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ABSTRACT One of the most accurate and non-invasive prostate imaging methods is magnetic resonance
imaging (MRI). Segmentation is needed to find the boundary of the prostate, either automatically or semi-
automatically. Recently, fully convolutional neural networks (FCNN) are being used for this purpose. In this
paper, to improve the FCNN performance for prostate MRI segmentation, we analyze various structures of
shortcut connections together with the size of a deep network and suggest eight different FCNNs-based deep
2D network structures for automatic MRI prostate segmentation. Our evaluations on the PROMISE12 dataset
with ten-fold cross-validation indicate improved and competitive results. We analyze the results in detail,
considering MRI slices, MRI volumes, test folds, and also the impact on prostate segmentation of using
an EndoRectal Coil to capture the prostate MRI. Our best 2D network outperforms the state-of-the-art
3D FCNN-based methods for prostate MRI segmentation on publicly available data, without any further

post-processing.

INDEX TERMS
MRI segmentation.

I. INTRODUCTION
The process of segmenting an image into several discrete and
homogeneous regions is image segmentation. It aims to alter
the representation of an image to find a region or regions of
interest in an image. Medical image segmentation is one of
the most significant and active areas of research in medical
image processing. The purpose of medical image segmen-
tation is using a precise method to find the boundary of a
specific organ or tissue, and it is a fundamental step for
clinical studies including: diagnosis of disease, monitoring
of organs or particular tissues, and, more importantly, treat-
ment planning. Medical image segmentation is a difficult
task because in most cases a specific organ has different
shapes and sizes in different people [1]. Also, in some studies,
the intensity value of the Region of Interest (ROI) is the same
as the adjacent organs that can make segmentation even more
challenging [2].

Medical image segmentation is usually done in one of
three ways: manually, semi-automatically, or automatically.
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An expert radiologist can perform a manual segmentation
of the ROI, but it is often time-consuming and tedious [3].
A further problem is that in some cases a radiologist may
segment a specific image differently at various times or two
radiologists may segment the same image dissimilarly [4].
However, when developing a semi-automatic or automatic
segmentation method we almost always need ground truth
images that should be created manually by expert radiol-
ogists. Even in the semi-automatic segmentation methods,
an expert user is required to initialize or correct the segmen-
tation. For example, the user can set a seed point or specify a
region to start segmentation. In fully automatic segmentation,
there is no human interaction during the segmentation of
the image. In this type of segmentation, human knowledge
is often employed to design an accurate method based on
image processing and/or machine learning methods for image
segmentation.

The prostate is a part of the male reproductive system
that can suffer from many diseases but most importantly
prostate cancer. Prostate cancer is one of the more common
causes of death in developed countries [5]. According to
Siegel et al. [6] there will be 164,690 new instances of
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prostate cancer and 29,430 deaths because of prostate cancer
in the United States in 2018.

In Australia, according to the Prostate Cancer Foundation
of Australia more than 3,000 men die because of prostate
cancer annually-more than the number of women death due
to the breast cancer [7]. The Australian Institute of Health
and Welfare estimates that 17,729 new prostate cancer cases
will be diagnosed in 2018, which would be 23.8% of all
new male cancer cases in Australia. Also, they estimate that
3,500 men will die from prostate cancer, representing 12.7%
of all cancer deaths in Australia [8], [9]. In 2017, prostate
cancer was the third cause of cancer in Australia after Breast
and Colorectal cancers and also the third cause of death after
Lung and Colorectal cancer [8], [9].

Finding the boundary of the prostate in the MRI image
is fundamental to recognize possible disease in the prostate.
Because of the considerable diversity in size, appearance,
shape, and texture of the prostate and the lack of a clear
prostate boundary, especially in malignant prostate tissues,
prostate segmentation is a challenging problem even for
expert radiologists [10], [11]. However, using EndoRectal
Coil (ERC) during the MRI imaging process can help radi-
ologist to observe the prostate tissue more accurately [12].
This device is placed into the rectum to obtain high-quality
images during 1.57 MRI imaging, but, it creates spikes and
bright regions in the MRI that can decrease the accuracy of
automatic prostate image segmentation.

A Fully Convolutional Neural Network (FCNN) is a type
of Convolutional Neural Network (CNN) that has been intro-
duced for image segmentation [13]. The purpose of the
FCNN is to create an output image analogous to the ground
truth of the input image. U-Net [14] and DenseNet [15] are
two FCNN-based networks for medical and natural image
segmentation respectively. In this paper, we develop new
segmentation methods for automatic 2D MRI prostate image
segmentation based on U-Net and DenseNet structures.
We suggest eight different structures with a particular focus
on using various patterns of shortcut connections [16] as
well as varying the size of the networks. We evaluate the
performance of the following network structures: Straight,
Bypass, Non-bypass Output from All, Output from All, Non-
bypass Input to All, Input to All, Non-bypass Dense, and
Dense models. After extensive experiments, and analyzing
the results in detail, our best model (Non-bypass Dense)
is found to outperform the state-of-the-art 3D FCNN-based
prostate segmentation methods. Our results demonstrate that,
shortcut connections may improve the results but can also
have negative impact. Therefore, the starting and ending
points of the shortcut connections are also critical. In addi-
tion, the results show that the quality of the training images
has a significant effect on the final results.

Il. BACKGROUND

Improvement in machine learning methods especially deep
learning has convinced researchers to use deep learning
in computer vision applications [17], [18]. A deep neural
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network is constructed from multiple layers of neurons such
that each layer learns to transform its input data into a new
more abstract. In particular, a Convolutional Neural Network
(CNN) [19] is a kind of deep network that has been suc-
cessfully applied for visual image processing. The leading
operator of CNN is convolution, consisting of learnable fil-
ters or kernels that are convolved across the input image, com-
puting the dot products between the filters and the receptive
fields to produce feature maps [20]. In this section, we review
papers that apply the combination of the CNN and other
methods for MRI segmentation.

A successful hybrid method for prostate image segmenta-
tion uses an atlas as well as deep learning. Cheng et al. [21]
proposed a hybrid method combining an atlas-based active
appearance method along with a deep learning method to
improve 3D MRI prostate image segmentation. They apply
AAM for estimating the prostate boundary then use deep
CNN to refine the boundary. In the first phase, they separate
the atlas into various groups based on a similarity measure.
Each image slice is assigned to the most similar atlas group
and they then employ AAM training in each subgroup to find
a boundary around the prostate. In the second phase, they
extract 2D 64 x 64 image patches around the AAM pre-
dicted boundary. They use pre-trained AlexNet [22] to clas-
sify the patches into prostate and non-prostate to refine the
boundary.

Cheng et al. [23] presented another work using both patch-
based and holistic (image to image) deep learning methods
for prostate image segmentation. In this paper, they employ a
Holistically Nested Network (HNN) architecture for image-
based segmentation. For training their network they first
crop 25% of images from top, bottom, left, and right to find
the prostate area. Then the Coherence Enhanced Diffusion
(CED) filter is used to enhance the quality of the prostate
boundaries. In the end, both the original MRI images and the
CED-MRI images with their corresponding labels are used
for training the HNN for the prostate image segmentation.

Recently Jia et al. [24] proposed a course-to-fine seg-
mentation method using an atlas method and deep learning.
In this paper, a registration-based segmentation is used to find
the approximate boundary of the prostate; then they extract
image patches around the prostate region to find the prostate
boundary by applying deep network VGG-19 [25] and
LeNet-5 [26]. In the paper, they fine-tune pre-trained
VGG-19 for finding the prostate boundary. Also, to show
the efficiency of utilizing pre-trained networks they train
LeNet-5 from scratch using the extracted image patches.
In the end, they conclude that using the pre-trained network is
more precise than their separately trained network for prostate
image segmentation. In related work, He et al. [27] proposed
a three-level coarse-to-fine segmentation method. In the first
level, the 3D volume of interest is extracted by employing
3D Haar features then an Adaptive Feature Learning Prob-
ability Boosting Tree (AFL-PBT) voxel classifier is used to
classify pixels into three groups: near, interior, and exterior.
Finally, CNN is used to refine the prostate boundary.
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Proposal-based segmentation is another well-known model
for natural image segmentation that has been applied for
prostate image segmentation [28]. In this approach, an image
is divided into several patches or proposals then the pro-
posals that contain prostate are separated. For example,
Yan et al. [28], first generate a set of prostate proposals by
using the Geodesic Object Proposal (GOP) algorithm [29]
for 3D segmentation of the prostates then a graph is used to
select highly effective proposals. Finally, CNN is employed
to detect highly effective features to refine the boundaries.
Two other types of networks that apply for prostate image
segmentation are Stacked Sparse Auto Encoder (SSAE) [11]
and Independent Subspace Analysis (ISA) networks [30].
The SSAE uses a sparse patch matching method, and the
ISA employs sparse label propagation method for feature
extraction for prostate image segmentation.

Almost all of the papers discussed above use a combination
of various image processing and machine learning methods
for feature extraction, coarse segmentation and fine seg-
mentation. However, recently some researchers employ only
CNN for both feature detection and segmentation. A Fully
Convolutional Neural Network (FCNN) is a version of CNN
that is designed for image segmentation [13]. FCNN is
constructed from two parts: down-sampling (encoding, con-
volution) and up-sampling (decoding, deconvolution). Each
part includes blocks that contain the number of convolution
layers and other possible operators such as Batch Normaliza-
tion [31] and Dropout [32]. In the down-sampling part there
is a pooling layer after each block to decrease the dimension
of the feature maps [33] and in the up-sampling section there
is a deconvolution [34] layer before the blocks to increase
the size of the feature maps. In some networks, these parts
are connected by a Bottleneck (Bridging) block. In the down-
sampling section, the network tries to extract features as it
goes from the higher resolution to lower resolution while the
up-sampling part attempts to reconstruct the coarse-to-fine
segmentation with transposed convolution [34]. FCNN uti-
lizes an end-to-end (image-to-image or volume-to-volume)
method for learning.

One of the first studies that used FCNN with 2D con-
volution for 2D medical semantic image segmentation is
U-Net [14]. U-Net is constructed from three parts: the
down-sampling and up-sampling sections such that each part
includes four blocks, and a bottleneck block that connects
the two other parts. All the blocks are constructed from
two convolution layers followed by non-linearity. Finally,
a 1 x 1 convolution is used in the last layer to output the
segmentation. To improve the results in this structure, long
connections are used for cropping and copying a part of
the extracted feature maps from the down-sampling part and
concatenating them with the obtained feature maps from the
up-sampling section.

Also, a revised version of U-Net for prostate MRI image
segmentation is introduced by Zhu et al. [10]. In this paper,
they try to improve the accuracy of the network by adding a
1 x 1 convolution layer in each block. The 1 x 1 convolutions
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make the network deeper as well as decreased the compu-
tational difficulty. Additionally, this paper uses dropout to
overcome overfitting [35].

In 2016, the first version of 3D FCNN for segmenta-
tion of 3D volumes of prostate images was presented as
V-Net [36]. In this network, there are four blocks in each part
similar to U-Net, but the number of layers in each block is
different. In each block, there is a residual shortcut connection
for summing the input feature maps and the output feature
maps of the block, element by element. Also, four long
connections are used to concatenate the feature maps from
the down-sampling to the up-sampling part, as in U-Net.

Another method for 3D MRI prostate segmentation is
ConvNet [37]. The aim of this work is to analyze the effect of
using short and long residual connections. In this network,
each residual block is constructed from two convolution
layers with kernel size 3 x 3. They use the short residual
connection to sum the input of the block with the output
of the second convolution layer element by element before
applying the non-linearity. Moreover, they utilize long con-
nections to sum the extracted feature maps from the down-
sampling part of the network to the up-sampling part. They
compare the network as variants with only short or long and
with both residual connections. They show that using the
combination of short and long residual connections is more
effective for prostate image segmentation.

Finally, Mun et al. [38] proposed another FCNN-based
network for 3D MRI prostate segmentation call the Baseline
Convolutional Neural Network (BCNN). All the blocks con-
tain three layers of convolution, but in the encoding blocks,
there is a shortcut connection to sum the output of the first
layer with the output of the second layer. A correspond-
ing connection does not exist in the decoding part. Also,
to reuse the extracted feature maps of the down-sampling part
in the up-sampling part, they utilize long connections and
element-wise sum. The primary purpose of the paper is the
comparison of six different types of objective functions:
the Jaccard Index, Hamming Distance, Euclidean Distance,
Cosine Similarity, Dice Coefficient, and Cross Entropy. They
show that Cosine Similarity is the best and the Dice Coefti-
cient is the second best among the six objective functions to
train the network for prostate image segmentation.

We use U-Net and DenseNet [15] to develop new network
structures for prostate image segmentation. The Dense model
was introduced by Huang et al. [15] for natural image classi-
fication and obtained promising results. In the Dense model,
after each layer, there is a concatenation operator that can
concatenate the output of all previous layers of the block. The
fully convolutional Dense model was applied for color image
segmentation by Jegou et al. [39] and obtained positive results
for natural image segmentation.

Ill. PROPOSED MODELS

In this section, firstly, we introduce our FCNN-based network
structure and then explain our proposed block structures for
MRI prostate segmentation.
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FIGURE 1. Proposed network architecture for prostate segmentation.

A. PROPOSED ARCHITECTURE

We suggest a relatively deep FCNN network structure
based on U-Net [14]. The diagram of this architecture is
shown in Figure 1. The network is constructed from three
parts including down-sampling, bottleneck, and up-sampling.
Six blocks can be seen in the down-sampling part and six
blocks in the up-sampling section. In the bottleneck, there is
another block to connect the two parts.

As shown in Figure 1, in the down-sampling part, the input
image is directed into the first block, and the output feature
maps (convolution output [20]) of the first block are fed to
the next block as the input. This process is repeated several
times. After each block in the down-sampling part, a max-
pooling operator [33] halves the size of the feature maps.
In the bottleneck, there is a block that connects the down-
sampling section to the up-sampling part. In the up-sampling
section, each block is preceded by a deconvolution layer
(3 x 3 convolution with stride 2) to double the dimension
of the feature maps. In Figure 1, the dimension is shown in
each block are the resolution of the feature maps (the first
two numbers) along with the output rate that is the number
of feature maps output by each layer. In the down-sampling
part the resolution decreases after each max-pooling operator
to extract information and in the up-sampling section, the
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resolution increases to the original image size. The last
layer is a 1 x 1 convolution layer with one output channel
that produces the output segmentation image from the fea-
tures maps output by the last block. The dimension of the
input image and the output segmentation image is the same
(256 x 256). Because of using multiple convolution layers
and max-pooling in the down-sampling process a part of
the spatial information is lost [16], [37]. Therefore, feature
maps in the up-sampling part will have more information
deficiency. To improve the quality of feature maps in the up-
sampling section the extracted data from the down-sampling
part can be reused by using long connections [40]. Our pro-
posed architecture uses six long connections (shown with
dash lines see Figure 1) to copy extracted feature maps to the
up-sampling section to concatenate with feature maps from
deconvolution.

In the following, we first explain the common operators
that we utilize in each layer of the blocks including dropout,
batch normalization, activation function, and the kernel size.
We then describe each model separately based on the shortcut
connections structure.

B. COMMON COMPONENTS

Since we have a deep network and our training images are
limited, we should employ some approaches to control over-
fitting including dropout [32] and batch normalization [31] to
create sparsity in our proposed models that can accelerate the
training and improve the accuracy of the network.

Dropout can be an efficient method to exclude the compli-
cation of co-adaptations on the training data and also func-
tions as a regularizer. Dropout randomly deletes a portion of
the features by omitting hidden layers units with a specified
probability [32].

Another feature in our proposed models is Batch Normal-
ization (BN) [31] for data normalization during the training
of the network. Data normalization is one of the most crit-
ical parts of training a network. It is common to normalize
input data before training the network, but after applying
the convolution operator and non-linearity, the distribution
of the data will be changed. The purpose of BN is normal-
izing the output of network layers during training, and it
is known that this normalization can accelerate the training
of the network [31]. According to loffe and Szegedy [31],
to calculate BN, each mini-batch should be normalized to
zero mean and unit variance. BN starts with zero mean and
unit variance normalization, but during the training, can learn
other parameters that might be better for normalization.

One of the reasons for using BN is reducing the covariance
shift [31] i.e. the changing distribution of the test data versus
the training data [41]. If a network is trained with X as the
input images and Y as the corresponding labels with a partic-
ular distribution, the network could learn the distribution of
the training samples. If the network tested with new images
from a different distribution, the results can be very poor.
Moreover, internal covariance shift can happen during the
backpropagation [31]. If the parameters of the first layer of
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FIGURE 2. Proposed blocks architecture for prostate segmentation.

the network change, it could be the change the distribution
of the second layer, and consequently, it changes the layer
outputs as well [31]. Deep networks, such as our proposed
models are more prone to the problem.

It is also known that BN can work as a regularizer similar
to dropout [31]. Therefore, if BN is used in the network,
dropout value selection should be made more carefully oth-
erwise more information will be lost [42]. However, dropout
cannot be replaced with BN because the effect of the BN on
overfitting is less than dropout; therefore, a proper solution
is using both of them simultaneously as we are doing in our
proposed models.

As the activation function, our proposed models employ
Rectified Linear Unit (ReLU) [43] for all layers within the
blocks. ReLU was first used for training of deep networks
in 2011 [44]. Activation function defines the output of each
unit with regards to its input, and the ReLLU defines the
positive part of its argument (f(x) = max(0, x)). ReLu can
decrease the probability of the vanishing gradient [45] during
the back propagation [44].

In the last layer of our proposed network, we apply the
Sigmoid function [46] as the non-linearity. The sigmoid com-
monly employed for two-class classification. The equation of
this function can be seen in the Equation 1.

1
fx) = m (H
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The convolution layers of our networks employ small 3 x 3
convolutional filters in the convolution layers. Using a stack
of very small 3 x 3 receptive fields is more efficient than using
bigger receptive fields like 5 x 5 or 7 x 7 [25]. Utilizing the
small kernel the network will apply more non-linear layers,
and it can decrease the number of model parameters [25].

In summary, in the proposed networks we use 3 x 3 kernel
for convolution layers, apply ReL.U as the activation function
in the hidden layers after each convolution layer, and utilize
BN after activation function for all six models. Dropout is
also used to control overfitting after the last BN of the each
block. In the next section, we discuss the key issue of shortcut
connections.

C. PROPOSED BLOCKS

An issue that can be very significant in the final segmenta-
tion results is the architecture of the blocks. We proposed
eight different structures for the blocks. Figure 2 shows the
eight block models and they would appear with three layers
and each layer includes a convolution layer with kernel size
3 x 3 follow by a Rectified Linear Unit (ReLU) activation
function [43]. To improve the generalization of the network,
batch normalization [31] and dropout [32] are also employed.
In all proposed block structures, after each convolution layer,
there is a batch normalization. Also, the dropout is only used
after the last batch normalization of each block. As shown
in Figure 2, we apply various structures of the shortcut
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connections to investigate their effects on the prostate image
segmentation. In our work, we use concatenation for both
the shortcut and long connections in all of our proposed
networks. Concatenation stacks the feature maps on top of
each other.

As can be seen from Figure 2, our simplest model Straight
is a baseline with no shortcut connections inside the blocks.

In the Bypass model, we employ a concatenation operator
at the end of the block to combine the block’s input feature
maps with its output. This bypass connection directly pro-
vides the input of the current block to the next block.

In the Non-bypass Output from All model, we add a con-
catenation operator at the end of the block to collect the
output feature maps from the all layers in the block (gath-
ering connections) and feed them to the next block. Using
this model, we can explore whether using feature maps with
different levels of information increases the learning ability of
the network. Also, in the Output from All model, the bypass
connection is added to again forward the block’s input to the
next block.

In the Non-bypass Input to All model, the block’s input
feature maps are provided to each of the layers (scatter
connections). We concatenate the output of each layer with
the block’s input before sending it to the next layer. In the
Input to All model, the input is also concatenated with the
final output. In other words, this model uses both bypass and
scatter connections.

Our Dense model follows Huang et al. [15] Dense model
structure. In the Dense model, after each layer there is a
concatenation of the output of all previous layers with the
original input of the block. In our work, we use the fully dense
block for MRI prostate segmentation. Our implementation
uses chain connections as shown in Figure 2 to implement the
Full Dense block to deliver the same effect while decreasing
the number of shortcut connections.

Lastly, the Non-bypass Dense model is equivalent to the
Dense model except that there is no connection between the
input and the output of the block. Again, chain connections
are use in this network structure to connect the layers.

IV. EXPERIMENTS

A. DATASET AND PREPROCESSING

The PROMISEI12 challenge dataset [47] is used for studying
MRI prostate segmentation. The data was collected from
four different hospitals, with two employing the EndoRectal
Coil (ERC). The dataset includes 50 MRI volumes and their
corresponding labels for training, and also 30 MRI volumes
without ground truth images for testing. For the evaluation
of our proposed networks, we apply ten-fold cross-validation
on the 50 training volumes. For each cross-validation fold,
the training data is separated into three categories: train, vali-
dation and test sets. The 50 volumes have 1377 image slices.
Because of the limited available data, using data augmenta-
tion to increase the number of images is necessary. We use
the combination of transformations: random rotation within
a 10-degree range, horizontal flip, vertical flip, zoom,
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horizontal and vertical translation, and elastic transforma-
tion [48] for augmenting the number of training data to
150000 slices. Also, each pixel is normalized to zero mean
and unit variance method (Z-score) [49]. We calculate a mean
and variance for each pixel position across all 1377 images.
Then all images normalized using obtain parameters.

B. IMPLEMENTATION

Our proposed models are implemented based on the Keras
Python library [50]. All experiments were conducted on
the National Computational Infrastructure (NCI) using four
Nvidia GPUs along with CPUs. To find appropriate optimizer
and learning rate, firstly, we use ADAM with the learning
rate of 0.01, 0.001, and 0.0001, as well as the SGD with
the same learning rates including, 0.01, 0.001, and 0.0001,
also, we set momentum as 0.9 and the weight decay as 1e-6.
The preliminary experiments show that using ADAM opti-
mizer with a learning rate of 0.001 is the best choice for our
proposed models. Furthermore, to determine the appropriate
batch size, we test four different sizes including; 8, 16, 32,
and 64. We found that using 32 as the batch size yields better
performance; therefore in all of the tests, we set batch size
as 32 and training continued for 25 epochs (3.25 million
image presentations). For the evaluation of our proposed
models, we utilize the Dice Coefficient [52] (see Equation 2).
Consider X as the predicted segmented image (set of pixels),
| X | as the cardinality of X, Y as the ground truth segmenta-
tion image, and | Y | as the cardinality of Y.

21 XNY |

DSC = ———
[ X |+1Y|
Correspondingly, the continuous Dice Coefficient (cDSC)

[53], [54] is employed as the loss function for the training
of all networks (see Equation 3).

2 (YD) + 10
XD+ (Yp+1.0

C. THE SIZE OF THE NETWORKS

The number of layers in each block is an important parameter
of the network design. To find the appropriate block size for
each proposed structure, we tested all structures with blocks
ranging from two to five layers, heuristically expanding to
larger block sizes (up to 9 layers) depending on the relative
performance. The best block sizes discovered for our struc-
tures are as follows: two layers per block for the Input to All
and Non-bypass Input to All models; three layers per block
for the Straight, Bypass and Dense models; and seven layers
per block for the Output from All, Non-bypass Output from
All and Non-Bypass Dense models.

@

cDSC =

3)

D. DROPOUT

Dropout is another important hyper-parameter of the CNN
to combat overfitting and increasing the generalization of the
network. The probability of dropout and its location(s) in the
network can affect the network training capability consid-
erably. To analyze the location and probability of dropout,
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TABLE 1. Quantitative comparison of proposed models.

Method Mean DSC | Median DSC
Straight 0.853 0.859
Bypass 0.858 0.863
Non-bypass Output from All 0.849 0.861
Output from All 0.865 0.88
Non-bypass Input to All 0.815 0.82
Input to All 0.819 0.846
Non-bypass Dense 0.873 0.88
Dense 0.834 0.852

we propose three different dropout configurations. In the first
configuration, we locate the dropout after each layer, with
the probability of 0.2. In the second configuration, we only
employ one dropout after the last layer of each block, again
with the probability of 0.2. The third configuration only uses
dropout after each layer in the bottleneck block, with the
probability of 0.5. In the preliminary experiments, to find the
appropriate probability for each of the dropout configurations
we examined 0.2, 0.5, and 0.8. Concerning the obtained
results, the discussed dropout probabilities selected for each
of the three configurations. Also, we analyze the proposed
models without using dropout as well.

According to the obtained results, we found that the sec-
ond strategy is more appropriate for our proposed models.
It seems that using dropout after each layer can delete many
units along with their connections and it can be the cause of
losing more information. On the other hand, using dropout
only in the bottleneck is not enough to increase the gener-
alization of the network. For the main experiments, we use
dropout at the end of each block with the probability of 0.2.

E. COMPARISON OF PROPOSED MODELS

Based on the results obtained (see Table 1), using ten-fold
cross-validation, the Non-bypass Input to All model is the
worst, and Non-bypass Dense model is the best model among
all eight proposed networks for prostate MRI segmentation.
The Non-bypass Dense model outperforms all other models
with 0.873 mean DSC.

We use, the Wilcoxon signed rank test [55] to show
the statistically significant differences among the proposed
approaches. We compare the Non-bypass Dense model with
all other models (see Table 2), and the statistical compar-
ison of the mean DSC over all ten folds shows that the
improvement of the Non-bypass Dense model is statistically
significant (p < 0.05) in comparison with all other proposed
networks except the Output from All model. The Output from
All model is our the second-best proposed network.

The results of the Straight model show that it is possible
for a network with no shortcut connections to outperform
networks using different patterns of shortcut connections.
For the Bypass model, the results demonstrate that using
the bypass connection does not have a significant effect
on the final segmentation and improve the result infinitesi-
mally compare with the Straight model. In the Output from
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TABLE 2. Statistical comparison of Non-bypass Dense model with other
models using the Wilcoxon signed rank test.

Method p<0.05
Straight 0.0137
Bypass 0.0137
Non-bypass Output from All | 0.0039
Output from All 0.0645
Non-bypass Input to All 0.0039
Input to All 0.0020
Dense 0.0039

All model, the average mean DSC increased to 0.865 using
bypass and gathering connections. It shows that using bypass
along with gathering connections is a beneficial combination.
However, for the Input to All model, the results indicate
reduced segmentation performance. This result shows that the
combination of the scatter and bypass connections is not an
effective composition.

In the Dense model, each layer employs all possible fea-
tures including the input feature maps of the block as well
as the output of all previous layers in the block. However,
this model could not even compete with the Straight model.
Finally, the Non-bypass Dense model by omitting input to
output connection and decreasing the number of feature maps
in comparison with the Dense model improved the results
to 0.873 which is the best result.

The results demonstrate that using a bypass connection
in most cases except for the Output from All model does
not have a significant effect and omitting it from the Dense
network improved the results significantly.

As can be seen from Figure 2, the models that placed in
the same column transfer an equal number of feature maps
between blocks. In most of these pairs of corresponding
networks, better performance was observed for the networks
with the fewer internal shortcut connections. For example,
the Straight model achieves better result compare with the
Non-bypass Input to All model. The exception is that the
Non-bypass Dense model outperforms the Non-bypass Out-
put from All model.

Also, all the models in the first row (see Figure 2) use
the same internal connections-their shortcuts connect only
to the output. Among these networks the best results are
obtained for the Output from All model which forward all
computed and the input features to the next block. The results
demonstrated that finding a precise structure is a trade-off
between internal and external block structures.

Figure 3 shows histograms of the DSC performance across
all test images, combining results from all ten folds. It com-
pares the best (Non-bypass Dense) and worst (Non-bypass
Input to All) models. As seen, some segmented images have
low mean DSC between O to 0.1 in both networks. These
images primarily contain small prostate regions that cannot
be appropriately segmented by our proposed 2D networks.
The worst model missed more small prostate regions.

Also, to show the performance of the best and second-best
proposed models for the segmentation of the prostate with
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FIGURE 3. Comparison of the Non-bypass Input to All and Non-Bypass
Dense models based on segmentation of all MRl slices. (a) The
Non-bypass Input to All model. (The worst model). (b) The Non-bypass
Dense model. (The best model).
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FIGURE 4. Comparison of the Output from All and Non-bypass Dense
models based on the size of the prostate. (a) The Output from All model.

(The second best model). (b) The Non-bypass Dense model. (The best
model).

the different sizes we provide figure 4. Firstly, we analyze
the size of the prostate on all 1377 image slices based on
the number of pixels of the prostate. Among 1377 image
slices only 788 image slices contain prostate. The small-
est prostate has 418 pixels, the largest has 4625 pixels,
and in average the prostate contains 2315 pixels in the
dataset. We divide the images into five groups, the first group
contain images without prostate (599 images), the second
group contains images with 418 to 1366 prostate pixels
(109 images), the third group contains images with 1367 to
2315 prostate pixels (242 images), the fourth group contains
the images with 2316 to 3470 prostate pixels (352 images),
and finally the fifth group contains the images that have
3471 to 4625 prostate pixels (75 images). As can be seen from
figure 4, images with small prostate have lower DSC than
other images. The Non-bypass proposed model obtain better
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TABLE 3. The effect of number of layers on the final result of the
Non-bypass Dense model.

Number of layers | Mean DSC
2 0.803
3 0.816
4 0.796
5 0.823
6 0.803
7 0.873
8 0.841
9 0.852

results than the Output from All model for segmentation of
the image slices with small prostate.

The majority of segmentation results have a mean DSC
between 0.8 and 1.0. Based on this range, the best model
clearly achieves more high quality segmentation while the
worst model has a significant number of segmentation with
DSC between 0.5 and 0.8. The performance differences
between the models reflect both differences in segmentation
quality and missed smaller prostate regions.

In addition, to show the effect of the size of the network on
the final results, the results of the Non-bypass Dense model as
our best proposed model, using two to nine layers per block
present in Table 3 as an example. As can be seen, using the
different number of layers change the results considerably.
The Non-bypass Dense model using seven layers per block
obtain the better results.

F. ANALYSIS OF DATA FOLDS

We use the slices of the five MRI volumes for the test, five
MRI volumes for the validation and the remaining 40 volumes
for the training of the suggested models in each fold. The
performance results show that the first, second, and the fifth
folds are the most difficult folds for segmentation, such that
in some cases their results change the ranking of the proposed
models. However, for other folds, the segmentation results
using different methods are much more similar that mainly
contain the high-resolution test images.

The test set of the first fold contains five MRI volumes
of which four were captured using the ERC and have bright
regions around the ERC similar to Figures 5a and 5b. Also,
some of the images have low contrast and wrap-around arti-
facts (see Figures 5a and 5b) that makes the prostate seg-
mentation even more challenging. In the second fold, all the
images in the test set were captured using the ERC have poor
contrast resolution (everything is dark or bright), low spatial
resolution (fuzzy images-see Figure 5c), and contain wrap-
around artifacts in most of the images that make this fold the
most challenging fold for segmentation. Furthermore, in the
entire dataset, there is only one MRI volume that contains a
very large prostate (see Figure 5d)-that volume appears in the
fifth fold test set. Since the network for this fold has never
seen such a large prostate during training, most of the models
could not segment this prostate precisely despite the clear and
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FIGURE 5. Four sample images to show the quality of images. (a) ERC+Artefacts. (b) ERC+Low res+Artefacts. (c) Fuzzy image. (d) Big prostate.

high-resolution image data. In contrast, the sixth fold yields
the best segmentation performance because the test images
are non-ERC and have good spatial and contrast resolutions.
The test sets of the ninth and tenth folds are all captured using
the ERC, but the images have high resolution and a large field
of view that allows the network to use landmarks to find the
prostate.

This analysis shows that for segmentation of MRI slices
with good spatial and contrast resolutions there is no signifi-
cant difference among well-structured models. The problem-
atic folds highlight the actual differences among the proposed
models.

G. QUALITATIVE COMPARISON

As a subjective evaluation of the Non-bypass Dense model
as the best model, six images selected from the test set of
the different folds and the segmentation results are presented
in Figure 6 where the red border shows the ground truth
and the green border indicates the predicted border. The
first and second images (see Figure 6a and Figure 6b), were
captured using ERC and the bright region can be seen around
the ERC. However, our normalization method compensates
the bright region and our proposed model segments the
prostate properly. The Non-bypass Dense model segmented
the prostate precisely in the third image (see Figure 6c¢),
despite the wrap-around artifacts in the image. The fourth
and fifth images (see Figures 6d and 6e), contain only small
regions of the prostate, but our method still segments the
prostate accurately. In the fourth image, the ERC effect is
similar to the prostate, however, our model segment the
prostate precisely. The last image (see Figure 6f) is the non-
ERC image that is segmented well. Overall, the results show
the capability of our best model for the segmentation of the
prostate MRI.

H. COMPARISON WITH PRIOR WORKS

In prior work, only ten FCNN-based prostate segmenta-
tion methods have been published in conference proceed-
ings or journals. Zhu et al. [10] utilized their unpublished
dataset achieving 0.885 DSC. However, they excluded non-
prostate slices which improves the DSC of their 2D net-
work by reducing spurious detections. Also, Ji et al. [56]
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TABLE 4. Quantitative comparison of the best proposed models with
prior works.

Method Mean DSC | Comparable
Zhu et al. [10] 0.885 No
Jietal. [57] 0.91 No
Clark et al. [58] 0.86 No
Milletari et al. [36] 0.869 No
Chen et al. [59] 0.895 No
Liu et al. [60] 0.86 No
Drozdzal et al. [61] 0.874 No
Sun et al. [62] 0.898 No
Mun et al. [38] 0.853 Yes
Yu et al. [37] 0.869 Yes
Non-bypass Dense 0.873 ——

and Clark et al. [57], excluded non-prostate slices from the
PROMISEI?2 dataset and obtained 0.91 and 0.86 mean DSC
using ten-fold and four-fold cross-validation respectively.
Milletari et al. [36], Chen et al. [58], and Liu et al. [59] evalu-
ated their networks on the test set of the PROMISE12 dataset
for which ground truth is not publicly available and obtained
0.869, 0.895, and 0.86 mean DSC respectively. In addition,
Drozdzal et al. [60], used two FCNN for segmentation.
Firstly, they segmented the input image using FCNN and
then used another residual based FCNN for boundary refine-
ment. They applied their proposed framework for different
organ MRI segmentation including prostate MRI segmenta-
tion and obtained 0.874 mean DSC on the test set of the
PROMISEI12 dataset. Finally, Sun et al. [61], proposed an
interactive framework for medical image segmentation and
a part of this framework is FCNN. They obtained 89.81
mean DSC on the test set of PROMISE12 dataset. Neither
of these results are comparable with our results because they
use different test conditions.

Yu et al. [37] evaluated their proposed model on both the
PROMISE12 training set using cross-validation, achieving
0.869 DSC. They also report 0.894 DSC on the test set on the
PROMISEI2 dataset, which is not comparable with our mod-
els. Finally, Mun ez al. [38] tested their 3D-FCNN (BCNN)
network using ten-fold cross-validation on the training set
of the PROMISE12 dataset and achieved 0.853 mean DSC.
We compare our models with the cross-validation results
in these two papers (see Table 4). Given that 3D methods
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FIGURE 6. The six sample segmented images using Non-bypass Dense model. The red border is the ground truth and the green border is the predicted
border.

segment the prostate as a 3D volume (they use informa-
tion from adjacent slices), finding the prostate will be more
straightforward and precise than the 2D models, especially
in the lower and upper slices of the prostate volumes where
the prostate is a small part of the image. However, as is
shown in Table 4, the Non-bypass Dense 2D network out-
performs both 3D methods for prostate image segmentation
and achieves new state-of-the-art FCNN-based prostate seg-
mentation results.

I. ANALYSING THE ENDORECTAL COIL EFFECT

The PROMISE2 dataset includes 50 MRI volumes for train-
ing, of which 24 are captured using the ERC. These volumes
include 809 image slices while the 26 non-ERC volumes
include only 568 slices. To show the effect of ERC on the
final segmentation results, we evaluate the results of the
Output from All and Non-bypass Dense models based on
the obtained DSC per volume.

The obtained results of the Output from All model per
volume is shown in Figure 7a where the red bars indicate
the DSC of the ERC volumes and the blue bars show the
DSC of the non-ERC volumes. In the Output from All model,
the average mean DSC of ERC volumes is 0.8576 and the
average DSC of non-ERC volumes is 0.8727. The average
DSC in the non-ERC volumes is higher than ERC volumes
but, in this model, the best individual result is achieved by
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segmentation of an ERC volume, and segmentation of a non-
ERC volume produces the worst individual outcome.

In Figure 7b the results of the Non-bypass Dense model per
volume are presented. In this model, the average DSC of ERC
volumes is 0.8698 and the average DSC of non-ERC volumes
is 0.8749. The Non-bypass Dense model was more precise in
the segmentation of both ERC and Non-ERC volumes, and
more importantly we can see the smaller differences between
average mean DSC of the ERC and Non-ERC volumes.

To test for statistically significant differences between the
segmentation of the ERC and non-ERC volumes using the
Output from All and Non-bypass Dense models, we evalu-
ate the results using the Wilcoxon—-Mann—Whitney test [62],
which evaluate the differences between two independent sets.
The comparison of the obtained results of the Output from All
model, for segmentation of the ERC and non-ERC volumes
using Wilcoxon—-Mann—Whitney test is p=0.26, and for the
Non-bypass Dense model is p=0.90. These results demon-
strate that there are no significant differences between the
segmentation of the ERC and Non-ERC volumes with either
model.

These test results show that using ERC is not the only
reason for a low mean DSC. The most important reasons
are the low contrast and spatial resolutions and artifacts that
can decrease the accuracy of the segmentation. Also, the low
diversity of the training images. In both models, the lowest
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FIGURE 7. Comparison of the Output from All and Non-bypass Dense
models based on obtain results per volume. Red bars, ERC-volumes; Blue
bars, non-ERC volumes. (a) The Output from All model results per volume.
(b) The Non-bypass Dense model results per volume.

mean DSC is for the 24th volume that is a non-ERC and
contains the only example of the large prostate. Using zoom
augmentation could address this problem somewhat, however
increasing the zoom factor is not an appropriate solution
because the features in the field of view around the prostate
(muscle, fat, etc.) will be lost.

V. CONCLUSION

In this paper, we propose eight FCNN-based network
structures for MRI prostate segmentation. Our proposed
Non-bypass Dense model outperforms the comparable 3D
FCNN-based segmentation methods when evaluated by
cross-validation on the PROMISEI2 training dataset, and
achieves a new state-of-the-art for FCNN-based prostate seg-
mentation on the PROMISEI?2 training dataset.

In our research, we have analyzed different parameters
of FCNN with a particular focus on the structure of short-
cut connections. The results of our novel structures show
the benefits and advantages of reusing the extracted feature
maps within and between the blocks, and also the impact
of the network structure on the prostate MRI segmentation.
Shortcut connections can help their network. However, our
results show that using shortcut connections can also decrease
the accuracy of the network; therefore, it is critical to use
shortcut connections in the proper place in the network. Our
experiments show that the bypass connection, which trans-
fers the input feature maps to the output of the block is
not beneficial for prostate segmentation in most cases and
when it is used together with scattering connections it even
significantly reduces performance. In contrast, gathering con-
nections, which collect the output feature maps of the layers
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can significantly improve performance in this application.
Also, the results show that, among the models that transfer the
equal number of feature maps between the layers, the models
with the simpler architecture within the block mostly produce
better results.
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