observation, and the position
of the simulated Twavewas inconsistent to that of the clinical
observation (Fig. 5 (a)). This may be due to the anamorphic
settings of ventricular conductivity, wide regions of Purkinje
fibers and initial values for ventricular extracellular potential
and ventricular intracellular potential. Additionally, slight
fluctuations in the PR interval may be caused by the cubic
settings of the atrial septum, atrioventricular node and His
bundle. However, from Fig. 5 (b), the change tendency of
the simulated amplitudes at different cardiac instants were
similar to those from the clinical data. Moreover, as shown
in the simulated ECG and action potentials in Fig. 6, the T-
wave in the ECG of the original model was also abnormal
compared with the real recorded ECG, whereas the QRS
complexes were similar to the real complexes. Because the
aim of this paper was to investigate the effects of MI sizes
and sites on simulated ECGs using an MI-region-refined
torso-heart model, rather than to develop/modify a model,
we ignored the abnormal depolarization phase, which is
beyond the expectations of the FitzHugh-Nagumo model.
Although there are some shape defects on the simulated ECG,
this can still reflect the cardiac electrical activities. These

FIGURE 5. Comparison of an irregular body surface ECG between
simulated results and clinical data at different instants of a cardiac cycle.

FIGURE 6. Simulation of normal electrical activity. (a) Frontal plane cross
section midway through the heart with the probe locations (black dots)
positioned throughout the myocardium according to sinoatrial node, right
atria, left atria, atrioventricular node, His bundle, bundle branches,
Purkinje fibers, right ventricle, and left ventricle. (b) Simulated lead II ECG
waveform and the transmembrane action potentials at the probe
positions [13].

defects do not influence the comparisons between different
MIs and a normal heart because the defective settings exist in
all cases. In general, although there are some shape defects
on the simulated irregular body surface ECG, the ECG can
still reflect the cardiac electrical activities. This model can
provide theoretical signals for investigating different normal
and pathological heart conditions.

Fig. 7 shows the lead II, III and aVF ECGs of three sizes of
MIs at the apical inferior site. The normal ECGs were similar
to the MI ECGs (except the T wave). The amplitudes of the
Q wave, R wave and S wave from the MI heart differed from
the normal ECG, whereas the ST segment and the T wave of
the pathological ECG were elevated. Although some of the
features were observable, a quantitative investigation of the

FIGURE 7. Comparison of II, III and aVF lead signals between a normal
heart and MIs at apical inferior site.
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relationship between the ECG morphology and MI sizes and
sites would be required.

B. EFFECT OF THE STIMULATED MI ON ECGs
1) QRS COMPLEX
Fig. 8 illustrates the evaluation results of the R wave
(NVC_Rs), and the ANVC_R of each sub-figure (the name of
each lead is shown at the bottom of each sub-figure). Lead
V6 was the most obvious lead susceptible to MI at the basal
site: the average NVC_Rat this site was 0.73. When the MI
was at the middle site, the largest average NVC_Rwas 0.79 in
lead V3. At the apical site, the most observable change in
the R wave was in lead V4, and the average NVC_R was
0.82. However, the small sizeMI had more obvious effects on
simulated ECGs in lead V5 (the average NVC_R was 0.73).
The largest average NVC_R of middle size MI was 0.79 in
lead V4, and was 0.64 in leads aVR, V1 and V2 for large size
MI. The largest ANVC_Rwas 0.61 in lead V2, i.e., the Rwave
in this lead was more easily affected than the other leads.
The maps of leads V4 and V6 were nearly complementary,
indicating that MI sizes and sites can be evaluated with these
two leads.

FIGURE 8. NVC_Rs for R wave evaluation. B, M and A are the
abbreviations of MI site: basal, middle and apical, respectively; S, M and L
represent MI size: small, moderate and large, respectively.

FIGURE 9. NVC_Qs for Q wave evaluation. B, M and A are the
abbreviations of MI site: basal, middle and apical, respectively; S, M and L
represent MI size: small, moderate and large, respectively.

The evaluation results of Q wave (NVC_Qs) are shown
in Fig. 9. At the basal site, theNVC_Qs were 1.00 in lead aVF
for the threeMI sizes. The largest averageNVC_Qwas 0.76 in
lead III at the middle site, and 0.88 in lead aVF and aVL at the
apical site. When the MI expanded from the small size to the
large size, the most observable NVC_Qs were 0.79, 0.82 and
0.79 in leads aVL, II and aVF, respectively. The Q wave in
lead aVF was the most susceptible lead to MI (ANVC_Q in

FIGURE 10. NVC_Ss for S wave evaluation. B, M and A are the
abbreviations of MI site: basal, middle and apical, respectively; S, M and L
represent MI size: small, moderate and large, respectively.

this lead was largest at 0.72). The effect of MI on simulated
ECGs in lead V1 was clear.

From Fig. 10, the obvious changes of MI at the basal site
was in lead aVL (the average NVC_S in this lead was 0.85).
The average NVC_S in lead I was 0.79 at the middle site,
and 0.73 in leads aVL and V1 at the apical site. The largest
average NVC_S in leads V3 and V4 was 0.79 for the small
size MI, 0.73 in lead aVF for the moderate size MI, and
0.76 in lead V1 for the large size MI. The most obvious
lead that reflected the influence of MI on the S wave was
aVL (the ANVC_S was 0.64). Similar to NVC_Qs in lead V1,
the NVC_Ss in lead V2 also clearly reflected the effect of MI
on simulated ECGs.

2) ST SEGMENT
As shown in Fig. 11, the NVC_STs at the basal site were all
0.73 in lead V6, resulting in the largest average NVC_ST at
this site (0.73). When the lesion moved to the middle site, the
most obvious ST segment changes occurred in lead II, and
the average NVC_ST was 0.70. At the apical site, the largest
NVC_ST was 0.82 in lead V2. From the aspect of MI size,
the most observable influence of small size MI on simulated
ECGs was in lead V3, and the average NVC_ST was 0.73.
As the lesion expanded to moderate size, the MI affected lead
aVF, leading to an average NVC_ST of up to 0.91. However,
lead V1 was the most susceptible lead to large size MI (the
average NVC_ST reached 0.70). The largest ANVC_ST in
leads III and aVF were both 0.61, although the NVC_ST did
not have the same distribution in these leads. These results
indicate that these two leads can be used to evaluate the
influence of MI on simulated body surface ECGs.

FIGURE 11. NVC_STs for ST segment evaluation. B, M and A are the
abbreviations of MI site: basal, middle and apical, respectively; S, M and L
represent MI size: small, moderate and large, respectively.
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FIGURE 12. NVC_Ts for T wave evaluation. B, M and A are the
abbreviations of MI site: basal, middle and apical, respectively; S, M and L
represent MI size: small, moderate and large, respectively.

FIGURE 13. The average NVCs for five evaluation parameters. B, M and A
are the abbreviations of MI site: basal, middle and apical, respectively; S,
M and L represent MI size: small, moderate and large, respectively.

3) T WAVE
Fig. 12 shows the evaluation results of the T wave (NVC_Ts).
At the basal site, the largest average NVC_T was 0.85 in lead
aVR. When the MI located at the middle site, the largest
average NVC_T was 0.70 in leads I and III, indicating these
two leads reflected the influence of MI on ECGs. Similarly,
the largest average NVC_T was also 0.85 when the MI was at
apical site. However, it is 0.82 in the small size and moderate
sizeMIs in leads aVF andV3. Lead aVF reflected the effect of
large size MI on ECGs (the average NVC_T was 0.67). The
largest ANVC_T comes from lead III (0.58), indicating the
most obvious influence of MI on the T wave was in this lead.
The influences of large size MI at the basal site, moderate
size MI at the middle site and small size MI at the apical site
were obvious in lead V2. This indicated that the simulated
body surface ECGs in this lead were susceptible to the MIs
of these cases.

4) AVERAGE RESULTS FOR THE FIVE CHARACTERISTICS
The above results show that the MI has obvious influences
on the five parameters in different leads, indicating that the
leads that reflected the effects of MIs on ECGs varied with
the characteristic points. The average NVCs of these five
parameters were calculated and are illustrated in Fig. 13. The
obvious lead that reflected the effects of MI at the basal site
on ECGs was lead V6 (the average NVC was 0.67). Leads I
and II showed superiority in reflecting the influence of MIs
at the middle site on ECGs (the average NVCs were all 0.68).
When theMIwas located at the apical site, the largest average
NVC (0.73) occurred in lead aVL. For small sizeMIs, theMIs
affected lead V3 (the largest average NVC was 0.71). The
most observable influence of middle size MIs on simulated

ECGswas in lead aVF (the averageNVCwas 0.76). However,
lead V5 was the most susceptible lead to large size MIs (the
averageNVCwas 0.59). The largest ANVCwas from lead aVF
(0.56). This indicated that lead aVF was the most obvious
lead that reflected the influence of MIs on simulated ECGs
among these five characteristic points. Only theNVC of small
size MIs at the middle site in lead V1 remained at 0.00 after
the average of five parameters, indicating that small size MIs
had no influence on simulated ECGs in lead V1 at this site.
However, the NVC of small size MIs at the middle site in lead
II was 1.00 after averaging the five parameters, i.e., the effect
of small size MIs was obvious on all five characteristic points
at this site.

IV. DISCUSSION
In the current study, a refined MI torso-heart model was
proposed to evaluate the effect of IMI on simulated body
surface ECGs.

The refined MI torso-heart model was modified from
a simplified three-dimensional cardiac bidomain model by
changing the MI sites and sizes. An additional 308 body
surface potential measuring points were added to validate the
model. The simulated BSPMs obtained from the model were
compared with the BSPMs from an MI patient. The body
surface potentials were directly computed from the bidomain
finite element method model, rather than calculating the
torso surface potential distributions using additional multiple
dipole method [4], [23]. The simulated BSPMs were similar
to the potential distributions of the clinical data around the
anatomical range of heart. The maps represented bipolarity,
and the negative potentials always surrounded the positive
potentials. The simulated BSPMs were similar to clinical
data, and the dipolar potential distribution trend during the
cardiac cycle was consistent with clinical observations [24].
The amplitudes of simulated results at different cardiac
instants of an irECG were similar to those of clinical cases.
Additionally, the simulated ECG morphology in lead II was
consistent with the clinical results (except for the T wave).
These results reflected detailed changes during the expansion
of lesions at different sites. Especially, the changes in the ST
segment depression and T wave inversion were in accordance
with the clinical criteria for the diagnosis of MI [25].

To evaluate the effect of IMI on simulated body surface
ECGs, the NVC_Q, NVC_R, NVC_S, NVC_ST and NVC_T
were used. The obvious influences of MI on the Q wave,
R wave, S wave, ST segment and T wave were observed
in leads aVF, V2, aVL, III/aVF and III, respectively. The
maximum average ANVC for the five evaluation parameters
was 0.56 in lead aVF (Fig. 13). Themost obvious influence of
MI on body surface ECGswas in lead aVF, which agreedwith
prior study results [26]. At the basal site, the most obvious
influence of MI was on the Q wave in lead aVF, which agreed
with clinical observations of the bundle branch block [27].
The R wave in lead V3 and the S wave in lead V1 showed
superiority in reflecting the influence of MI at the middle site
on ECGs, which indicated left ventricular hypertrophy [28].
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Leads aVF and aVL reflected the effects of MI at the apical
site on the Q wave. For small size MIs, obvious influences
on the T wave in lead V3 were observed, which was an
important diagnostic criterion for the left anterior descending
artery or the left circumflex artery [29]. Moderate size MIs
had significant influence on the ST segment in lead aVF,
as observed in acute inferior wall MIs [26]. Large size MIs
also showed obvious influence on the Q wave in lead aVF.

This study had certain limitations. First, other simulations
and conditions should be used to optimize the model for more
accurate BSPMs, such as considering myocardial anisotropy
or basing the geometry of the model on CT/MRI data. Sec-
ond, more precise changes in ECG morphology should be
studied onmore precise torso geometries and anisotropic con-
ductivities. Finally, more experiments on MI patients should
be conducted to confirm the clinical usefulness of themethod.

V. CONCLUSION
In this study, a refined MI torso-heart model was proposed
to evaluate the effect of IMI on simulated body surface
ECGs. The comparison of BSPMs between the simulated and
clinical data, derived from the case 4 data of the 2007 Phy-
sioNet/Computers in Cardiology Challenge, validated this
model. The results showed that lead aVF was the most obvi-
ous lead that reflected the influence of IMI on body surface
ECGs. The sizes and sites of IMI showed that different leads
reflected changes to body surface ECGs; these results agreed
with clinical observations. We conclude that the modified
refined MI torso-heart model provides an alternative tool for
quantifying the effect of IMI on a torso-heart model-based
body surface ECGs and offers a lead optimization method
for ECG detection under specific circumstances, such as
wearable conditions.

APPENDIX
Abbreviations are highlighted in TABLE 2.

TABLE 2. Abbreviations section.
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