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ABSTRACT Cloud computing has become a popular approach to manage personal data for the economic
savings and management flexibility in recent year. However, the sensitive data must be encrypted before
outsourcing to cloud servers for the consideration of privacy, which makes some traditional data utiliza-
tion functions, such as the plaintext keyword search, impossible. To solve this problem, we present a
multi-keyword ranked search scheme over encrypted cloud data supporting dynamic operations efficiently.
Our scheme utilizes the vector space model combined with TF × IDF rule and cosine similarity measure
to achieve a multi-keyword ranked search. However, traditional solutions have to suffer high computational
costs. In order to achieve the sub-linear search time, our scheme introduces Bloom filter to build a search
index tree. What is more, our scheme can support dynamic operation properly and effectively on the account
of the property of the Bloom filter, which means that the updating cost of our scheme is lower than other
schemes. We present our basic scheme first, which is secure under the known ciphertext model. Then,
the enhanced scheme is presented later to guarantee security even under the known background model. The
experiments on the real-world data set show that the performances of our proposed schemes are satisfactory.

INDEX TERMS Cloud computing, dynamic searchable encryption, multi-keyword ranked search, Bloom
filter.

I. INTRODUCTION
With the development of cloud computing, more and more
people realize the benefits that can be reaped from it. Mean-
while, people have to manage a massive data in this era
of information explosion, which may not only increase the
management cost but also lose efficiency. To solve this prob-
lem, people, companies or organizations can take advantage
of cloud computing, which can enable convenient and on-
demand network access to a shared pool of configurable
computing resources [1]. More specifically, data owners can
outsource their data into cloud servers so that they can get
access to these data as theywant. Obviously, cloud computing
takes the economic savings and management flexibility for
us. However, most data owners are not willing to store their
data, especially for some sensitive data such as financial
records and personal emails into cloud servers on account of
the data privacy. The cloud server is semi-trusted, which may
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leak data privacy. So it is necessary for data owners to encrypt
their outsourced data. Unfortunately, encryption can reduce
the efficiency of data utilization, especially for some services
that are based on plaintext keyword search.

For the above issues, searchable encryption can provide
some useful techniques for cloud services on the basic of
keyword search. Searchable encryption allows users to get
access to relevant data by searching their encrypted data.
The first searchable encryption scheme was proposed by
Song et al. [2]. Their scheme utilizes two-layered encryption,
which can guarantee the correctness of the trapdoor. Although
this scheme is proven to be secure, it is based on a weak
security model. To address the drawbacks of Song et al. [2],
some novel searchable encryption schemes [3]–[10] were
proposed. These schemes build encrypted indices for search-
ing rather than searching on the encrypted data directly.
Curtmola et al. [4] introduced two new adversarial models
for searchable encryption, called chosen-keyword attacks
(CKA1) and adaptive chosen-keyword attacks (CKA2). They
are widely used as the standard definitions to date. And two
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secure schemes are proposed against CKA1 and CKA2,
respectively. Kamara et al. [10] presented a dynamic search-
able symmetric encryption scheme. Their scheme can satisfy
their proposed requirements of the more strict security defini-
tion and support dynamic operation, which makes the search
more flexible.

However, the above searchable encryption schemes can
only support exact single keyword search, which restricts
the application range of the solutions. The data owner
prefers to multi-keyword search rather than single key-
word search, and the former can improve the search’s accu-
racy. So the multi-keyword search has been researched
extensively recently. The existing multi-keyword search
schemes [11]–[14] can realize many multi-keyword search
related functions such as conjunctive keyword search, dis-
junctive keyword search and subset search. Ballard et al. [11]
proposed two different conjunctive keyword search schemes,
which only return the files containing all the searched key-
words, on the basis of Shamir secret sharing and bilinear
pairings, respectively. Their scheme is proven secure in the
standard model. And disjunctive keyword search scheme was
proposed in [14] later, which can return files containing the
subset of query keywords. Meanwhile predicate encryption
schemes [15]–[17] were also presented in order to support
both conjunctive keyword search and disjunctive keyword
search.

As we can see, all of these multi-keyword search schemes
can’t support ranked search, which means the cloud server
should send back the top-k most relevant files rather than
all relevant files. Ranked search is highly desirable in the
‘‘pay-as-you use’’ cloud paradigm, because it can improve
the accuracy and efficiency of query. The early ranked
search schemes [18], [19] can only support single keyword
search. And Cao et al. [20] proposed the first multi-keyword
ranked search scheme (MRSE). Their scheme utilized ‘‘inner
product similarity’’ to compute the relevant scores. However,
the search time of MRSE is almost linear to the number of
files in the data set, because we need to compute a relevant
score on each file, even though these files don’t contain
any searched keyword. In order to improve the search effi-
ciency, Sun et al. [21] built a tree-based structure for the
whole data set and their scheme exploits vector space model
with cosine measure to evaluate the similarity. Even though
the search efficiency of their scheme is improved indeed,
the search precision is reduced to some extent. Because the
data is encrypted, updating the data set is difficult, and lots
of index structure cannot support dynamics. Updating data
dynamically is a challenge. At present, many researchers are
devoted to the dynamic research of searchable encryption
schemes. Fu et al. [22] presented a synonym-based multi-
keyword ranked search scheme. This scheme can achieve
more accurate search result and support synonym query.
However, the updating cost of the above schemes is excessive.
For example, if the data owner wants to add a file to her
or his data set, he or she has to reconstruct the searchable
index tree and all of the encrypted index vector to guarantee

the cloud server work normally. To deal with this problem,
Sun et al. [23] proposed a multi-keyword search scheme sup-
porting dynamic operation well. However, in this scheme,
the data owner needs to encrypt the internal nodes of index
tree as the leaf nodes, which can lead to a high computa-
tional cost and an inefficiency of updating. So the effective
multi-keyword ranked searchmethods with low updating cost
are worth studying.

Bloom filter [24] can decide whether an element is really
a member of the set easily and it has been applied to some
searchable encryption schemes [25]–[27]. Bringer et al. [25]
presented an error-tolerant searchable encryption scheme
and their scheme combines Bloom filter and LSH (local-
ity sensitive hashing) to achieve their error-tolerant aim.
Kuzu et al. [26] utilizes Bloom filter as translation function,
which maps a string into a Bloom filter, to support similarity
search. By taking advantage of the space efficiency of Bloom
filter, Poon et al. [27] proposed a phrase search scheme.
And their scheme requires a low storage cost comparing with
the existing phrase search schemes. However, these schemes
cannot achieve multi-keyword ranked search. In this paper,
we will propose a secure and effective multi-keyword ranked
search scheme supporting update operations efficiently. The
index tree based on Bloom filter will be designed to improve
the search efficiency. And our scheme utilizes vector space
model to build an index vector for every file in the outsourcing
data set. The cosine similarity measure is used to compute the
similarity score of one file to the search query and TF × IDF
weight will be used to improve the search accuracy.

Our scheme can achieve update operation explicitly and
the updating cost of our scheme is low because of the char-
acteristics of the Bloom filter. Similarly, we will present
two secure schemes to meet privacy requirements under two
different threat models. The basic scheme is secure under the
known ciphertextmodel, while the enhanced scheme is secure
under the known background mode. Our contributions are
summarized as follows:
(1) We design an index tree based on Bloom filter to

improve the search efficiency. Our schemes can achieve
the sub-linear search time. And, both the search effi-
ciency and the index tree construction efficiency in our
scheme are better than other related schemes.

(2) We propose our multi-keyword search schemes which
can support dynamic operations properly and the
efficiency of dynamic operations in our schemes is
satisfactory.

(3) The experiments on the real-world data set show
that the performance of our proposed schemes is
satisfactory.

The rest of the paper is organized as follows: In Section 2,
we briefly introduce the correlative definitions about system
model, threat model and the design goals of our schemes.
In Section 3, the notations of our schemes and preliminaries
are introduced first. Then our proposed schemes are described
in detail, including the basic scheme and the enhanced
scheme. In Section 4, we present the security analysis of our
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schemes. Section 5 presents some experimental results and
analysis. Our conclusions are presented in Section 6.

II. PROBLEM FORMULATION
A. SYSTEM MODEL
There are three entities, which are the data owner, the data
user and the cloud server, should be considered in the system
model of our proposed schemes as shown in Fig.1. The data
owner is the entity such as people, companies and organi-
zations, who wants to outsource a document collection DC
into the cloud for the economic savings and management
flexibility. But before that, the data owner must encrypt DC
to the encrypted form C to ensure the confidentiality and the
privacy of the data. Meanwhile, the related search index tree
should also be built aiming at realizing the search capability
on the encrypted data. Then the data owner will outsource
the encrypted document set C and the corresponding search
index tree to the remote cloud server. When the authorized
data user wants to search the relevant documents from cloud
server with the query keywords, the user must get the cor-
responding trapdoor T through search control mechanisms.
After the cloud server receives the request trapdoor T , it will
traverse the search index tree and calculate the similarity
scores with the corresponding documents. Then the cloud
server will return the top-k most relevant encrypted docu-
ments to the data user in terms of the parameter k , which was
sent by the data user together with the search trapdoor.

FIGURE 1. Architecture of the search over encrypted cloud data.

B. THREAT MODEL
The cloud server is considered as semi-trusted, and it may
want to learn some private information about the data. So
Cao et al. [20] proposed two threat models on the basic of
what information the cloud server knows. We adapt these two
threat models in our scheme.

Known ciphertext model. The cloud server knows nothing
except the encrypted document collectionC , the search index
tree and the query trapdoor in this model.

Known background model. In this model, the cloud server
can get access to more information, than it knows in the
known ciphertext model, which may contain the interrelation
of given trapdoors and the statistical information about the
document set such as the TF distribution of a known keyword.
So with this additional information, the server may launch
the TF statistical attract to identify whether some specific
keywords are in this query [28], [29].

C. DESIGN GOALS
As we have said our scheme can achieve multi-keyword
ranked search supporting dynamic operation securely and
effectively. So the design goals of our scheme are as follows.
• Search efficiency. The time complexity of searching

should be sub-linear against the size of document set
in our schemes. And the search efficiency should be
superior to the current schemes.

• Dynamic. Dynamic operation contains deletion and
insertion in our proposed scheme, and the efficiency of
dynamic operation in our schemes should be superior
to the current schemes.

• Privacy goals. Our proposed scheme can ensure the
cloud server learn nothing other than the search results.
So the following privacy requirements should be met in
our scheme.
(1) Index privacy. Index privacy can prevent the

adversary from getting access to the plaintext
information about the index. The information
contains the keywords and the corresponding TF
values.

(2) Keyword privacy. The cloud server can’t deduce
any keyword from the query of data user, which
means the trapdoors can’t leak any information
about the query keywords.

Trapdoor unlinkability. Given any two trapdoors, the cloud
server can’t determine whether they have any relationship.
That is, the generated trapdoor should be randomized.

III. PROPOSED SCHEME
In this section, we will describe our proposed schemes in
detail. A basic scheme will be presented first, which is secure
under known ciphertext model. However, some sensitive fre-
quency information may be leaked in the basic scheme under
the stronger threat model. So, we will give an enhanced
scheme later. The enhanced scheme can guarantee safety
under known background model, which is stronger than
known ciphertext models. The notations used in our proposed
scheme are shown in Table 1.

A. PRELIMINARIES
1) VECTOR SPACE MODEL AND RANK FUNCTION
Vector space model [30] is one of the most popular similarity
measure in information retrieval, which is also used exten-
sively in multi-keyword search over encrypted cloud data.
Specifically, accurate ranking search can be easily realized
when the vector space model is combined with TF × IDF
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TABLE 1. The notations used in our proposed schemes.

rule and similarity evaluation function. In the TF× IDF rule,
TF (term frequency) is the occurrence times of the term in
the corresponding document and IDF (inverse document fre-
quency) is obtained by dividing the sum of documents in DC
by the number of documents containing the term. Obviously,
TF and IDF can evaluate the importance of the term from
different aspects. For the vector space model combined with
TF× IDF rule, each element of Dd is the normalized TF
value and each element of Q is the normalized IDF value.
With the index vectors of documents and the index vector of
query, a similarity evaluation function can be applied to eval-
uate the similarity between them. There are many similarity
evaluation functions in the information retrieval and we will
choose a cosine measure used in [27], which is explained as
follows.
Nd,wi− the total occurrence times of wi in document d .
Nwi− the total number of documents containing wi.
N—the total number of keywords in the keyword

dictionary W .
M—the total number of documents in the document set

DC.
TFd,wi− the TF value of wi in document d .
IDFwi− the IDF value of wi in the document set DC.
With these notations, the similarity evaluation function is

defined as:

SC(Q, d) =

∑N
i=1 TFd,wi · IDFwi√∑N

j=1 (TFd,wi )
2
·

√∑N
j=1(IDFwi )2

(1)

where TFd,wi = 1 + lnNd,wi and IDFwi = ln(1 + M
Nwi

).

In Formula (1),
TFd,wi√∑N
j=1 (TFd,wi )

2
is called as the normalized TF,

and
IDFwi√∑N

j=1
∑N

j=1 (IDFwi )
2
is called as the normalized IDF.

2) BLOOM FILTER
Bloom filter is a space-efficient data structure, which is used
to decide whether an element is really the member of the set.
Assume that there is a set S = {x1,x2, · · · ,xn}, and the
set S can be represented as a Bloom filter, which is an array
of b bits initialized with 0. Generally, the generating algo-
rithm of Bloom filter utilizes r independent hash functions
hi(i = 1, 2, · · · , r), where hi : {0, 1}∗ → [1, b]. With the
hash functions, every element x can be mapped to r random
numbers h1 (x) ,h2 (x) , · · · ,hr (x) by computing hi(x) and
the corresponding bits at this positions should be set to 1.
When we want to test whether the element x is contained in
the set S, we just only check whether the bits at the positions
h1 (x) ,h2 (x) , · · · ,hr (x) are equal to 1. If any of the bits
at these positions is 0, the element is definitely not in the set.
Otherwise, x is considered to be in the set. However, there
may occur a positive false, which means the element x is
decided to be in the set, but it’s not in fact. Fortunately, if the
parameters and hash functions are set properly, the positive
false rate can be negligible.

As we have said, our schemes utilize Bloom filter to build
the search index tree, so we will discuss its correctness and
security in the following sections.

3) SEARCH INDEX TREE
The search index tree in our scheme is a balance binary tree,
which can improve search efficiency and support dynamic
operation with low cost. In order to achieve these design
goals, the data structure of our search index tree node u is
defined as {FID,Du,BFu, l, r}, where l and r represent the
left child and right child of u, respectively. Every leaf node
corresponds to a specific document in our search index tree.
So, if there are m documents in total, we need to construct
a search index tree with m leaf nodes. As to a leaf node
corresponding to the document d, FID denotes the identifier
of d,Du is the index vector of d andBFu represents the Bloom
filter of d where each keyword of d is mapped to r random
positions. With these leaf nodes, the search index tree can be
built by performing a postorder traversal. For every internal
node u including root node, the FID and Du can be set to null
and BFu [i] = BFl [i] or BFr [i]. Namely, BFu [i] should be
set to 0 if and only if bothBFl [i] andBFr [i] are 0. Otherwise,
BFu [i] should be set to 1. The detail algorithm of index tree
construction is shown in Algorithm 2.

An example of our proposed search index tree is shown as
Fig.2. In this example, we set b = 10, r = 2. The document
d1 contains w1,w4, d2 contains w1,w3,w4, d3 contains
w2,w5 and d4 contains w3. Then, the plaintext search index
tree can be built by BuildIndexTree() in Algorithm 1. In addi-
tion, the search algorithm to find the relevant leaf nodes is
explained in section 3.

B. THE BASIC SCHEME
Our basic scheme can achieve privacy-preserving multi-
keyword ranked search supporting dynamic operation under
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FIGURE 2. Search index tree for the document set DC = {d1, d2, d3, d4}

with the keyword dictionary W = {w1, w2, . . . , w5}. And the Bloom filter
generation algorithm utilizes two private key {K1, K2} as hK1

(w1) = 1,
hK1

(w2) = 7, hK1
(w3) = 3, hK1

(w4) = 4, hK1
(w5) = 8 and hK2

(w1) = 3,
hK2

(w2) = 10, hK2
(w3) = 5, hK2

(w4) = 6, hK2
(w5) = 9.

the known ciphertext model. For convenience, we assume
the data owner wants to outsource her or his document set
DC = {d1, d2, . . . , dm} to the cloud server. Before that, he or
she must encrypt DC for the consideration of privacy. And a
secure index I must be built based on the extracted keyword
dictionary W = {w1,w2, · · · ,wn} for the efficient search-
able capability. Then, the following steps will be performed
to achieve the design goals for our scheme.

• Setup

Firstly, the data owner decides the length of Bloomfilter b bits
and the value of r. And r represents the number of positions
that a keyword should be mapped to. Then, the data owner
generates a 4-tuple {S,M1,M2,Kh} as the secret key SK.
Here, S is a random n-bits vector, {M1,M2} are two n× n
invertible matrices and Kh is composed of r private keys
{K1,K2, · · · ,K r} utilized to produce the Bloom filter.

• GenIndex(DC, SK)

In this phase, the data owner will encrypt the outsourcing
documents and build the encrypt index tree as the following
steps:

Step 1: The data owner calls BuildIndexTree(DC, Kh, b)
as shown in Algorithm 2, to generate an unencrypted search
index tree. To obfuscate the Bloom filter further, p dummy
keywords are added during the generation of Bloom filter for
each document in the step 1 of BuildIndexTree(DC, Kh, b).
Or more specifically, r× p randomly selected positions of
the array are set to 1.

Step 2: The data owner encrypts the index vector Dd of
every leaf node in the search index tree using the secret key
SK. Specifically, if S [i] is equal to 0, D

′
d [i] and D

′′
d [i] are set

to Dd [i]; if S [i] is equal to 1, D
′
d [i] and D

′′
d [i] are set to two

random numbers as long as their sum is Dd [i], which can be
expressed as:{

D
′
[i] = D

′′
[i] = D [i] , ifS [i] = 0

D
′
[i] C D′′

[i] = D [i] , ifS [i] = 1
(2)

Algorithm 1 BuildIndexTree(DC, Kh, b)
1: For each document di(i= 1, 2, · · · ,m) in the document
set, generate a corresponding leaf node for it as following
procedures:
• Generate a unique identifier for di and set this identi-
fier as the FID of this leaf node.

• Generate the index vector Ddi according to the key-
word dictionary W= {w1,w2, · · · ,wn}, where the
length ofDdi is the size of keyword dictionary and each
dimension Ddi [j] is the normalized of TF value of wj
in the document di.

• Generate a BloomfilterBFdi for di. Assume the gener-
ating algorithm of Bloom filter utilize hash functions
hsk , where hsk :{0, 1}∗ → [1, b]. So for every key-
word w in the document di, the positions of BFdi at
hK1 (w) , hK2 (w) , · · · ,hKr (w) will be set to 1.

2: Generate a search index tree I whose leaf nodes are the
m nodes generated in the above step. The FID,Du and BFu
of the internal node u are set to null initially.
3: Update the Bloom filter of every internal node. For
each internal node u, BFu can be computed according to
the Bloom filters of its left and right child node recur-
sively. More specifically, BFu [i] = BF l [i] or BF r [i],
where ‘‘or’’ is the Boolean OR operator.
4: Output the search index tree I.

Algorithm 2 SearchIndexTree (BFq, IndexTreeNode u)
1. if u is an internal node then
2. Initialize count to 0;

for i = 1 to the length of BFq do
if(BFq[i] == 1 and BFu[i] == 1) then
count ++;

3. end if
end for
if (count >=

⌈r/a⌉) then
SearchIndexTree (BFq, u.l);
SearchIndexTree (BFq, u.r);

end if
else

4. return the current node u;
5. end if

Id can be generated as {MT
1D

′
d,M

T
2D

′′
d } and stored in the

corresponding leaf node by replacing Dd .
Step 3: The data owner removes the Bloom filter of all

leaf node before uploading the encrypted document set C and
encrypted index tree to the cloud server.
• GenQuery (Wq)

To avoid the leakage of privacy, the data user will compute
a trapdoor according to the search keywords set, which also
can be regarded as the encrypted form of a search request.
The detail procedure is shown as follows:
Step1: The data user inputs her or his query keyword set

Wq and computes a query vector Q, the length of which is the

35830 VOLUME 7, 2019



C. Guo et al.: Dynamic Multi-Keyword Ranked Search Based on Bloom Filter Over Encrypted Cloud Data

same as the index vector of document. And Q [i] is set to the
normalized IDF value, ifwi ∈ Wq. Otherwise,Q [i] is set to 0.
Step2: The data user encrypts Q to generate the trapdoor

TWq by using the secret key SK. The same method is utilized
to spilt Q into {Q

′

,Q
′′

}. But the difference is that if S [i] is
equal to 0, Q

′

[i] and Q
′′

[i] are set to two random numbers as
long as their sum is Q[i]; if S [i] is equal to 1, Q

′

[i] and Q
′′

[i]
are set to the same as Q[i], which can be expressed as:{

Q
′

[i]+ Q
′′

[i] = Q [i] , ifS [i]= 0
Q
′

[i] = Q
′′

[i] = Q [i] , ifS [i]= 1
(3)

And the trapdoor TWq can be generated as {M
−1
1 Q

′

,M−12 Q
′′

}.
Step3: The data user computes the query Bloom filter BFq

to improve the search efficiency. For each search keyword
w ∈Wq, r random numbers hK1 (w) , hK2 (w) , · · · , hKr (w)
are generated by utilizing the same procedure in BuildIndex-
Tree(DC, Kh , b). However, only

⌈r/a⌉ , (1 ≤a ≤ r) positions,
which are selected randomly from hK1 (w) , hK2 (w) , · · · ,
hKr (w), are set to 1 in BFq. In general, the value of a is less
than 2 aimed to guarantee efficiency of our scheme, which
will be discussed in the following sections. After TWq and
BFq are generated, both will be sent to the cloud server.
• Search (TWq , I )

With the query Bloom filter BFq, the cloud server calls with
the query Bloom filter BFq, the cloud server calls the fol-
lowing Algorithm 2 SearchIndexTree (BFq,I.root) to get all
the relevant leaf nodes. And the similarity score for every
relevant leaf node u and trapdoor TWq can be computed by
the following formula:

SC(Iu,Twq ) = {M
T
1 D
′
u,M

T
2 D
′′
u} · {M

−1
1 Q′,M−12 Q′′}

= D′u · Q
′
+ D′′u · Q

′′

= Du · Q (4)

With the similarity scores of all the relevant documents,
the cloud server sorts the scores utilizing appropriate sorting
algorithm and returns the top-k encrypted documents to the
data user.

C. THE ENHANCED SCHEME
As formula (4) shows, the similarity score calculated from Iu
and Twq is the same as that calculated from Du and Q. That
is, two different trapdoors generated from the same query
keywords will have the same similarity score with the same
document. However, this will incur privacy leakage in the
backgroundmodel. Sowemust break this equality to improve
the security of our scheme. We can introduce randomness to
Iu and Twq during their generations. Specifically, the index
vector will be extended to (n + U ) dimensions, where U is
the number of dummy keywords in our enhanced scheme.

Our enhanced scheme is almost the same as the basic
scheme, and the changed details are that:

1) when the secret key SK is generated, the length of S
becomes (n+U ) bits and {M1,M2} are changed to two
(n+ U )× (n+ U ) matrices;

2) when generating the index vector Dd in the step 2 of
BuildIndexTree(DC, Kh , b),Dd is also extended to (n+
U ) dimensions and the extended dimensions Dd [n +
j], (j = 1, 2, . . . ,U ) is set to an random number εj;

3) the query vector is extended to (n+U ) dimensions and
V positions out of extended U dimensions, which is
randomly selected, are set to 1 before the encryption
procedure;

4) the similarity of Iu and Twq will be (Du · Q +
∑
ε
(V )
j )

rather than Du · Q ,Which makes Q[n+ j] = 1

D. THE UPDATE OPERATION
Our scheme can achieve an efficient, multi-keyword search
and support dynamic operation, such as the insertion or dele-
tion of a document. We utilize Bloom filter to construct the
corresponding search index tree. When a document needs
to be inserted or deleted, we just modify the structure of
search index tree slightly. Specifically, only the nodes on
the path from the changed leaf node to the root need to be
updated. In addition, an unencrypted search index tree also
needs to be stored on the data owner side for the reduction of
communication overhead. The dynamic operation process is
presented as follows:

• GenUpdateInfo(SK, I, doc, UT)

In this phase, the data owner will generate the changed path
information P, which is a subtree containing all nodes on it.
For example, if wewant to delete the document d4 d4 in Fig.2,
P is composed of {r, r12} Here, the parameter SK is the secret
key generated in the setup phase, I is the search index tree,
and UT represents the type of dynamic operation. So, two
situations will be considered according to UT.

1) IfUT represents deletion of a document, the data owner
will find the corresponding leaf node and delete this
node. However, if deletion of the node breaks the bal-
ance structure of the search index tree, the data owner
can set this leaf node as a blank node rather than
removing it. In the blank node, the FID is set to null,
the encrypted index vector and bloom filter are set to
0. After that, the data owner updates the Bloom filter
of the changed subtree and stores the changed path
information into P.

2) If UT represents insertion of a new document, a new
leaf node will be generated as the process of step1 in
algorithm BuildIndexTree(DC, Kh, b). With the leaf
node, the data owner inserts it into the index tree I as
a leaf node without breaking the balance structure of
the search index tree. And the blank node will be con-
sidered firstly, which can be found by the blank node
list. Then, the data owner updates the Bloom filter of
the nodes on the path from root to the new leaf node as
BFu[i] = BFl[i]orBFr [i]. Then, the data owner stores
the changed path information into P, which will be sent
to the cloud server along with the encrypted form of
doc. In addition, while finding the proper location in
I to insert the new leaf node, some blank nodes are

VOLUME 7, 2019 35831



C. Guo et al.: Dynamic Multi-Keyword Ranked Search Based on Bloom Filter Over Encrypted Cloud Data

usually preferred, which are generated from the process
of the deletion operation.

• Update(I, P, UT)

In this phase, the cloud server will update the search index
tree that stored in it. Specifically, the cloud server updates
the corresponding subtree of I according to P. And if UT
represents insertion of a new document, the cloud server adds
the encrypted form of the new document to C . Otherwise,
it deletes the corresponding encrypted document from C .

The IDF values of keywords are utilized to generate
query trapdoor. However, some values may be changed after
dynamic operations. So the data owner must update the
changed IDF values in time. In fact, the data owner does
not have to update the IDF values every time when dynamic
operations happen. Because the IDF values change little after
several times of documents updating.

As for modifying a document, such as the deletion or
insertion of some keywords, this operation can be completed
by combinations of the above two operations. Specifically,
we can delete the original document in the cloud server,
firstly. Then, we insert the new document, which have been
modified. In addition, the size of keyword dictionaryW may
be changed when dynamic operations occur, because there
may be new keywords in the new documents. In the most
existing schemes, the data owner has to rebuild the search
index tree, which is time-consuming. However, our schemes
do not have to rebuild the search index tree. For the Bloom
Filter, we can just map the new keyword to r positions and
the effect of its length will be discussed in Section 4. For
the index vector, the length is determined by the size of the
keyword dictionary. We can preserve some blank entries in
the keyword dictionary and the corresponding positions of
index vector are set to 0. So the new keywords can be inserted
by replacing the blank entries when the data owner adds some
new documents.

IV. SECURITY ANALYSIS
In this section, we present the security analysis of our
schemes. And we will analyze our schemes from the privacy
requirements described in Section 2.3.

A. SECURITY ANALYSIS OF OUR BASIC SCHEME
Our basic scheme is a privacy–preserving multi-ranked
search scheme in the ciphertext model. And we analyze that
it can meet the privacy requirements as follows.

1) Index privacy

In our basic scheme, the index privacy involves the
encrypted index vector Id and the Bloom filter BFd . For
Id , it was obfuscated by secret key SK and the cloud server
can’t get the original Dd without SK. For BFd , we utilize r
independent hash functions tomap a keyword to r positions to
BFd . So BFd does not reveal keywords information. Besides,
we add dummy keywords to BFd to obfuscate it during
the generation of Bloom filter for better privacy protection.

Therefore, our basic scheme satisfies the requirements of
index privacy.

2) Trapdoor unlinkability
During the generation of the trapdoor, some dimensions of

the search index vector may be spilt into two random num-
bers. So, the same search index vector will be encrypted to
different trapdoors. For the query Bloom filter BFq, we only
randomly selected

⌈r/a⌉ positions for a query word and set
the corresponding positions of BFq to 1. Thus, the same
query keyword set will be generated different Bloom filters.
Therefore, our basic scheme satisfies the requirements of
trapdoor unlinkability in the known ciphertext model.

3) Keyword privacy
The above analysis shows that the cloud server can’t get

any information about keywords from the indexes and trap-
doors without more information. And the cloud server can’t
infer useful information either in the known ciphertext model.
So, our basic scheme can guarantee keyword privacy in the
known ciphertext model. However, the cloud sever will have
more knowledge in the known background model such as
the TF distribution of keywords. Thus, the cloud server may
deduce the keyword information by analyzing the TF distri-
bution. Therefore, our basic scheme may leak the keyword
information in the known background model.

B. SECURITY ANALYSIS OF OUR ENHANCED SCHEME
In our scheme, the cloud server should use the bloom filter to
search the top-k results. Over the search process, the server
needs to calculate the relevance scores for each file. It may
expose some information about the data, but the data sets are
encrypted, and we can get different ciphertext for one file
when we encrypt it more time. So the server cannot know the
detailed information about the top-k list files. Our scheme is
secure under known background model.

We analyze the security of our enhanced scheme similar to
that in our basic scheme.

1) Index privacy
The encrypted method of index vector and the generation

of Bloom filter in the enhanced scheme are the same as that
in the basic scheme. So the enhanced scheme can guarantee
index privacy in the known background model.

2) Trapdoor unlinkability
Inherited from our basic scheme, the same search index
vector will be encrypted to different trapdoors. Besides, our
enhanced scheme breaks the equality between the final sim-
ilarity scores and (Du · Q) because of the randomness of∑
ε
(V )
j . Thus, the similarity scores of the same query will be

different. So the enhanced scheme satisfies the requirement
of trapdoor unlinkability in the known background model.

3) Keyword privacy
It’s difficult for the cloud server to collect the specific TF
distributions of keywords because the final similarity score is
obfuscated by the random

∑
ε
(V )
j . And the cloud server can-

not identify whether some keyword is in the query without TF
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FIGURE 3. Time costs of building index tree: (a) different size of document sets with the same dictionary, n = 5000; (b) the same
document set with a different size keyword dictionary, m = 1000.

distributions. As it was analyzed in [20], the keyword privacy
can be protected in our enhanced scheme if the parameters,
such as U and V , are selected properly.
However, the dummy keywords can affect the accuracy of

search and εjmust be chose properly. Assume every εj is set to
follow the same uniform distribution M (µ

′

−c,µ
′

+c). Then,∑
ε
(V )
j will follow the Normal distribution N (µ, σ 2) if the

values of µ
′

and c are set to µ/V and
√
3/V ∗ σ on the basic

of the central limit theorem, recespectively. Thus, the value
of σ can be set as a system parameter to make a trade-off
between security and accuracy.

V. PERFORMANCE ANALYSIS
In this section, we present a detailed analysis for the perfor-
mance of our proposed schemes, and we implemented the
experiment by using JAVA language on a Linux Server with
Intel 2.9 GHz Processor. The real dataset of National Science
Foundation Research Awards Abstracts 1990-2003 [31] is
used in our experiment. Specifically, we randomly select
different numbers of documents to build the experimental
dataset.

A. EFFICIENCY
1) CONSTRUCTION FOR INDEX TREE
Many schemes, such as Sun et al. [23], utilize binary search
tree to improve the search efficiency of their schemes. And
for the consideration of privacy, the internal nodes of the
tree must be encrypted, which is a time-consuming operation.
We also build a search

Index tree for our scheme. However, our scheme need
not encrypt the internal nodes because of the property of
the Bloom filter. So the index tree construction time of our
scheme will be reduced significantly. Specifically, the main
time cost process of the index tree construction contains
the construction of unencrypted search index tree and the
encryption of the index vector for each leaf node. For the
construction of unencrypted index tree, the index vector
and the Bloom filter generations for each document are the
main considerable operations, which is related to the size of

document set. As to the encryption operation of every leaf
node, two multiplication operations of a n × n invertible
matrice and a n-dimension vector mainly should be consid-
ered, which takes O(n2) time in our basic scheme and takes
O((n + U )2) time in our enhanced scheme. So the size of
document set m and the number of keywords n are the two
main factors for the construction of index tree.

We compare the time costs required to build an index
tree of our scheme with those of BDMRS in [23]. Fig. 3(a)
demonstrates that the time costs of building index tree is
nearly linearly related to the number of documents when
the size of the keyword set is fixed. And the time costs of
our enhanced scheme is a little more than our basic scheme
because of the insertion of the dummy keywords. Fig. 3(b)
shows that the size of the keyword dictionary can have an
enormous impact on the time cost of building the index tree,
which increases with the square of the number of keywords
in the dictionary. Obviously, the main influencing factor for
computational cost is the encryption of the leaf nodes, which
involves the multiplications of matrices. Fig.3 also shows
that BDMRS takes almost twice the time of our scheme to
build the encrypted index tree. Even though the index tree
construction is a one-time operation, the improvement of our
schemes also is significant.

2) TRAPDOOR GENERATION
Our schemes utilize the similar encryption method to gen-
erate the trapdoor, which involves the spilt operation of the
query vector and two multiplications of the n × n invertible
matrices. So the time cost of trapdoor generation depends
mainly on the number of keywords. Fig. 4(a) shows that
the time cost grows exponentially with the increment of the
number of keywords in the dictionary. Fig. 4(b) shows that the
number of keywords in the query request has little influence
on the time cost of generating the trapdoor. This feature can
benefit our multi-keyword search scheme. And the time cost
of our basic scheme is a little lower than that of our enhanced
scheme because of the insertion of dummy keywords in the
enhanced scheme.
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FIGURE 4. Time cost of generating trapdoor: (a) the same 10 query keywords within different size of keyword dictionary;
(b) different number of query keywords within the same keywords dictionary, n = 5000.

FIGURE 5. Search efficiency with the same 10 keywords as input: (a) different size of document sets with the same size of keywords
dictionary, n = 5000; (b) different number of retrieved documents with the same document set and keyword dictionary.

3) QUERY
The cloud server should consider the documents that contain
the searched keywords rather than all of the documents when
it retrieves the top-kdocuments. And according to the char-
acteristics of Bloom filter, we can easily decide whether an
element is really amember of the set. So, we utilize the Bloom
filter to build a search index tree. As to the search algorithm,
we can see that our schemes first traverse the index tree
to determine the relevant leaf nodes that contain any of the
search keywords. Then the cloud server computes the similar-
ity scores between those leaf nodes and the request trapdoor.
Thus, only the leaf nodes containing the search keywords will
be traversed rather than all leaf nodes. Since our search index
tree is a balanced binary tree, its maximum height is about
logm. If we assume that there are t leaf nodes that contain any
of the search keywords, the complexity of finding the relevant
leaf nodes is O(tlogm), and the complexity of the similarity
calculation is O(tn). So, the search time is O(tlogm+ tn).
Fig. 5(a) shows that our schemes have a logarithmic search

time that is almost consistent with the size of the document
set when the size of the keywords dictionary is fixed. And the
search time of our schemes is far lower than that of MRSE
in [20], which has a search time that is linearly related to
the number of documents. Fig. 5(a) also demonstrates that,

even though BDMRS utilizes ‘‘Greedy Depth-first Traverse
Strategy’’ to improve the search efficiency, our schemes have
the similar performance as BDMRS. Fig. 5(b) shows that the
value of k doesn’t affect the search time of our schemes and
MRSE. However, the search time of BDMRS may increase
somewhat as the number of documents retrieved increases.

4) UPDATE
Some data owners often update their outsourcing data except
for retrieving them, so dynamic operation is a significant
service. As we have explained, our scheme can support
dynamic operation well, which means deletion or addition of
a document cost little time and there is no privacy leakage.
Because the dynamic operation of our scheme is similarity to
that of Sun et al. [23], only the nodes, which are in the path
from the root to the related leaf node, will be involved when
the dynamic operations occur. However, their scheme must
encrypt the internal node by the multiplications of the n × n
invertible matrices, which can take lots of time if the index
tree is very high. Unlike that, our scheme utilizes the Bloom
filter to avoid the encryption of the internal nodes and the gen-
eration of the Bloom filter just takes a little time. So, the effi-
ciency of dynamic operation in our scheme is satisfactory.
To demonstrate that, we compared our scheme with BDMRS
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FIGURE 6. Time cost for deletion of a document: (a) different size
document sets with the same size keywords dictionary, n = 5000;
(b) same document sets with different sizes of the keyword dictionary,
m = 1000.

in Fig. 6, when executing the deletion of a document. As the
cost of deletion in our basic scheme is the same as that in
our enhanced scheme, we only show the performance of the
enhanced scheme. Fig. 6(a) shows that both our scheme and
BDMRS almost take logarithmic time with the number of
documents when the size of the keyword dictionary is fixed.
However, the time cost of BDMRS is much greater than that
of our scheme. For example, when there are 3000 documents,
BDMRS requires 5,665ms, whereas our enhanced scheme
only requires 50ms. Fig. 6(b) shows that the time cost of
our scheme has almost no relationship with the size of the
keyword dictionary. On the contrary, the cost time of BDMRS
increases exponentially as the size of the dictionary increases.
So, our schemes can deal with the dynamic operation more
efficiently.

B. PRECISION AND PRIVACY
Our enhanced scheme utilizes dummy keywords to satisfy
the requirements of keyword privacy under the background
model. But it will influence the accuracy of the search results.
In order to quantify the influence, we use ‘‘precision defini-
tion’’ in [20] to measure the quantity of the influence. And it
is defined as PK = k ′/k , where k

′

is the number of real top-k
documents returned by the cloud server. Fig. 7(a) shows that
a smaller σ causes the scheme to have higher precision. So,

it seems that we can utilize a smaller σ to guarantee the pre-
cision of our scheme. However, the value of σ also influences
‘‘rank privacy’’, which also is proposed byCao et al. [20]. The
‘‘rank privacy’’ can be computed as P̃k =

∑
p̃d/k2. Here, p̃d

for the document d denotes |rd − r̃d |, where rd is the rank
number of d in the retrieved top-k documents, and r̃d is its
rank number in the real ranked documents. On the contrary,
Fig. 7(b) shows that a higher σ can obtain a larger rank
privacy, which means the rank information can be protected
better by our scheme. This is, the standard deviation σ can
affect the precision and the rank privacy at the same time.
So σ can be treated as a system parameter, which can make a
tradeoff between search precision and rank privacy.

Besides, our schemes utilize the search index tree based
on the Bloom filter to determine the relevant documents,
and the Bloom filter allows false positives. So it seems
that the search index tree may affect the ‘precision’ of our
schemes. However, it will not occur, because even a leaf
node, which doesn’t contain the searched keywords, can
be returned by performing the algorithm SearchIndexTree
(BFq, IndexTreeNode u), and the corresponding document
also can be excluded because the similarity score between
this document and the request trapdoor is nearly 0. What’s
more, the probability of a false positive is very small, which
can be neglected, if the parameters of Bloom filter are chosen
properly. More specifically, assume that the r hash functions
are completely random, then the probability of one bit is 0 in
the Bloomfilter is (1− 1/b)r ·n, which is approximately equal
to e−r ·n/b when b is sufficiently large. So the probability of a
false positive P in our schemes is expressed as:

P= (1−e−r ·n/b)

⌈r/a⌉ (5)

In our experiments, we set b = 65535, r = 6, and a = 2/3.
P can be computed from formula (5), and the values are
shown in Table 2. We can see that even though the value of P
increases with the increasements of n, P is still small enough
to be neglected.

TABLE 2. The probability of a false positive.

Wewill consider how to choose a proper r when the length
of Bloom filter b and the size of keyword set n are fixed. With
the knowledge of derivative, we can know that if, and only
if, e−r ·n/b is equal to 1/2, which means r = b · ln2/n, P
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is minimum, and the minimum value is (1/2)

⌈r/a⌉. So, if r
and a are chosen properly, we can minimize the value of P
while making our scheme satisfy the requirement of trapdoor
unlinkability.

VI. CONCLUSION
In this paper, we proposed a secure and effective, multi-
keyword, ranked search scheme over encrypted cloud data.
Also, our scheme more efficiently supports dynamic oper-
ations that contain deletions or insertions in a document.
To perform a multi-keyword ranked search, our scheme uti-
lizes the vector space model combined with the TF× IDF
rule and the cosine similarity measure to evaluate the similar-
ity between the documents and the query request. To improve
the efficiency of the search, a search index tree based on the
Bloom filter is built to determine the relevant documents.
In addition, the search index tree also can reduce the cost of
dynamic operations because of the properties of the Bloom
filter. Finally, the experimental results show that our scheme
can achieve the design goals efficiently and effectively.
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